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Abstract

This paper is concerned with the study of a model case of first order Hamilton-Jacobi
equations posed on a “junction”, that is to say the union of a finite number of half-lines with
a unique common point. The main result is a comparison principle. We also prove existence
and stability of solutions. The two challenging difficulties are the singular geometry of the
domain and the discontinuity of the Hamiltonian. As far as discontinuous Hamiltonians are
concerned, these results seem to be new. They are applied to the study of some models arising
in traffic flows. The techniques developed in the present article provide new powerful tools
for the analysis of such problems.

Keywords. Hamilton-Jacobi equations, discontinuous Hamiltonians, viscosity solutions, opti-
mal control, traffic problems, junctions

Mathematical Subject Classication. 35F21, 35D40, 35Q93, 35R05, 35B51

1 Introduction

In this paper we are interested in Hamilton-Jacobi (HJ) equations posed on a one dimensional
domain containing one single singularity. This is a special case of a more general setting where HJ
equations are posed in domains that are unions of submanifolds whose dimensions are different [12].
An intermediate setting is the study of HJ equations on networks [1]. We will restrict ourselves
to a very simple network: the union of a finite numbers of half-lines of the plane with a single
common point. Such a domain is referred to as a junction and the common point is called the
Junction point. Our motivation comes from traffic flows. For this reason, it is natural to impose
different dynamics on each branch of the junction. Consequently, the resulting Hamiltonian is
by nature discontinuous at the junction point. Together with the singularity of the domain, this
is the major technical difficulty to overcome. The analysis relies on the complete study of some
minimal action (or metric) related to the optimal control interpretation of the equation [42, 22].
We prove in particular that this minimal action is semi-concave by computing it.

We first present the problem and the main results in details. Then we recall existing results
and compare them with ours.
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1.1 Setting of the problem

In this subsection, the analytical problem is introduced in details. We first define the junction,
then the space of functions on the junction and finally the Hamilton-Jacobi equation.

The junction. Let us consider N > 1 different unit vectors e; € R? for i = 1,..., N. We define
the branches
Ji:[0,+oo)-ei, J:ZJL\{O}, i=1,...,.N

and the junction (see Figure 1)

Figure 1: A junction

T > 0, we also define
Jr = (07T) X J.

The reader can remark that we chose to embed the junction in a two-dimensional Euclidian space.
But we could also have considered an abstract junction, or we could have embedded it for instance
in a higher dimensional Euclidian space. We made such a choice for the sake of clarity.

Space of functions. For a function u: Jr — R, we denote by u’ the restriction of u to (0, T') x J;.
Then we define the natural space of functions on the junction

Ci(Jr) ={ueC(Jr), u e€C(0,T)xJ;) for i=1..,N}.

In particular for v € C}(Jr) and = = z;e; with x; > 0, we define

i %

w(to) = Go(tae)  and - ul(te) = S (b i),
z;
Then we set )
g (t, x) = ul (¢, ) it x#0,
ug(t,0) = (ul(¢,0))j=1,..~ if x=0.

HJ equation on the junction. We are interested in continuous functions u: [0,T) x J — R
which are viscosity solutions (see Definition 3.2) on Jr of

us + H(z,u;) =0 (1.1)
submitted to an initial condition

u(0,2) =up(x), x€ (1.2)



Because of the optimal control problem we have in mind (see Subsection 1.1 below), we restrict
ourselves to the simplest case of discontinuous Hamiltonians; precisely, we consider

[ Hi(p) for peR it xzelJf
Hiwp) = { max;—1,...nH; (p;)  for p=(p1,..pny) ERY if =0

where H; are convex functions whose Legendre-Fenchel transform is denoted L;. We recall that

Hi(p) = Li(p) = Sup (pq — Li(q))

and
H;=L}. (1.3)
We also consider
H; (p:) = sup (piq — Li(q)) (1.4)
g<0

Therefore equation (1.1) can be rewritten as follows

ul 4+ H;(ul) =0 on (0,T) x Jf for i=1,...,N, (1.5)
ug +max;—1 y H; (ul) =0 on (0,7) x {0}. '
The optimal control framework. In this paragraph, we give an optimal control interpretation
[36, 8, 5] of the Hamilton-Jacobi equation. We define the set of admissible controls at a point

x € J by

Reio if ze€ Ji* ,
Alz) = { Ui:L_”’N Rte; if = 0.0
For (s,y), (t,z) € [0,T] x J with s <t (the case s = t being trivial and forcing y = x), we define
the set of admissible trajectories from (s,y) to (¢,z) by

X(r)ed for all 7€ (s,t),
As,yst,2) = X e Wh([s, 1, R?): | X(7) € A(X(7)) forae. 7€ (s,t) ¢. (1.6)
X(s)=y and X(t)==z

For P = pe; € A(x) with p € R, we define the Lagrangian on the junction

wen-{ 1 0 ed

with
L = in  L;(p).
o(p) = min L;(p)
The reader can be surprised by the definition of L(z, P) for x = 0. In fact, if one considers only
trajectories that do not stay at the junction point, then the ones staying at 0 are approximated
by those staying very close to 0 on a branch i € Iy and moving “slowly” (X =~ 0).

1.2 Main results

We make the following assumptions:

(A0) The initial data ug is Lipschitz continuous.

(A1) There exists a constant v > 0, and for all i = 1,..., N, there exists C?(R) functions L;
satisfying L > > 0, such that (1.3) and (1.4) hold.

Theorem 1.1 (Existence and uniqueness). Assume (A0)-(A1) and let T > 0. Then there exists a
unique viscosity solution u of (1.1)-(1.2) on Jr in the sense of Definition 3.2, satisfying for some
constant C >0

lu(t,z) —ug(x)] < Cp  forall (t,x)€ Jr.

Moreover the function u is Lipschitz continuous with respect to (t,xz) on Jr.



On one hand, we will see below that the existence of a solution can be obtained with Perron’s
method under weaker assumptions than (A1) (see Theorem A.2). On the other hand, we are able
to get uniqueness of the solution only under assumption (Al) and this is a consequence of the
following result:

Theorem 1.2 (Comparison principle). Assume (A0)-(A1). Let T > 0 and let u (resp. v) be a
subsolution (resp. a supersolution) of (1.1)-(1.2) on Jr in the sense of Definition 3.2. We also
assume that there exists a constant Cp > 0 such that for all (t,z) € Jr

u(t,z) > —Cr(1+|z|) (resp. v(t,z) < Cr(1+|z|).
Then we have u < v on Jp.

In order to prove this strong uniqueness result, we will use in an essential way the value function
associated to the optimal control problem described in Subsection 1.1: for ¢ > 0,

t
oc t7 = inf L(X ,X d 1.8
wto) = int Lol + [ LX), K ()r (19
where L is defined in (1.7) and A(0, y; ¢, z) is defined in (1.6).

Theorem 1.3 (Optimal control representation of the solution). Assume (A0)-(A1) and letT > 0.
The unique solution given by Theorem 1.1 is u = Uoc With Uee given in (1.8). Moreover, we have
the following Hopf-Lax representation formula

toe(t) = inf {uo(y) + D (0, y:t,2)) (19)

with

D(0,y;t,x) =  inf ){/OtL(X(T),X(T))dT}.

Xe€AQ0,yit,a
The comparison principle is obtained by combining
e a super-optimality principle for surpersolutions v, which implies v > uqc;
e a direct comparison result with subsolutions u, which gives uo. > u.

We finally have the following result which shed light on the role of the junction condition (see the
second line of (1.5)).

Theorem 1.4 (Comparison with continuous solutions outside the junction point). Assume (A0)-
(A1) and let T > 0. Let u € C([0,T) x J) be such that u(0,-) = ug and for each i € {1,..., N},

the restriction u® of u to (0,T) x J; is a classical viscosity solution of
ul + Hi(ul) =0 on (0,T) x J;.
Then u is a subsolution of (1.1)-(1.2) on Jr in the sense of Definition 3.2, and u < Uqc.

An immediate consequence of Theorem 1.4 is the fact that the optimal control solution e is
the maximal continuous function which is a viscosity solution on each open branch.

We apply in Section 2 our HJ approach to describe traffic flows on a junction. In particular,
we recover the well-known junction conditions of Lebacque (see [32]) or equivalently those for the
Riemann solver at the junction as in the book of Garavelo and Piccoli [27].

1.3 Comments

We already mentioned that the main difficulties we have to overcome in order to get our main re-
sults are on one hand the singular geometry of the domain and on the other hand the discontinuity
of the Hamiltonian.



Discontinuity. There is an important literature concerning Hamilton-Jacobi equations with
discontinuous coefficients; see for instance [9, 50, 7, 44, 38, 18, 10, 11, 47, 49, 16, 13, 48, 20, 19].
There are also many results concerning scalar conservation laws with discontinuous flux functions;
see for instance [41, 4, 14] and references therein. But there are very few results (if any) building
bridges between these two kinds of results.

Networks. As it is explained in [14] for instance, the study of traffic flows on networks is an
important source of problems for scalar conservation laws with discontinuous coefficients [27, 21].
The study of Hamilton-Jacobi equations on networks is more recent; the reader is referred to
[1, 2, 40, 15] and references therein. In [1], a comparison principle is proved adapting the double
variable technique to this new framework, assuming among other things that all the Lagrangian
L;(p) are minimal for p = 0 with the same minimal value L,(0) = ... = Lx(0).

The optimal control interpretation. As explained above, the comparison principle is proved
by using in an essential way the optimal control interpretation of the Hamilton-Jacobi equa-
tion. The use of representation formulas and/or optimality principles is classical in the study of
Hamilton-Jacobi equations [37, 45, 46, 28, 29]. More specifically, it is also known that a “metric”
interpretation of the Hamilton-Jacobi equation is fruitful [42]. Such an interpretation plays a
central role in the weak KAM theory [22].

As far as our problem is concerned, we are not able to adapt the classical viscosity solution
approach to get uniqueness (doubling variables techniques). On the contrary, we get it by proving
e.g. a super-optimality principle (see the discussion above) and by using representation formulas
in the spirit of the works cited above.

We would like next to be a bit more precise. The technical core of the paper lies in Theorem 4.2.
This result implies that the function

€T

D(s,y;t,x) = (t— 5)Do (y >

t—s't—s

is semi-concave with respect to (¢,z) and (s,y) and, if there are at least two branches (N > 2),
that D satisfies

Dt+H(anL) 207
-Ds+H(y,-Dy) =0

(in a weak sense made precise in the statement of Theorem 4.2). In the case where the Lagrangians
coincide at the junction point (Lq(0) = ... = Lx/(0)), it turns out that the restriction D' (y, z) of
Dy to J; x J; belong to ok (J; x J;) and is convex. A more general case is considered in this paper:
Lagrangians can differ at the junction point and in this case, the functions Dgi are not convex nor
C' anymore for some (i, 7).

Viability and state constraints. We would like to make a final comment: in view of the
geometric framework we chose, we see that the problem under analysis has to do with state con-
straints problems [43, 31, 17, 30]; indeed, the trajectories of the dynamical system are constrainted
to stay on the junction. Similarly, our problem is related to the viability theory [3, 23, 24, 25, 26].
However, we did not use this approach/these techniques here.

Generalization and open problems. Eventually, we briefly mention natural generalizations
of our results and some important open problems. First of all, it is natural to let Hamiltonians
H; depend on the space variable x. It is also natural to consider general networks by considering
several junction points. We believe these generalizations can be achieved but this could be very
technical. Dealing with non-convex and/or non-coercive Hamiltonians is quite challenging and
some intermediate conditions should probably be imposed. For instance, the controllability of the
underlying dynamical system ensures that we can work with continuous viscosity solutions.



Organization of the article

Section 2 is devoted to the application of our results to some traffic flow problems. In particular,
the HJ equation is derived and the junction condition is interpreted. In Section 3, the definition of
(viscosity) solutions is made precise. In Section 4, the first important properties of optimal trajec-
tories are given. Section 5 is devoted to the proof of the main results of the paper. In particular,
the comparison principle is proved by proving a super-optimality principle and by comparing sub-
solutions with the solution given by the optimal control interpretation of the equation. Section 6
is devoted to the proof of the technical core of the paper, namely the existence of test functions
for the minimal action associated with the optimal control interpretation.

Notation

Distance and coordinates in the junction. We denote by d the geodesic distance defined
on J by

d(z,y) = |z — y| if x,y belong to the same branch .J; for some 1,
Y || + |y| if x,y do not belong to the same branch.

For x € J, B(x,r) denotes the (open) ball centered at x of radius r. We also consider balls
B((t,z),r) centered at (t,z) € (0,400) x J of radius r > 0. For = € J, let us define the index i(x)
of the branch where z lies. Precisely we set:

. - 10 if ‘TCGJ;;,
Z(I)_{o if z=0.

Up to reordering the indices, we assume that there exists an index kg € {1, ..., N} such that
Lo(0) = L1(0) = - -+ = Ly, (0) < Lyy41(0) < -+ < Ly (0). (1.10)
We also set
10:{1,..,k0} and INZ{I,,N}
Functions defined in J2. For a function ¢ defined on J x J, we call ¢% its restriction to J; x J;.
Then we define the space
CLJI) ={peC(J?), ¢7eC'(JxJ;) forall ijely}.

We also call for x = x;e; with z; > 0 and y = y;e; with y; >0

. o . _ o .
Opp(,y) = 5 —¢Y(zies,y) and Fo(,y) = fay_so”(x,yjej)
A J

and )
9y (2, y) it xeJf,
(Ore(z,y),my i =0

)

Oup(w,y) = {

and similarly
Fp(z,y) if yeJy,
ay%@(fyil/) = { Y /

@p(x,y),_y oy i y=0.

PR

We also set ‘
{ 20up(,y) = w0ip(x,y)  if x €T,
yoyp(z,y) = y;0e(x,y)  if yeJ;.

2 Application to the modeling of traffic flows

In this section we present the derivation of the Hamilton-Jacobi formulation of traffic on a junction.
We also discuss the meaning of our junction condition in this framework and relate it to known
results.



2.1 Primitive of the dentities of cars
We consider a junction (represented on Figure 2) with m > 1 incoming roads (labeled by the

i=m+1

i=m+2

i=m+n

Figure 2: A traffic junction

index i = 1,...,m) and n > 1 outgoing roads (labeled by j = m+ 1,...,m +n = N). This means
that the cars move on the incoming roads in the direction of the junction and then have to choose
to go on one of the n outgoing roads. We assume that the proportion of cars coming from the
branch ¢ = 1,...,m is a fixed number v; > 0 (which may be not realistic for m > 2), and that the
proportion of cars going on each branch j € {m +1,...,m 4+ n} is also a fixed number ~,; > 0. We
also assume the obvious relations (for conservation of cars)

We denote by p*(t, X) > 0 the car density at time ¢ and at the position X on the branch k. In
particular, we assume that the traffic is described on each branch k by a flux function f*: R — R.
We assume

each function f* is concave and has a unique maximum value at p = p¥ > 0 (2.1)

The typical example of such flux function is given by the LWR model (Lighthill, Whitham [35]
and Richards [39]), with

f(p) = pv(p) with the velocity v(p) = Vinax(1 — p/pmax) (2.2)

where Vinax and ppax are respectively the maximal velocity and the maximal car density in the
model). In this model the critical car density p. where f is maximal, is equal to %pmax.
We assume that the car densities are solution of non linear transport equations:

{p;qr(fi(pi))x:o, X <0, for i=1,...m

3 M 2.
i+ (f7(P)x =0, X>0, for j=m+1,..,m+n 23)

where we assume that the junction point is located at the origin X = 0.

We do not precise yet the junction condition at X = 0, and we now proceed formally to deduce
the Hamilton-Jacobi model of such a junction. For a function g to determine, let us consider the
functions

{ U, X)=gt)+ L [ pt.Y)dy, X<0, for i=1..m, 24

Uj(t,X):g(t)—i—%fOij(t,Y) day, X >0, for j=m+1,..,m+n.
Then we can compute formally for j =m+1,...m+n
Ul =g+ 5y el Y)Y
=g'(t)— & S (PP (tY))x dY

==L PP (6, X))+ ' (8) + L (0 (¢,07))



This shows that for j =m+1,....m+n
1 } )
Ui + gf" (vUx) = b (t) (2.5)

where
B(E) == g'(t) + %fj(pj (t,0%)).

Remark that we can show similarly that (2.5) is still true for the index j replaced by i = 1,...,m
with

B(t) = o' (1) + %fi(pi(t, 07)).

In particular, this shows (at least when the quantities in (2.5) are well defined) that we can choose
g such that the total flux —g'(t) is given by

= 3 [0 (2.6

and then we have
R¥t)=0 for i=1,..m+n

if and only if o '
fz_(pz_(t70_)) = ,yz(_g/@)) for = 1a e M (2 7)
PP (t07) =47 (=g'(t)) for j=m+1..m+n '

which is exactly the expected condition which says that the proportion of incoming cars going in
the junction from the branch i is 4* and the proportion of cars getting out of the junction which
choose to go on the branch j is v7.

Let us notice that if we choose the initial condition g(0) = 0, then we deduce from (2.6) that
we have with [ =1,....m+n

U0 =g = [ 3 Fulno)ar

which shows that —U'(t,0) can be interpreted as the total quantity of cars passing through the
junction point X = 0 during the time interval [0,t). As a consequence, the quantity —U}(t,0) can
also be interpreted as the instantaneous flux of cars passing through the junction point.

We now give a further interpretation of the problem in the special case m = 1. In the special
case m = 1, imagine for a moment, that we come back to a discrete description of the traffic,
where each car of label &k has a position zj(¢) with the ordering z(t) < zx4+1(t) < 0. We can be
interested in the label k of the car z(t) < 0 which is the closest to the junction point X = 0.
Let us call it K(t). We can normalize the initial data such that K(0) = 0. Then the quantity of
cars that have passed through the junction point X = 0 during the time interval [0,¢) is equal to
—K (t), which is the exact discrete analogue of the continuous quantity —U? (¢, 0).

On the other hand the number of cars between the positions a = z4(f) and b = zp(t) is
obviously equal to B — A, and its continuous analogue on the branch i = m = 1 with 4! = 1, is
f: pt(t,X) dX = U*(t,b) — U'(t,a). This shows that U'(t, X) can be interpreted as the exact
continuous analogue of the discrete labeling of the cars moving in the traffic.

This interpretation is also meaningful on the “exit” branches, that is tosay for j € {m + 1,...,m + n}.
Indeed, for such j’s, U’(t, X) is the continuous analogue of the discrete label of the car that have
decided to choose the branch j and which is at time ¢ close to the position X > 0.



2.2 Getting the Hamilton-Jacobi equations

We now set

ui(t, X) = =U(t, - X), X >0, for i=1,...,m (2.8)
w(t,X) = -U’(t, X), X >0, for j=m+1,...m+n ’
and we define the convex Hamiltonians
H(p) =~ 1]“(’71?) for i=1,..,m (2.9)
Hj(p) = - wa< Ip)  for j=m4l..mtn '
Then we deduce from (2.5) that we have
uf + Hy(u%) =0, X >0, for k=1,..m+n (2.10)

with equality of the functions at the origin, i.e.
uF(t,0) = u(t,0) for any k€ {1,..,m+n}.

Notice that for the choice Vipax = 1 = pmax in (2.2), we get with f*(p) = f(p) = p(1 — p) for all
k € Iy, that
ref( ) = %( )

Li()—$L ¢(q) for i=1,...,m
Li(q) = 5 Leei(—q)  for j=m+1,..m+n

In particular this shows that the Ly (0) are not all the same, even in the simplest case.

2.3 The junction condition and its interpretation

A junction condition is still needed so that the solution of (2.10) be uniquely defined. Indeed, at
first glance, one may think that u(¢,0) is equal to —g’(¢) which is given by (2.6) (where we have
assumed (2.7)). The point is that this condition can not be satisfied for every time. One way to
be convinced oneself of that fact is to consider the case m = n = 1 with f' = f2 = f. Then,
we look at solutions u of the Hamilton-Jacobi equation in R with the artificial junction. We can
simply associate with it the classical conservation law on the whole real line. We can then consider
a single shock moving with constant velocity for the conservation law. When this shock will pass
through the jonction point (let us say at time tg), this will mean that u(to, ) is discontinuous in
space at the junction point. In particular the formal computations of Subsection 2.1 are no longer
valid at that time tg, even if they are valid for t # to. For a general problem, one may expect that
our formal computations are only valid for almost every time (even if it is not clear for us).

In view of Theorem 1.4, if we restrict our attention to continuous solutions u, then we will
have u < uo. where u,. is the solution associated to the optimal control problem. This shows in
particular that we have

u(t,0) < uoc(t,0)

which means (in view of (2.8) and the interpretation of —U' given in subsection 2.1) that we have
a universal bound on the total amount of cars passing through the junction point during the time
interval [0,t). If we assume moreover that this amount of cars is maximal, then we can choose
(and indeed have to choose) u = uo. and the natural junction condition is then

u(¢,0) + ,max H (u(t,0%)) =0 (2.11)

with
H, (p) = sup (pqg — Lx(q)) and Lg(p) = sup (pq — Hi(q))-

q<0 qeR



Using our assumption (2.1) on the functions f*, let us define for k¥ = 1,..., N the Demand functions

f,’;c)(p) :{ fk(p) for péplcC

fRpE)  for p>pk

and the Supply functions
! fHpg)  for p<pp
fs(p) =

ffp)  for p=>pp.
From assumption (2.1) on the functions f*, we deduce that
H(0) =~ b0'p),  for i=1,.om
Hj_(p):_%fé(—fyjp), for j=m+1,...m+n=N.

Condition (2.11) means that

— UL, 0) = ug(t,0) = k_r{linN —H, (uf(t,07))

—in (g, b0 min  L0,07)). 212

Notice that from (2.7), it is natural to compare
1 ... . 1 ...
(TN — J +
?‘f (p*(t,07)) and ij (P (t,07)).

Then condition (2.12) is nothing else that the Demand and Supply condition of Lebacque, which
claims that the passing flux is equal to the mimimum between the Demand and the Supply, as it
is defined in [33] (at least in the case m = 1).

In the special case m = 1, it is explained in [34] that this condition (2.12) is also equivalent
to the condition defining the Riemmann solver at the junction point in the book of Garavello and
Piccoli [27]. Let us notice that this condition is also related to the Bardos, Le Roux, Nédelec [6]
boundary condition.

3 Viscosity solutions

In this section, we consider a weaker assumption than (A1). We introduce the following assump-
tion:

(A1) Foreachie Iy,
e the function H;: R — R is continuous and lim,|_, 4o H;(p) = +0o0;

e there exists p) € R such that H; is non-increasing on (—oo,p)] and non-decreasing on
[ph, +00);
When (A1’) holds true, the function H; is defined by H, (p) = inf,<o H;(p + ¢). We now make
the following useful remark whose proof is left to the reader.

Lemma 3.1. Assumption (A1) implies Assumption (A1°).

Next we give equivalent definitions of viscosity solutions for (1.1). We give a first definition
where the jonction condition is satisfied in “the classical sense”; we then prove that it is equivalent
to impose it in “the generalized sense”. It is essential if one expects solutions to be stable.

We give a first definition of viscosity solutions for (1.1) in terms of test functions by imposing
the junction condition in the classical sense. We recall the definition of the upper and lower
semi-continuous envelopes v* and u, of a function w: [0,7T") x J:

u*(t,x) = limsup wu(s,y) and wu.(t,x) = lminf wu(s,y).
(s,9)—(t,x) (s,9)—(t,x)

10



Definition 3.2 (Viscosity solutions). A function u: [0,T) x J — R is a subsolution (resp. su-
persolution) of (1.1) on Jp if it is upper semi-continuous (resp. lower semi-continuous) and if for
any ¢ € CL(Jr) such that u < ¢ in B(P,r) for some P = (t,x) € Jr, r > 0 and such that u = ¢
at P € Jp, we have

de(t,x) + H(z, ¢ (t,2)) <0 (resp. >0),

that is to say

o ifx € J, then
di(t,x) + Hi(¢dz(t,2)) <0 (resp. >0);

o ifx =0, then
$u(t,0) + max Hy (¢;,(t,0)) <0 (resp. > 0). (3.1)
i€ln

A function u: [0,T) x J — R is a subsolution (resp. supersolution) of (1.1)-(1.2) on Jp if it
is a subsolution (resp. supersolution) of (1.1) on Jp and moreover satisfies u(0,-) < ug (resp.
u(0,-) > ).

A function u: [0,T) x J — R is a (viscosity) solution of (1.1) (resp. (1.1)-(1.2)) on Jr if u* is
a subsolution and u, is a supersolution of (1.1) (resp. (1.1)-(1.2)) on Jr.

As mentioned above, the following proposition is important in order to get discontinuous
stability results for the viscosity solutions of Definition 3.2.

Proposition 3.3 (Equivalence with relaxed junction conditions). Assume (A1°). A function
u: Jp — R is a subsolution (resp. supersolution) of (1.1) on Jr if and only if for any function
¢ € CH(Jr) such that u < ¢ in Jr and u = ¢ at (t,z) € Jr,
o ifx e JF, then
de(t,x) + Hi(dz(t,2)) <0 (resp. >0)

e if x =0, then either there exists © € In such that
d¢(t,0) + Hi(¢(t,0)) <0 (resp. >0)
r (3.1) holds true.

Proof of Proposition 3.3. We classically reduce to the case where the ball B(P,r) is replaced with
Jr.

The “if” part is clear. Let us prove the “only if” one. We distinguish the subsolution case and
the supersolution one. We start with supersolutions since it is slightly easier.

Case 1: supersolution case. We consider a test function ¢ € C}(Jr) such that u > ¢ in Jr
and u = ¢ at (to,zp). There is nothing to prove if 2o # 0 so we assume zy = 0. We have to prove
that ¢ (to,0) + sup;er,, H; (¢%(to,0)) > 0. We argue by contradiction and we assume that

%

¢4 (to,0) + sup H; (¢L(ty,0)) < 0. (3.2)

i€ln

Then it is easy to see that there exists a function (5 € CL(Jr) such that ¢ > (5 with equality
at the point (¢p,0) and such that

L (to,0) = min(gL (t0,0),ph) and  i(to,0) = u(to,0). (3.3)

Notice that _ _ '
H; (¢3(t0,0)) < Hi(¢;(t0,0)) < H; (¢3(t0,0)). (3.4)

The first inequality is straightforward. To check the second inequality, we have to distinguish two
cases. Either we have ¢! (t9,0) < ¢ (to,0), and then ¢’ (t9,0) = p} and we use the fact that the
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minimum of H, is Hi(ph). Or ¢ (to,0) = ¢ (t,0) and then this common value belongs to the
interval (—oo, p§] on which we have H; = H .
Since u > ¢ in Jr and u = ¢ at (to,0), we conclude that either

i(to,0) + sup H; (¢%(t,0)) >0

i€ln
or there exists i € Iy such that
du(to,0) + Hi(@;(t, 0) > 0.
In view of (3.3) and (3.4), we obtain a contradiction with (3.2).

Case 2: subsolution case. We consider a function ¢ € C'(Jr) such that u < ¢ in Jr and u = ¢
at (to, o). There is nothing to prove if g # 0 and we thus assume g = 0. We have to prove that
$¢(t0,0) + sup;eg, H; (¢%(t0,0)) < 0. We argue by contradiction and we assume that

K2

b1 (to,0) + sup H; (¢ (t,0)) > 0. (3.5)

i€ln
In order to construct a test function q?), we first consider I; C Iy the set of j’s such that

H (¢7(t0,0)) < sup H; (¢%(t0,0)).

Since H; is coercive, there exists ¢/ > pj, such that H;(¢’) = sup;c;,, H; (¢L(to,0)).

We next consider a test function ¢ € C!(Jp) such that ¢ < ¢ with equality at (to,0) and such
that

< max (¢’ (tg,0), ¢* ifi eI, ~
0 ={ BRGHO ER wd 0 =), G0
Notice that for all j € Iy,
Hj($)(t0,0)) = sup H; (¢;(t,0)) = sup H; (¢} (to,0)) (3.7)
i€ln i€IN

where for the iPequality, we have in particular used the fact that H; is non-decreasing on [pé, +00).

Since u < ¢ in Jr and u = ¢ at (¢g,0), we conclude that either

¢~>t(to,0) + sup H[(gzg;(to, 0)) <0

i€ln
or there exists j € Iy such that
Pe(to,0) + H;(¢L(t0,0)) < 0.

In view of (3.6) and (3.7), we obtain a contradiction with (3.5). This ends the proof of the
Proposition. O

We now prove Theorem 1.4.

Proof of Theorem 1.4. Let us consider a function ¢ € C}(Jr) such that u < ¢ with equality at
(to,0) with 9 € (0,T). Modifying ¢ if necessary, we can always assume that the supremum of
u — ¢ is strict (and reached at (to,0)). For n = (n1,...,nn) € (RN, we set

M, = sup <u(t,x) —o(t,x) — 77]) .
(tyx=zje;)edr ‘x_7|
Because u is continuous at (g, 0), we get for n € (R} )™ that
MW — My=0
{ (t1,27) = (to, 0) ‘ as soon as one of the component 7;, — 0. (3.8)
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where (t",2") € Jr is a point where the suppremum in M, is reached.

Moreover given the components n; > 0 for j € Iy \ {ip}, we can use (3.8) in order to find
7i, > 0 small enough to ensure that 2" € J; . Then we have in particular the following subsolution
viscosity inequality at that point (", 2"):

¢ + H;, (qu— Tio )so.

|72
Therefore passing to the limit n;, — 0, we get
G+ H (¢) <0 at (to,0).

Because this is true for any ig € Iy, we finally get the subsolution viscosity inequality at the
junction: ,
¢ +max H (¢2) <0 at (to,0).
i€ln

Now the fact that u < we. follows from the comparison principle. This ends the proof of the
Theorem. O

4 The minimal action

We already mentioned that the optimal control solution of the Hamilton-Jacobi equation defined
by (1.8) plays a central role in our analysis. We remark that for z € J and ¢ > 0,

Uoc(t, ) = 11615 {uo(y) + D(0,y;¢t,x)} (4.1)
Yy
where .
D(0,y; t,x) = i L(X (), X (7))dr.
Opta)= _min [ LX), X()ar

More generally, keeping in mind the weak KAM theory, we define the so-called minimal action
D:{(s,y,t,x) € ([0,00) x J)?, s <t} = R by

t
D(s,y;t,x) :XeAi(Islfy_t . / L(X (1), X (7))dr. (4.2)

It is convenient to extend D to {s =t}. We do so by setting

0 ify=ux,

D(t,y,t,x) = {+OO iy

Remark 4.1 (Dynamic Programming Principle). Under assumptions (A0)-(A1l), it is possible (and
easy) to prove the following Dynamic Programming Principle: for all z € J and s € [0, ¢],

Uoe(t, T) = ;25 {toc(s,y) +D(s,y;t, )} .

Notice that a super-optimality principle will be proved in Proposition 5.1.

Before stating the main result of this section, we
The following result can be considered as the core of our analysis. The most important part
of the following theorem is the fact that the minimal action is semi-concave with respect to (¢, )

(resp. (s,))-

Theorem 4.2 (Key inequalities for D). D is finite, continuous in {(s,y;t,z): 0 < s < t,z,y € J}
and lower semi-continuous in {(s,y;t,x): 0 < s < t,x,y € J}. Moreover, for all (so,yo) and
(to, o) € (0,T) x J, 8o < to, there exist two functions ¢, € CL(Jr) and r > 0 such that
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e & > D(s0,Y0;,) on a ball B(Py,r) with equality at Py = (to,zo) and
o1 + H(ﬂ?o, ¢z> >0 at (to,mo). (43)
e ) > D(-,5to,zo) on a ball B(Qo,r) with equality at Qo = (S0, Yyo) and

_¢S + H(yf)) _’(/)’g) S 0 at (807y0) Zf N Z 2a (4 4)
s + Hi(=vy) <0 at (s0,%0) if N=1 '

Moreover, for all R > 0, there exists a constant Cr > 0 such that we have

d(yo,z0) <R = |¢x(to,z0)| + |y (50,%0)| < Cr. (4.5)
Remark 4.3. As we shall see when proving this result, we can even require equalities instead of
inequalities in (4.3) and (4.4).

Since the proof of Theorem 4.2 is lengthy and technical, we postpone it until Section 6. When
proving the main results of our paper in the next section, we also need the following lower bound
on D. We remark that this bound ensures in particular that it is finite.

Lemma 4.4. Assume (A1). Then

D(&y;t,x) > d(y,iE)Q - C()(t - S)

~
4(t — s)

where Cy: = max(0, —Lo(0) + 773), v appears in (A1), vo = max;ery |L;(0)| and Lo(0) is chosen
as in (1.10). Moreover,
D(s,x;t,x) < Lo(0)(t — s).

In particular, if (t,,x,) — (t,x), then D(t,, Tp;t, ) — 0 as n — co.

Proof of Lemma 4.4. We only prove the first inequality since the remaining of the statement is
elementary. We have

2

Lilp) = " + L0+ Li(0) = 59 = 0lpl + Lo(0) > p° + Lo(0) = 2.
This shows that -
Litp) > 1p* — O, (4.6)
Thus we can write for X (-) € A(s,y;t,x),
t ) Nt
| Lx@.X)dr = ~Coe-9)+ 7 [ (X
Then Jensen’s inequality allows us to conclude. O

5 Proofs of the main results
In this section, we investigate the uniqueness of the solution of (1.1)-(1.2). In particular, we will

show that the solution constructed by Perron’s method coincide with the function e, coming
from the associated optimal control problem.
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5.1 Supersolutions and super-optimality

In this subsection, we will show that a supersolution satisfies a super-optimality principle. For the
sake of clarity, we first give a formal argument to understand this claim. We consider the auxiliary
function, for s < t,

Ui z(s) = ;IelfJ{u(S, y) + D(s,y;t,x)} (5.1)

and we are going to explain formally that it is non-decreasing with respect to s as soon as wu is
a supersolution of (1.1). We call this property a super-optimality principle. Notice that this is
strongly related to the fact that the quantity U, ,(s) is constant in s if u is equal to the optimal
control solution u..

Assume that the infimum defining U is attained for some ¢ € J. Then we write

Utl,z(s) = 6511,(5, Z,_I) + 851)(53 y; t, :L’)
awu(‘g)y) = _ayD(S’g;tax)'

Moreover assuming D to be smooth (which is not the case), we formally get from (4.4) the fact
that 0,D(s,y;t,x) > H(y,—90,D(5,7;t,x)) (at least in the case N > 2). Hence

U{ ,(s) > d5u(s,y) + H(, 0xu(s,y)) > 0.

We thus conclude that U, , is non-decreasing if u is a supersolution of (1.1). We now give a precise
statement and a rigourous proof.

Proposition 5.1 (Super-optimality of supersolutions). Assume (A1). Let u: [0,T) x J — R be
a supersolution of (1.1) on Jp such that there exists o > 0 such that for all (t,x) € Jr,

u(t,z) > —o(1 4+ d(z,0)) (5.2)
Then for all (t,z) € Jr and s € (0,1],
u(t,z) = inf {u(s,y) + D(s, y;1, 2)} (5.3)
Assume moreover (A0) and that u is a supersolution of (1.1)-(1.2) on Jp. Then we have u > uoe
on [0,T) x J.
Proof of Proposition 5.1. The proof proceeds in several steps.

Step 1: preliminary. Notice first that from (6.7), we get

u(s,y) + D(s, y;t,x) > d(y,z)* = Co(t — s) — o (1 + [y)).

4(t — s)

Using the lower semi-continuity of D, we see that the infimum in y of this function is then reached
for bounded y’s. Moreover by lower semi-continuity of the map (s, y;t,x) — u(s,y) + D(s,y;t, x),
we deduce in particular that the map (s;t,z) — U ,(s) (and then also s — Uy, (s)) is lower
semi-continuous.

Step 2: the map s+— U «(s) is non-decreasing. We are going to prove that for s € (0,¢),
Ui .(s) > 0 in the viscosity sense. We consider a test function ¢ touching U; . from below at
5 € (0,t). There exists § such that

We deduce from the definition of Uy , that
¢(s) = D(s,y; t,x) — [p(5) = D(5, 43t )] < uls,y) — u(5,7).
By Theorem 4.2, there exists a test function ¢ such that ¢ > D(-,;t,x) on a ball B(Q,r) with

equality at Q = (5,7). Hence, we can rewrite the previous inequality by replacing D with 1. We
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then obtain that (s,y) — ¢(s) — ¥(s,y) is a test function touching u at (5, %) from below. Since
u is a super-solution of (1.1), we have in the cases N >2or N=1and § # 0

©'(8) 2 1s(5,9) — H(Y, —0,¥(5,9)) = 0
and in the case N =1and g =0
Spl(g) > %(57 g) - Hf(‘@ﬂﬁ(@ Zj)) > ws(ga g) - Hl(_ayw(§7 g)) >0
where we used the properties of the function 1 given by Theorem 4.2.

Step 3: conclusion. Let us define for (¢,z) € Jr the following kind of lower semi-continuous
envelope (for the past in time)

w(t,z) = iminf{u(t,, z,) : (tn, zn) = (&), < t}.

Let us notice that we have
U, =Uy =u on Jr. (5.4)

Given a point (t,x) € Jr, let us consider a sequence (t,,z,) — (t,z) such that

H(ta ZL’) = ngrfoo u(tna xn)

Using Lemma 4.4, we have for any s < t, <t
Utw, () < Upg, (tn) < u(tn,xn) + D(tn, Tn, t, o) = ult, z).
Therefore from the lower semicontinuity of U, we get
Ui(s) <ult,z).

Again from the lower semi-continuity of the map (¢,z) — U, 5(s), we get passing to the lower
semi-continuous envelopes in (¢, z):

Uio(s) <wu,(t,z) =ult,z)

where we have used (5.4). This shows (5.3) for 0 < s < t. This is still true for s = ¢ by definition
of D. The proof is now complete. O

5.2 Comparison with subsolutions

Proposition 5.2 (Comparison with subsolutions). Let u: Jr — R be a subsolution of (1.1)-(1.2)
on Jr, such that there exists o > 0 such that for all (t,x) € Jr,

u(t,z) < o(l+d(z,0)). (5.5)
Then we have u < Uge on Jr.

In order to prove Proposition 5.2, we first state and prove two lemmas.

Lemma 5.3. Assume (A0)-(A1). Then the function ue. defined in (1.8) satisfies
[toc(t, ) — ug(x)| < Ct.

Proof of Lemma 5.3. We first get a bound from below. Using (6.7), we deduce (denoting by L,
the Lipschitz constant for ug):

uo(y) +D(s,yst, ) > uo(x) + F(d(y,2))* — Cot — Lyyd(y, )

> ug(xz) — Cat
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with ~
—Cy = ae[%rﬁoo) {Zaz —Cy — Luoa} > —00.
This implies that
Uoc () > up(z) — Cat.

We next get a bound from above. We have
Uoe () < ug(x) + D0, z;t, ) < ug(x) + Mt

with
M = sup L;(0).
i€lN

This ends the proof of the lemma. O

Lemma 5.4. Assume (A0)-(A1). Let u:[0,T) x J — R be a subsolution of (1.1)-(1.2) on Jr,
satisfying (5.5). Then there exists a constant C > 0 such that

u(t,x) <wug(z)+Ct  forall (t,z) € Jp. (5.6)

Proof of Lemma 5.4. Using the Lipschitz regularity of ug, we can easily consider a smooth ap-
proximation u; of ug such that uj > ug and |u] — ug|p=(s) — 0 as n — 0. Then consider the
following supremum for 7, « > 0

Npo = sup {u(t,z) — uf(x) — Ct — ad(x,0)? — L}
(t,2)€[0,T)x J Tt

We claim that IV, o < 0 for some C' large enough independent on 7, > 0 small enough. The
lemma will be obtained by letting @ and 1 go to 0. We argue by contradiction and assume that
N, > 0. Thanks to (5.5), the supremum N, , is attained for some (¢,z) € [0,T) x J. If t = 0,
we have N, o < 0. Therefore ¢ > 0 and we can use the fact that u is a subsolution to obtain for
r = T;€e;

n

73 +C —;Ié?])v(Lj(O) < % + C + H(x, 0pul(x) + 2az;) <0

where we have used assumption (A1) to estimate H from below. Notice that we have also made

use of a slight abuse of notation in the case = 0. Choosing C' = maxjer, |L;(0)| allows us to
conclude to a contradiction. This ends the proof of Lemma 5.4. O

We now turn to the proof of Proposition 5.2.
Proof of Proposition 5.2. The proof proceeds in several steps.

Step 1: preliminaries. Let us consider

M = sup {u(t7 LC) - uoc(t7 .’L')} .
(t,z)€[0,T)xJ

From Lemmas 5.3 and 5.4, we deduce that we have M < 2CT < 4+oco. We want to prove that
M <O0.
To this end, we perform the usual corrections considering the following supremum for n,a > 0

My o= sup {u(twfr) — Upe(t, ) — ad(z, ())2 _ 77} )
(t,z)€[0,T)x J T—t

As it is proved classically, we also have that M, , — M, o as o — 0 where

Myo= sup {u(t,az) — Uoc(t, ) — 77} .
(t,z)€[0,T)x J T-—t
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We argue by contradiction by assuming that M > 0 and then M, o > M/2 > 0 for n > 0 small
enough and fixed for the rest of the proof.

Step 2: reduction to t > 0. Notice that the supremum M, , is achieved for points (¢,z) €
[0,T) x J. Using again Lemmas 5.3 and 5.4, we also deduce that

M/2 < MW»O < ana + OQ(l) < 20t

and hence t > % > 0 for a small enough.
Step 3: a priori bounds. Using the argument of Step 1 of the proof of Proposition 5.1, we see
that there exists ¢y € J such that
Uoc(fa 3_5) = UO(Q) + D(Ov Y; {7 j)
Therefore we can rewrite M, , as

Myo= sup  {u(t,z) — uo(y) — D(0,y:t,2) — ad(z,0)* — "},
0<t<T,x,ycJ T —¢

and the supremum is achieved for (£,Z, %) € (0,7) x J2. Notice that this supremum looks like the
classical one for proving the comparison principle for viscosity solutions, with the usual penaliza-
tion term (y — x)2/e replaced here by the function D(0,y;t, ).

In view of the bound (6.7) from below on D and (5.6), we derive from M, o > 0 that

T+ ad(@,0)° + 2d(§,2)? < Cof + Ci+ Lyyd(5, )

where L,,, denotes the Lipschitz constant of ug. We conclude that there exists Ct such that
ad(z,0)> < Cr and d(y,7) < Cr (5.7)

where Cr depends on T', Cy,C, L, and 7.

Step 4: getting the viscosity inequality. Since ¢ > 0, we have in particular that

u(t,x) — (D((),y;t,l‘) + ad(z,0)* + Tn—t)

<u(t,z) — (D(O,y; t,%) 4 ad(z,0)* + Tnt) :

By Theorem 4.2, there exists a test function ¢ such that ¢ > D(0,%;-,-) on a ball B(P,r) with
equality at P = (,Z). Hence, we can rewrite the previous inequality by replacing D with ¢. We
then obtain that (t,2) — ¢(t,z) + ad(z,0)? + 7= touches u from above at (¢, z) with £ > 0. We
use next that u is a subsolution of (1.1) and get for Z = T;e;

n

T2
where we have made use of a slight abuse of notation in the case Z = 0. On the other hand, we
have

+ ¢¢(t, %) + H(Z, (L, T) + 2a2;) <0

¢t(77 i‘) + H('/ia ¢x(77 j)) Z 0
therefore

% + H(j, ¢w(ﬂ i‘) + 20(.27?1‘) - H(i‘, ¢x(ﬂ j)) < 0.

On the one hand, from (5.7), we have 0 < az; < v/aCp. On the other hand, we can use (5.7) and
(4.5) in order to conclude that

|¢a(t,2)] < C
for some constant C' which does not depend on «. We can now use the fact that the Hamiltonians
are locally Lipschitz continuous in order to get the desired contradiction for o small enough. This
ends the proof of the Proposition. O
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5.3 Proof of the main results

In this subsection, we prove the main results announced in the introduction.

Proof of Theorem 1.2. We simply apply Propositions 5.1 and 5.2 and get v < uo. < v which
implies the result. O

In order to prove Theorem 1.1, we should first prove that solutions are Lipschitz continuous.

Lemma 5.5. Assume (A0)-(A1). Let u be a solution of (1.1)-(1.2) on Jp. Then u is Lipschitz
continuous with respect to (t,x) on Jr.

Proof of Lemma 5.5. We first recall (see Lemma 3.1) that (A1) implies (A1’). We know that the
solution u = u* given by Theorem A.2 satisfies for some constant C' > 0 and all (¢,z) € Jr,

|u(t,x) — uo(z)| < Ct.

From the comparison principle (Theorem 1.2), we deduce that © = u* < u, and then the solution
u = u* = u, 1S continuous.
For hg > 0 small (with hg < T'), we now consider h € (0, hg) and

v(t, x) = u(t + h,z) - ig(u(h ) — uo(x)).

This new function satisfies in particular v(0, z) < ug(z). Therefore v is a subsolution of (1.1)-(1.2)
on Jr_p,. We thus conclude from the comparison principle that v(¢,z) < u(t,x), which implies

u(t+h,z) <u(t,x) + Ch forall (t,x)€ Jr_p,.

Arguing similarly, we can prove that u(t+h, x) > u(t, 2)—Ch. Because hg can be chosen arbitrarily
small, we conclude that wu is Lipschitz continuous with respect to time on the whole Jr.
Since u is a viscosity solution of (1.1), it satisfies in particular (in the viscosity sense) for each
1€ In:
Hi(uy) <C on (0,T)x J;.

This implies that there exists a constant C' such that (in the viscosity sense)
luz) <C on (0,T) x J*.

This implies that w is Lipschitz continuous with respect to the space variable. This ends the proof
of the lemma. O

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. The uniqueness of the solution follows from Theorem 1.2. The existence is
obtained thanks to the optimal control interpretation (ue. is a solution). The Lipschitz regularity
was proved in Lemma 5.5 above. The proof of Theorem 1.1 is now complete. O

Proof of Theorem 1.3. The fact that the solution is equal to u,. follows from Propositions 5.1 and
5.2. The representation formula (1.9) follows from (4.1). O

6 A complete study of the minimal action

6.1 Reduction of the study

We start this section with the following remark: the analysis can be reduced to the case (s,t) =
(0,1). Precisely, using the fact that the Hamiltonian does not depend on time and is positively
homogeneous with respect to the state, the reader can check that a change of variables in time
yields the following
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Lemma 6.1. For all z,y € J and s < t, we have

Yy x
D ; =(t—s)D —1 . 1
(st = 0= 90 (0. 21 ) (6.)

This is the reason why we consider the reduced minimal action Dy: J? — R defined by
DO(Z/? (E) = D(07 Y; ]-v CL’)

Thanks to the previous observation, it is enough to prove the following theorem in order to get
Theorem 4.2.

Theorem 6.2 (Key equalities for Dg). Let us assume (A1). Then for all y,x € J, the Dy(y,x)
is finite. It is continuous in J* and for all y,x € J, there exists a function oo € CL(J?) such that
0o > Do on J?, @o(y,z) = Do(y,z) and we have

if x #0: (o — 20300 — YOypo)(y, ) + H(x, 0rpo(y, ) =0 (6.2)
if @ = 0: (o — 2dap0 — y9y0) (3, 0) + sup H (00(y,0)) =0 (6.3)
1eln
and if y # 0,
(0 — 20200 — YyIyo)(y, x) + H(y, —Oypo(y, x)) = 0 (6.4)
and if y =0,
{ (SDO - xa:r‘p() - yay@O)(Oﬂ (E) + SUDjery H;(—Béapo(Qx)) =0 ZfN > 27 (6 5)
(o — 20200 — YOyp0) (0, ) + Hi(—0¢po(0,2)) =0 if N =1. '
Moreover, for all R > 0, there exists C'gr > 0 such that for all x,y € J,
d(y,z) < R = [0:¢0(y, )| + |0ypo(y, ¥)| < Ck. (6.6)

Remark 6.3. If Iy = Iy, then we have Dy € C}(J?). This good case corresponds to the case where
all the L;(0)’s are equal.

We can interpret Lemma 4.4 as follows.

Lemma 6.4. Assume (A1). Then
Do(ys) = Td(y,2)? — Co (6.7)

where constants are made precise in Lemma 4.4.

6.2 Piecewise linear trajectories

We are going to see that the infimum defining the minimal action can be computed among piecewise
linear trajectories, and more precisely among trajectories that are linear as long as they do not
reach the junction point. This is a consequence of the fact that the Hamiltonians do not depend
on z and are convex (through Jensen’s inequality).

In order to state a precise statement, we first introduce that optimal curves are of two types:
either they reach the junction point, or they stay in a branch and are straight lines. This is the
reason why we introduce first the action associated with straight line trajectories

Li(zi—y;) i (y,2) € JF\{(0,0)},
Dstraight (y, Z‘) = LO(O) if y=0=ux,
+00 otherwise

and the action associated with piecewise linear trajectories passing through the junction point

Djunction (y7 x) = inf 1 {51 (7—17 y) + “:2 (’7'2, (E)}

0<7m1 <2<
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where
1L (_%) —71Lo(0)  fory=yje; #0,71 #0

&i(m,y) =10 fory=10
+o0 formp =0,y #0
and
(1 —1o)L; (lfiﬁ) + 19Lo(0), forxz=uwmie; 0,72 #1
& (12,2) = { Lo(0) forz =0

400 for m, = 1,2 # 0.

Remark 6.5. By defining the &;’s in such a way, we treat the degenerate cases: z = 0 or y = 0.
Indeed, 71 (resp. 7o) measures how long it takes to the trajectory to reach the junction point
(resp. the final point z) from the starting point y (resp. the junction point).

The following facts will be used several times.
Lemma 6.6. The function & (resp. &) is continuous in (0,1] x J* (resp. in [0,1) x J*).
Lemma 6.7. The function &;, i = 1,2 are lower semi-continuous in [0,1] x J.

Proof. Consider the function defined for (,y) € [0,1] x J by

TLi(—%) ify=yie; #0,7#£0
9(r,y) = § 7Lo(0) ify=0
400 ify#0,7=0.

From the inequality for 7 > 0 (consequence of (4.6)):

2
g(t,y) > ol

- C
=4 7 0T,

we deduce that g is lower semi-continuous. Consequently, the map &; is lower semi-continuous.
We proceed similarly for &;. O

We first show the main lemma of this subsection.

Lemma 6.8. The infimum defining the reduced minimal action Dy can be computed among piece-
wise linear trajectories; more precisely, for all x,y € J,

Do(% 37) = min (Dstraight (y> .'L'), Djunction (ya CL‘)) .

Proof. We write with obvious notation Dy(y, z) = inf x ¢ 4,(y,z) £(X). In order to prove the lemma,
it is enough to consider a curve X € Ay(y,z) and prove that

5(X) > min(Dstraigllt (y7 x)a Djunction(y7 I))

To do so, we first remark that the uniform convexity of L; implies that for all pyg € R, we have

Li(p) = Li(po) + Li(po) (0 — p0) + 5 (» — o)™ (6.8)

We now consider an admissible trajectory X : [0,1] — J and we treat different cases.

CASE A: X((t1,t2)) C J7. We assume that a curve X stays in one of the branch J; on the time
interval (t1,t2) with ¢; < 5. In such a case, we consider the curve X with same end points X (¢;)

and X (t2) in J; but linear. If po € R is such that poe; = X (1) for 7 € (t1,t5) and pe; = X (), we
deduce from (6.8) that

/2L(X(T),X(T))drz/ZL(X(T),)%(T))dT+1/t2 X () — X(r)|2dr. (6.9)

t1 t1 2
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CASE B: X([t1,t2]) C J; WITH X (t1) = X (t5) = 0. In that case, let us set X (1) = 0 for 7 € [ty, to].
Using (6.8) with py = 0 and the definition of Ly as a minimum of the L;’s (see (1.10)), we get that

Li(p) = Lo(0) + Li(0)p + 27°

from what we deduce that (6.9) still holds true.

CASE C: THE GENERAL CASE. By assumption, we have X € Ay(y;z) C C([0,1]). We then
distinguish two cases. Either 0 ¢ X([0,1]), and then we define X as in Case A. In this case, (6.9)
implies that

g(X) > Dstraight (y, x)

Or 0 € X(]0,1]), and then we call [r1, 2] C [s,t] the largest interval such that X (1) = 0 = X (72),
and define X as follows: it is linear between 0 and 71, and reaches 0 at 7; it stays at 0 in (71, 72);
then it is linear in (72,1) and reaches = at ¢ = 1. Using again the continuity of X, we can find a
decomposition of [r1, 72| as a disjoint union of intervals Zj, (with an at most countable union)

(11, 72] = UIk
k

such that for each k, X (Zy) C J;, for some i € Iy and X = 0 on 0Zj. Using Case A or Case B
on each segment 7, we deduce that

E(X) > Djunction (¥, ).

6.3 Continuity of the (reduced) minimal action

Lemma 6.9 (Continuity of Djunction). The function Djunction S continuous in J2.

Proof. We first prove that Djunction is lower semi-continuous. We know from Lemma 6.7 that the
function
G(71,m2;3y52) = E1(1,y) + E2(T2, )

is lower semi-continuous for y,xz € J and 0 < 7 < 79 < 1. Therefore the function

Djunction (y; ) = o<ﬁh<ﬂ;2<1 G(11,72;y, )

is also lower semi-continuous (since the infimum is taken over a compact set). Besides, the infimum
is in fact a minimum.
We now prove that Djunction 1S Upper semi-continuous at any point (y,z). Consider first
(11, 72) € [0,1]? such that
Djunction(ya {E) =& (7_1» y) + & (7—27 LU)

Given any sequence (y*, 2%) — (y,z), we want to show that
Djunction (ykv xk) S Djunction(ya ZL’) + Ok(]-) (610)

We use
Djunction(yka xk) < 51 (T{Ca yk) + 82 (Tka xk)

with an appropriate choice of (7, 7).
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Case 1: y € J;, x € J7. In this case, we choose (7f,75) = (11,72) € (0,1)® and we use
Lemma 6.6 in order to get
E(rl,y*) = Elm1,y)

and
52(7216, mk) — Ea(T2, 1)

Hence we conclude that (6.10) holds true.

Case 2: y =0,z € Jf. We choose (7, 75) = (|y*|, max(s, [y*])) € [0,1)*. We still have 75 — 7
and we can use Lemma 6.6 in order to get

Ey (18, 2%) = &y (12, 2).
We also have (if y* € .J;)

k

Yy
Sl(Tf,yk) < |yk|Lj <—|yi> — |yk|LO(O) = 0=2¢&(r,0). (6.11)

Hence we conclude that (6.10) holds true.

Case 3: y € J7,

7 — 71 and then

x=0. We choose (7F,75) = (min(, 1 — |2¥]),1 — |z*|) € (0,1]®> We still have

&t y*) = ()
(since &; is continuous in (0, 1] x J*). We also have (if 2 € J;)
k

Zi ) + (1 — |2*) Lo (0) = Lo(0) = E(72,0) (6.12)

EQ(TQIC,xk) S |$k|LZ <|:L‘k|

Hence we conclude that (6.10) holds true.

Case 4: y =0, x = 0. We choose (75, 75) = (|y*],1 — |2*]) € [0,1) x (0,1]. We deduce (6.10)
from (6.11) and (6.12). O
Lemma 6.10. The function Dy is continuous in J>.

Proof. Since Dgtraight is lower semi-continuous, we can use Lemmas 6.8 and 6.9 in order to conclude
that Dy is lower semi-continuous.
Consider (y,z) € 9(J; x J;) \ {(0,0)}. Then either z = 0 or y = 0. Moreover for y = y;e; and
T = e,
51(1,3])-1—52(1,.%‘) ifz; =0
. . < < Lilrs — s
Djuncmon(yvx) > { & (O,y) + 52(0,1,) if yi =0 <L (:L’l yz) .

Therefore for each i € Iy, we have for (y,z) € 9(J; x J;),
Djunction(y7 x) < Dstraight (y7 m)
Therefore we have with y = y;e;, * = x;¢;

min(pjunction(yu "E), Lz(xz - yz)) if (y7$) S Ji X J’L

DO(ya {E) = Djunction(?]ax) if (y,ﬂf) S O(Jl X Jz) (613)
Djunction (Y, T) otherwise.
This implies that Dy is continuous in J2. O
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6.4 StUdy of Djunction

In view of (6.13), we see that the study of Dy can now be reduced to the study of Djunction. The
function Djunction is defined as a minimum over a triangle {(r1,72) € [0,1]? : 71 < 72}, We will
see below that Djunction is defined implicitely when the constraint 7 < 75 is active (Dimplicit) or
defined explicitely if not (Djinear). In other words, it will be linear “as long as” trajectories stay
some time (7o — 7 > 0) at the junction point.

We first define for (y,z) € J2,

D7) = ik {E1(r.9) + Ex(7,2)}. (614)

The continuity of Dimpiicit Will be used later on.

Lemma 6.11 (Continuity of Dijélplicit). The restrictions ’Dijélplicit of Dimplicit are continuous in

(J; x Ji) \ {(0,0)} and continuous at (0,0) if j € Iy ori € Iy.

Proof of Lemma 6.11. From Lemma 6.7, we deduce that Df;phcit is lower semi-continuous on

J; % J;. We now show that DJ* is upper semi-continuous at any point (y, z) € (J; xJ;)\{(0,0)}

implicit

and also at (0,0) if j € Iy or ¢ € I. We first consider 7 € [0, 1] such that
Dfélplicit(y,x) =& (r,y) + E(r,x) with 0<7<1.
For any sequence (y*,z%) — (y,x) with (y*,2%) € J; x J;, we want to show that
Dijrilplicit(yk’mk) < Dijrilplicit(y’x) + ok (1) (6.15)
Arguing as in Lemma 6.9, we use
Dpiien (0, 2) < E0(7%, ) + Ea(r", 2)

and we choose 7% as follows

ifyeJi,zelJ;: * =7¢€(0,1),
ity=0,2€ Jr: 8 = |ye| € [0, 1),
ifyeJfz=0: F =1—|2%| € (0,1],
ifr=0,j¢€l: ™ =1—1|2%| € (0,1],
ify=0,z=0,icly: 7 =|y*| €0,1).

This ends the proof of the lemma. O
We next define for (y,z) € J7 x J*
D ear(u:7) = ~L5(&] )y + L&) + Lo(0) (6.16)
where &F are defined thanks to the following function (for I € I)
Ki(§) = Li(&) — €L1(8) — Lo(0).

Precisely, & = (Kli)*l(O) # 0 when [ ¢ I (see Lemma 6.17 below). We will see that K plays an
important role in the analysis of Djunction- In particular, it allows us to define, when ¢ ¢ Iy and
J ¢ Io, the following convex subset (triangle) of J; x J;:

A= (ya) e Iy x Ty, —— L <1
& ¢

It is convenient to set AJ* = (@) if i € Iy or j € Iy. We next state a series of lemmas before proving
them.
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Lemma 6.12 (Link between Djunction, Plinears Dimplicit ) -

Do (U: ) if (y,x) €A
Ji , — hlnear ’ : ’ . 6.17
Jocton (1) { D) i () € (Jy x ) \ A (017
Lemma 6.13 (The equations in t{le interior). The functions Dt anction Dlji;ear and Dfmphmt are
convex and C' in Ji x Jf and, if D is one of them, it satisfies for (y,x) € Ji x Jf
{ 2:)(:% {E) - x@mli?(y, x) - yazﬂ:)(ya :U) + Hz(aﬂs(}/a x)) = 0 (6.18)
D(y7 :L') - xaxp(ya £E) - yayp(ya £E) + Hj(fale(ya ) =

Lemma 6.14 (Study of Dimpiicit). For (y,x) € J; x J;, there exists a unique 7 =T(y,x) € (0, 1)
such that
D picis (U, %) = E1(7,9) + Ea(7, 2);
Moreover,
{ 0o DljlzlphClt( z) = L; (&) with & = ﬁ(y,x)’
0 Dfr;phat (y,x) = L5 (&) with & = _%
Lemma 6.15 (Study of T). For (y,x) € (J; x J;) \ {(0,0)}, there is a unique 7 = T'(y,x) € [0,1]
such that
Dﬂ;phcm(% z) =&1(1y) + &(r, 7).
Moreover T € C(J; x J; \ {(0,0)}) and

max (0,1—5%) if (y,z) € ({0} x J¥)\ AV,
T(y,x) =< \ , 5
mm( ,—é’_) if (y,z) € (JF % {0})\ A7

Lemma 6.16 (D/’

junction

at the boundary). Then we have D! g0

junction

€ Cl(Jj X Jl) with

azDlejnction (y7 CL’) = L; (51)
{ Oy Dt csion (v:2) = ~ L5 (&) (6.19)
where & < 0 < &, satisfy
(max(z, &), (K;) " (Ki(&))) if (y,x) € ({0} x J;) \ A
(&) if (y.0) € ({0} x J) N AT
Co &) =\ (k) (15 6)), —maxty,~€7)) if (o) € ( x opr a0
&) if (y,x) € (J; x {0}) N AI?,
Moreover we have
D ction (0,7) = & (Li(&r) = Lo(0)) + Lo (0) for xzelJ; 6.31)
Djjlinctlon(y 0) = _% (Lj(gy) - LO(O)) + LO(O) fO’]" Yy S J]* ’

and

Djjlinctlon ($ y) —z0 Djunctlon( ) ya Junctlon(x7 y)

Lo(0) + Kj(—max(y, —¢;7))  if (y,x) € J; x {0}. '

Before proving these lemmas, the reader can check the following useful properties of the function
K; that will be used in their proofs.
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Lemma 6.17 (Properties of K;). Assume (A1). Then for anyl € In, we have

Ki(§) 2 7l§| for &€ (—00,0),
Ki(§) < —l¢] for &€ (0,400).

We define (K; )~! as the inverse of the function K; restricted to (—00,0], and (K;")~! as the
inverse of the function K restricted to [0,4+00). We set

& = (K;)7H0).
Then we have

+6E5 =0 if lel,
+65 >0 if 1€ln\ .

Moreover we have
Ki(§) = —Hi(Lj(€)) — Lo(0). (6.23)

Proof of Lemmas 6.12-6.14. The proof proceeds in several steps.

Step 1: first study of DI Let us define

junction*®
G(m1,72,y,2) = E1(11,y) + E2(T2, 7).

For 7,19 € (0,1), and setting
Y T

gy:_;17 bo = 1—m7

(6.24)
and V,, = (£,,0,1,0) and V, = (0,&,,0,1), we compute

L7 (&) LY (&)
T1

177’2

D2G(7'177'2ay733) = VyTV'L/ + VZTV;I; > 0.
Therefore G is in particular convex on (0,1) x (0,1) x J; x J7. Because G is in particular lower

semi-continuous on [0, 1] x [0,1] x J¥ x Jf, and

G(0,72,y,7) = +00 = G(71, 1,y,x) for (y,x) € J; x J, (6.25)
we deduce that
Ji = i £ JF
Djunction(y,x) = 0<T11rS1f72<1 G(11,12,y,x) for (y,x)€ Jix J

This implies that DY’

iunction 15 also convex in J¥ x JF. Notice that in particular

T1T1

2
D2, G(r, 72y, 2) = B L(E,) > 0
1

and

2
X
DzzrzG(ThTQayam) = m%’(ﬁx) > 0.

The map (11, 72) — G(71, T2, y,x) is then strictly convex on the convex set
{(r1,72) € (0,1)*, 71 <7}.

Therefore using again (6.25) and the lower semi-continuity of G, we deduce that it has a unique
minimum that we denote by (71, 72) satisfying 0 < 71 < 7o < 1.
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Step 2: study of DY’ Let us consider the following function

implicit*®
e(r,y,z) = G(1,7,y,z).

For 7 € (0,1), setting
Yy x
gy = " fr =

T T 1-7

and proceeding similarly as in Step 1, we can deduce that

Jt
implicit

(y,2) = Tei%fl)e(ﬂy,x) for (y,z) € Jj x J7

and that Df;plicit is also convex on JF x Jf. We can also deduce that the map 7 — e(r,y,x) is

strictly convex on (0,1) for (y,x) € J; x J; and that it has a unique minimum that we denote by
7 € (0,1) such that B
Dijrlnplicit(y7 z) = e(1,y,T).
Using the derivative with respect to 7, we see that 7 is characterized by the equation

F=0 with F(ry,2) ;:Kj(—g)—m( 7. (6.26)

1—71

Moreover
0, F(t,y,x) = D? e(t,y,x) > 0.

Using the regularity C2 of L; given in assumption (A1), we see that the unique solution 7 = T'(y, x)
of F(r,y,x2) = 0 is continuously differentiable with respect to (y,z). Therefore we deduce that

Dijl;plicit € Cl(‘]; X Jz*)
We have
,Dijrilplicit(y7x) = gl (T(y,x),y) +52(T(y,$),l'), (627)
8yDijI’ilplicit (y,x) = (0,&)(T(y,2),y) = _L;' (&), (6.28)
o Dlpticic (7). = (0:62)(T(y, @), 2) = Li(&)- (6.29)

Writing 7 for T'(y, x), and using the optimality condition (6.26), we get

(Dijrilplicit - xaxpgxixplicit - yaypijrilplicit)(ya )
y x
=7K;(—= 1—7)K;(——) + Ly(0
T (—2) + (L= 1K) + Lo(0)

- Kj(_%) + Lo(0) = —H;(L)(—2))
= _Hj(_aypg;plicit(y’ z))

= Ki(77—) + Lo(0) = —Hi(Li(;—))

= —Hi(axpijripncit (y,2))

Jt .
implicit S&

where we have used (6.23) in the second and in the fourth line. Hence D tisfies (6.18) on

Ji < Jf

Step 3: further study of DI

anctions We concluded at the end of Step 1 that for (y,z) € J& x J;
we have

Dj?inCtion(y’ Jf) = 51 (Tla y) + 52 (T27 .’13)
with 0 < 71 <79 < 1. Then we can distinguish two cases.

Case 1: 71 < 7. In that case this implies that

87151(T1’y) =0, 67—252(T2,l') =0
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which can be written as
Kj(&) =0, Ki(&)=0 (6.30)
with &, <0 < &, defined in (6.24).
Using Lemma 6.17, we conclude that (6.30) holds true if and only if K;(0) > 0 and K;(0) > 0
ie. j,i € In \ Iy. In this case we have &, = §; and & = ¢ and then

)

Yy T

7'1:——_, 7'2:1—7. (631)
3 &
Moreover, we have in this case Djénctlon( z) =Dl . (y,).

Using Legendre-Fenchel’s equality together with K;(£;) = 0 and Ki(¢7) =0, we have

Dear (¥ %) = Y0y D (4, @) = 202 Dff 0 (4, ) = Lo(0), (6.32)
and
Hi(0: Do (y: @) = Hi(Li(6])) = €7 LIES) = Li(&]) = —Lo(0),
Hj(=0,Dff oo (v, 7)) = Hy(L3(&))) = & L5(&57) = Ly(€5) = —Lo(0).
Hence D}y, . satisfies (6.18) on J¥ x J;.

Finally we deduce from (6.31) that the condition: 0 < 73 < 7 < 1 is equivalent to (y,x) €

AJP 1 (J*)? and then by continuity of D! nction and Dl .., we get
Djjlinctlon = Dljlznear on A

Case 2: 71 = 7. If for (y,z) € J; x JI we have

Djjtinctlon (y’ ) 51 (7_13 y) + 52 (7—27 93)

with 7 = 75, then we have seen that (y,z) € (J; x JF)\ A7 and Djjlinctlon(y, x) = Duilphmt(y, x).
From Lemma 6.11, we also have that Dfélphmt € C(J; x J;) it j € Iy or i € Iy and in that case
= . On the other hand, we have Df; . € C((J; x Ji) \ {(0,0)}) if j,i € In \ Iy with

{(0, 0)} € AY in that case. Therefore in all cases we have

D

implicit

e C((J; x J;) \ AT,
Now from the continuity of Djunction, We deduce that
Dl =Dl . on (Jjx.J;)\ AT

junction implicit

Step 4: on the boundary (9A7") N (J*)%. We already know that Djunction iS continuous,
therefore if j,i € Iy \ Ip:

4 i x Yy
Dflnear = Dljmphcn; on {(:%w) € Jj X Jia E - ET = 1}

On the other hand, recall that (y,z) € J; x J/, the real 7 € (0,1) is characterized by (6.26), i.e

K; =K, (&, ith ==, &= . 6.33
i (&) (€x) Wi &y . 3 1—- ( )
Notice that if we choose
S
&
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we deduce from é — i_ =1 that

&

§=¢ and & = E;r (6.34)

which are obvious solutions of (6.33). Therefore we conclude that this is the solution. Using
(6.28)-(6.29) and the expression of Dy (6.34) implies the equality of the gradients of D

linear?’ linear

and Dijélplicit on the boundary (9A’%) N (J*)2. Finally this shows that Dﬁnction e C'(Jy x J}).
This ends the proof of the lemmas. O

Proof of Lemma 6.15. The proof proceeds in several steps.
Continuity of T. We set for (7,y,z) € [0,1] x J; x J;
6(7', Y, Z‘) = 81 (Ta y) + 52(7—? $)
From Proposition 6.12, we already know that there exists a unique 7 € [0, 1] such that

DIt

implicit

(y,2) = e(r,y,2) if (y,2) € JF x J;.
On the other hand, we have
T L AR et et SR
Notice that in Cases 1 and 2, there is a unique 7 € [0, 1] such that
DI pricit (0, %) = e(,y, ) (6.36)

and 7 € [0,1) in case 1, 7 € (0, 1] in case 2. Then the continuity of 7 = T'(y, z) in (J; x J;)\{(0,0)}
follows from the lower semi-continuity of e on [0,1] x J; x J; and the uniqueness of 7 such that
(6.36) holds.

Computation of 7. We distinguish cases.
CaskE 1: (y,z) € ({0} x JF)\ A%, Notice that we have

T
1—7

8.,—6(7',0,$> = _Kz(fz) with £, =

If 2 > &, then d.e(r,0,2) > 0 and T(0,z) = 0.
If < &, then &, = & is a solution of d,e(7,0,7) = —K;(&:) =0 and T(0,2) =1 — {%
Case 2: (y,z) € (J5 x {0}) \ A?". Notice that we have
Ore(r,y,0) = K;(g,) with & =—2,
Ify > —¢;, then O:¢e(7,y,0) <0 and T'(y,0) = 1.
If y < =&, then §, = £ is a solution of dre(7,y,0) = K;(§,) = 0 and T'(y,0) = 75%. This
ends the proof of the lemma. ’ O

Proof of Lemma 6.16. The proof proceeds in several steps.

Step 1: continuity. From Proposition 6.12, we already know that D]-Jzncti on
and (6.19) holds true with

(ecp oo i (,2) € (7 x J7)\ A
G=6.  §=& i (o)ed)

€ CL((J3 x JF)UATT)
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where 7 = T'(y,z) in the first line. Therefore, in order to prove that Djj‘jnction e CHJ; x Jy), it
is sufficient to prove that if (y,z) € (9(J; x J;)) \ A7 = ({0} x J;) x (J; x {0})) \ A7, and if
(¥, 2%) € (J5 x JF) \ A?" is a sequence of points such that (y*,2%) — (y,z), then we have with
™ =T(y" 2"

k 2k
1—7k
where (&,,&,;) is given by (6.20). Let us recall that 7% is characterized by the equation

K; (—32) = K; (1 f;) (6.38)

We will assume (up to extract a subsequence) that 7% — 7 for some limit 7y € [0, 1]. Because we
have |z*|2 +|y*|? < R?, it is easy to deduce from (6.38), that there exists a constant Cg such that

Y
- = and
ok fy

=& (6.37)

k

1—7k

_y
v

<Cg (6.39)

’ k

"

This can be proved by contradiction, distinguishing the cases 79 = 0, 79 = 1 and 79 € (0,1). Up
to extract a subsequence, we can then pass to the limit in (6.38) and get

Kj(&)=K;(&) with & <0<¢& (6.40)

In the following cases, we now identify one of the two quantities &, or &;, the other one being
determined by (6.40).

Case 1: (y,z) € ({0} x J#)\ A%". From Lemma 6.15, we know that 79 = max (O, 1-— g%), and
then

€o = max(z,&F), & = (K;) 7 (Ki(&))
and from (6.35), we get

(0,2) = — (Li(&2) — Lo(0)) + Lo(0) (6.41)

Dl
&a

junction

Case 2: (y,z) € (J; x {0}) \ A7". From Lemma 6.15, we know that 7o = min (1,;), and

then
—& =max(y, —§;), & = (K) 7 (K;(&))
and from (6.35), we get

DI tion(¥,0) = % (L;(£,) = Lo(0)) + Lo(0) (6.42)

Case 3: (y,x) € {(0,0)} \ A%%. This case only occurs if j € Iy or i € Iy. Moreover at least one of
k

the two quantities —%; and 1f}k tends to zero.

If & = 0, then K;(&;) = K;(0) and hence

§=0 = Li0) > L;(0) = Lo(0)
If & =0, then K;(&,) = K;(0) and hence
§&=0 = L;(0) = Li(0) = Lo(0)

This implies that

&=& =0, & =¢& <0, if Li0) = Lo(0) < L;(0),
f=Er >0 &=E =0 i L0)> L0) = Lo(0)
§z = gjr =0, gy = 5; =0, if Li(o) = LJ(O) = LO(O)'
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By the uniqueness of the limit, this finally shows that DIy ... € C1(J; x J;) and (6.20) holds.
Step 2: checking (6.35) and (6.22). From (6.41) and (6.42), we deduce (6.35) on ((J; x
{0}) U ({0} x J7)) \ A7 From DI vion = Dinear 00 AT, we deduce that (6.35) is also true on
((J7 x {0} U ({0} x J7)) n A"

Then (6.22) follows from a simple computation for (y, x) # (0,0). This is still true for (y, z) = 0,
because D!’ is C'. This ends the proof of the lemma. O

junction

6.5 Study of Dgyaight

The following lemma will be used below. Since it is elementary, its proof is omitted.
Lemma 6.18 (Properties of Dgfraight). For j = i € Iy, we have for (y,x) € J; x J; with
(y,2) #(0,0) if j =i € In \ Io:
D caigs (92 7) = 702 Drign (U:2) = Y0y Dlaign (4, 7) = Lo(0) + Ki(w — )
= _Hi(angtiraight(% z))
— H; (_aypgtiraight(y7 z))

and
angtZraight (y7 I) = L; (SC - y)v ayDthraight (ya ’I) = 7L; (I - y)

6.6 Proof of Theorem 6.2
We are now in position to prove Theorem 6.2. We prove several lemmas successively.
Lemma 6.19 (Properties of D)'). For (y,z) € J; x Ji, we have
) Li(z —y) if i=jel,
,Dg)z(y7x) = Djjénctio_n(yax) Zf ) 7& j7
min(Djjlinction(gh ‘T)v Ll(x - y)) Zf 1= .7 €ln \ IO'
In particular D)’ € CV(J; x J;) in the first two cases.
Lemma 6.20 (Singularities of the gradient of Dy). In the case i = j € In \ Iy, we have

DI’ in a neighborhood of (O(J; x J;)) N A

Dji — linear J— 6.43
0 (W) { Li(z —y) in a neighborhood of (O(J; x J;)) \ A% ( )

moreover, in this case there exists a curve T9 such that D' € C((J; x J;) \ (D7 U {Y}, Xi})).
This curve connects Y; = (=£;5,0) and X; = (0,&7) and is contained in (J5 x Ji) N AT’
The results of these two lemmas are illustrated in Figures 3 and 4.

Proof of Lemma 6.19. We only have to treat the case i = j. The convexity of L; implies that for
7€ (0,1):

T -7

e(r,y, ) =7L; (—y) + (1 —=7)L; <1 - ) > Li(z —y).

Therefore for (y,z) € J; x J; with j =i, we have

,Dij;]plicit(y7 I) = O<iI‘}£1 6(7-7 ya iL’) 2 LZ(I - y)

When i = j € Iy, we have D’ (y,x) = ’Dﬁlplicit(y, x), and then

junction
Djjtlmction (ya .Z‘) > Li (l‘ - y) = Dgzraight (y7 33) = DgJZ (y’ 33)
for (y,z) € J; x J; and then also for (y,z) € J; x J;, by continuity of the functions. O

Proof of Lemma 6.20. We first prove (6.43) and then describe the curve T'; ;.
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y € J; y€Jy

1 1 /
0. 0

y 0 =z Y z

T € J|

Figure 3: i € Iy or j € Iy: trajectories never stay at the junction point

yeJ i yEJ;
e 1
J .
0 = .
‘:‘X\»\ ) y 0 T .
;\\’\\ Ve 0
e, Yy x
7 RN
2.
<
1 2y
1 ( o
0
y 0 =z 0 -
T € J; y oz € J;
I &

i

Figure 4: 4,j € In \ Io: trajectories do stay at the junction point if (y,x) ~ (0,0)

Proof of (6.43). Combining (6.13) and (6.17), we obtain

Dg)l (y,2) = mln(D_]JunCtlon (y, @), Ditlraight (y,2))

thralght(:% 1') = Ll(IIZ - y) fOI‘ (ya {E) S (JJ X Jz) \ Ajia (644)
mln(’D‘ljl,i]ear(y? :1:), Dgéraight (y7 x)) fOI‘ (y3 ‘T) 6 AJZ'

On the other hand, we have (a striclty convex function being above its tangent) for = # & and
y# =&

Li(x) > Li(&]) + (v = §")Li(&") = 2Li(&7) + Lo(0) = D (0, )

Lj(=y) > Li(&;) + (=y = & )L;(&;) = —yLi(&)) + Lo(0) = Dfjer (4, 0)-

This shows that
DIt > Dt

stralght linear

We see that (6.44) and (6.45) imply (6.43).

on (9(J; x J;)) N AT (6.45)

Description of {D” = DI!

linear — “straight

} N A7, Notice that

Dhncar( 5] ’0) fj L/( )+ LO( ) LJ( ) - Dggralght(_ggao)~

ji
T h1s means that the functions Dlmear

= (=¢;,0). Therefore we have

{Dﬂ;emm &) = & LAEN) + Lo(0) = Li()) = DI i (0,61,

and Dgzraight coincide at the two points X; = (0,&;") and

DI < D

straight linear

on the open interval X, Y[
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because D¢ s linear and D’¢

Nincar is strictly convex as a function of y — .

straight

J Jji ji
The function (y,x) — Dgtralght( x) — Dy ... (y, x) being convex because Dy . (v,
can consider the convex set

K‘ji = {(y»x) € Jj X Ji’ ’Dgtiraight(y7 ) < D1J1near( :L')} '

Then for i = j € Ix \ Iy, the set

x) is linear, we

It = {(y,x) e AV, Dl

linear\Y

(9 2) = Dlfraiga 1:7)}

is contained in the boundary of the convex set K7¢. More precisely, we have
= ((0K7" )N AT C JF x J}

which shows that I'? is a curve and

i =T U {X,,Y;}.

Lemma 6.21 (The equations for Dy). For all i,j, and z,y where Dgi is C1:
(DY’ — 20, Dg’ — yd, DY) (y, x)
= —Hi((0: D) (y,2)) = —H;((=0,D¢") (y, %)). (6.46)
Moreover for all x € J; (withx # & if j=i€ In\ Ip)

(D} — 20, D} — y0, DY) (0,2) = Lo(0) + K;(max(z, &) (6.47)
and for ally € J; (withy # —&§; if j=1i € In\ Io)
(DY — 20, DY’ — yd, D) (y, 0) = Lo(0) + K;(— max(y, —¢;)). (6.48)
We also have - -
%Dy (y, ) = Li(&),  9yDY' (y, ) = =L} (&y) (6.49)

for all (y,x) € O(J; x J;) except for i = j € In \ Iy for which we exclude points (y,z) € {Y;, X;}.
Moreover for j =1 € Iy, we have

&x=& =x—y foral (y,z)e€d(J;xJ;) (6.50)

and j =1 € Iy \ Iy, we have

{fy:$_y7 So =7y — (6.51)
Ey = j_’ gr = Sj_ fO?” (y7l‘) € (a(']j X ‘]’L)) n A7 .
Proof. Using Proposition 6.12 for DJ]Linctlon’ Lemma 6.18 for Dgzralght, and (6.32) for Dﬂ;ear nd

the property (6.43), we get

Lo(0) + K;(max(z, &) if i#j
ji ji ji Lo(0) + Ki(x) if i=jel
Ji _ ji _ j _ 0
(P’ = 20: Dy’ —ydy D) (0, ) = Lo(0) + K;(z) if =>¢& il
L(0) it z<&f if i=jelv\l

LQ(O)"‘KJ(_maX(yv_gj_)) if Z#]
1 ) Lo0) + K (—y i i=gel
Dy 2025 v D)W 0) =\ L0y Ky (my) iy € it Q= 10 I
{LO(()) £ y<_£J ‘ if i=jeln\Iy



which implies (6.48). Relations (6.46) and (6.49) follow both from Proposition 6.12 and Lemma
6.18. Finally (6.50) and (6.51) follows from the previous results. This ends the proof of the
lemma. O

We now can check the equations satisfied by Dy at the boundary.

Lemma 6.22 (Boundary properties of D). At any point (y,z) € {0} xJ; withx # &' ifi € In\Io,
we have for any j € Iy

—maxpery 1y (=0, D5 (y,x))  if N=2,

CH\(-9,Df(y,) i N=1. (&5

(04~ 0,24 0,0 )0) = {
Lemma 6.23 (Boundary properties of Dy (continued)). At any point (y,z) € J; x {0} with
y# =& if j € In \ Lo, we have for any i € Iy

(Dg' — 20, DY — y0,D§)(y, ) = — max Hy (0,09 (y, ). (6.53)
N
Proof of Lemma 6.22. We first remark the general fact that
Hy(Ly(§)) = Hy (L (§)) if £<0.
On the one hand, from Lemma 6.19, we have for points (y,x) € {0} x J; where D is C!
~(Dg" — 20:D5" — y0, Dy’ )y, x) = H(—=0,D5" (y, 2)) = Hy (—9,Dg' (y, )

and this commom quantity is independent on k. Therefore to conclude to (6.52) in the case N > 2,
it is enough to show that there exists at least an index k such that

Hk(—aypgi(y,m)) = H];(—ﬁyDgi(%gg)), (6.54)

Case 1: N > 2 and k # 4. Then we have & < 0 and then
Hi(~0,D5" (y, ) = Hi(Ly,(&y)) = Hy; (Li(&)) = Hi (=0,D5' (y, 2)).
Therefore (6.54) holds true for k # .
Case 2: N =1and k=1i=1 € I. Then we have
Do(y,x) = Dy' (y,x) = La(z —y)
and by Lemma 6.18, we have for
(Dg' — 20Dy — 49y Dy )(y, @) = —H1 (=0, D' (y, )
which is in particular true for y = 0. This shows (6.52) in the case N = 1. O
Proof of Lemma 6.23. From Lemma 6.19, we have for points (y,z) € J; x {0} where DJ¥ is €1
—(DY = 20, DY -y, D) (y, 2) = Hp(0:D}" (y, ) > Hy, (0:D4" (y, v))

and this commom quantity is independent on k. Therefore to conclude to (6.53), it is enough to
show that there exists at least an index k such that

Hi(0: D3 (y. 2) = Hy (9,05 (y.)). (6.55)
Case 1: j € Iy. Then from Lemma 6.19, we have with k = j

0. D (y,w) = Li(&) with & =z —y <0. (6.56)
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Therefore (6.53) holds true for k = j.
Case 2: j € In \ Iy. We distinguish subcases.

SUBCASE 2.1: y > —¢{; . From Lemma 6.19, we still have (6.56) with k& = j, which again implies
(6.53) for k = j.

SUBCASE 2.2: y < —¢; . Then we choose an index k € Iy, and Lemma 6.19 implies that
0.DJ"(y,7) = [} (&) with & =¢f =0
which again implies (6.53) for such & € Iy. This ends the proof of the lemma. O
We can now prove Theorem 6.2.

Proof of Theorem 6.2. From Lemma 6.19, we know that Dy has the regularity C} except on certain
curves IV U {Y;, X;} for j =i € In \ Ip. So if (y,z) is a point of local C} regularity of Dy, then
we simply set
wo =Dy locally around (y, z).
If (y,x) is a point where Dy is not C}, then we have Dy (y, ) = Djunction (¥, ), and we can simply
set
Yo = Djunction on J2~

The required equalities follow from Lemmas 6.19, 6.22, 6.23. Estimate (6.6) follows from the fact
that Dy is the mimimum of Djunction € CL(J?) and of functions in C'(J?) for some . This ends
the proof of the theorem. O

A Appendix: Stability and Perron’s method

This section contains classical results from viscosity solutions, whose statements are adapted to
the equation studied in the present paper.

1.1 Stability results

In view of Proposition 3.3, the following stability results are classical in the viscosity solution
framework. See for instance [8].

Proposition A.1 (Stability). Assume (A1°) and let T > 0.

o Consider a family of subsolutions (resp. supersolutions) (uq)aca of (1.1) on Jr such that
the u.s.c. (resp. l.s.c.) envelope u of

SUP Ug (resp. inf wu,)
aEA acA

is finite everywhere. Then u is a subsolution (resp. supersolution) of (1.1) on Jr.

e Consider a family of subsolutions (resp. supersolutions) (uc)-c(0,1y of (1.1) on Jr such that
the upper (resp. lower) relaxed semi-limit u is finite everywhere. Then w is a subsolution
(resp. supersolution) of (1.1) on Jr.

1.2 Perron’s method

In this subsection, we state the existence of a solution of (1.1)-(1.2) which can be constructed by
using Perron’s method. This method is the classical way to get existence in a viscosity solution
framework.

Theorem A.2 (Existence). Assume (A0)-(A1’) and let T > 0. Then there exists an upper semi-
continuous function w: [0,T) x J — R which is a viscosity solution of (1.1)-(1.2) on Jr and
satisfies

ult,2) — uo(a)| < Ct for (tx) € [0.T) x J
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