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A Hamilton-Jacobi approach to junction problems

and application to traffic flows

C. Imbert∗†, R. Monneau‡ and H. Zidani§

February 24, 2011

Abstract

This paper is concerned with the study of a model case of first order Hamilton-
Jacobi equations posed on a “junction”, that is to say the union of a finite number
of half-lines with a unique common point. The main results are a comparison prin-
ciple, existence and stability of solutions. The two challenging difficulties are the
singular geometry of the domain and the discontinuity of the Hamiltonian. As far as
discontinuous Hamiltonians are concerned, these results seem to be new. They are
applied to the study of some models arising in traffic flows. The techniques developed
in the present article provide powerful new tools in the analysis of such traffic flow
problems.

Keywords. Hamilton-Jacobi equations, discontinuous Hamiltonians, viscosity solutions,
optimal control, traffic problems, junctions
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1 Introduction

In this paper we are interested in Hamilton-Jacobi (HJ) equations posed on one dimensional
domain containing one single singularity. This is a special case of a more general setting
where HJ equations are posed in domains that are unions of submanifolds whose dimensions
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are different [10]. An intermediate setting is the study of HJ equations on networks [1].
We will restrict ourselves to a very simple network: the union of a finite numbers of
half-lines of the plane with a single common point. Such a domain is referred to as a
junction and the common point is called the junction point. Our motivation comes from
traffic flows. For this reason, it is natural to impose different dynamics on each branch of
the junction. Consequently, the resulting Hamiltonian is by nature discontinuous at the
junction point. Together with the singularity of the domain, this is the major technical
difficulty to overcome. The analysis relies on the complete study of some distance function
related to the optimal control interpretation of the equation [39, 19].

We first present the problem and the main results in details. Then we recall existing
results and compare them with ours.

1.1 Setting of the problem

In this subsection, the analytical problem is introduced in details. We first define the
junction, then the space of functions on the junction and finally the Hamilton-Jacobi
equation.

The junction. Let us consider N ≥ 1 different unit vectors ei ∈ R
2 for i = 1, ..., N . We

define the branches

Ji = [0,+∞) · ei, J∗
i = Ji\ {0} , i = 1, ..., N

and the junction (see Figure 1)

J =
⋃

i=1,...,N

Ji.

The origin x = 0 is called the junction point. For a time T > 0, we also define

JT = (0, T )× J.

The reader can remark that we chose to embed the junction in a two-dimensional Euclidian
space. But we could also have considered an abstract junction, or we could have embedded
it for instance in a higher dimensional Euclidian space. We made such a choice for the
sake of clarity.

Space of functions. For a function u : JT → R, we denote by ui the restriction of u to
(0, T )× Ji. Then we define the natural space of functions on the junction

C1
∗(JT ) =

{

u ∈ Liploc(JT ), ui ∈ C1((0, T )× Ji) for i = 1, ..., N
}

where Liploc(JT ) denotes the space of locally Lipschitz continuous functions defined in JT .
In particular for u ∈ C1

∗(JT ) and x = xiei with xi ≥ 0, we define

ut(t, x) =
∂ui

∂t
(t, xiei) and uix(t, x) =

∂ui

∂xi
(t, xiei).
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Figure 1: A junction

Then we set






ux(t, x) = uix(t, x) if x 6= 0,

ux(t, 0) = (ujx(t, 0))j=1,...,N if x = 0.

HJ equation on the junction. We are interested in continuous functions u : [0, T ) ×
J → R which are viscosity solutions (see Definition 2.2) on JT of

ut +H(x, ux) = 0 (1.1)

submitted to an initial condition

u(0, x) = u0(x), x ∈ J. (1.2)

Because of the optimal control problem we have in mind (see Subsection 1.1 below), we
restrict ourselves to the simplest case of discontinuous Hamiltonians; precisely, we consider

H(x, p) =

{

Hi(p) for p ∈ R if x ∈ J∗
i

maxi=1,...,N H
−
i (pi) for p = (p1, ..., pN) ∈ R

N if x = 0

where Hi are convex functions and

H−
i (pi) = sup

q≤0
(piq − Li(q)) (1.3)

where Li = H∗
i is the Legendre-Fenchel transform of Hi. We recall that it is defined for

p ∈ R by
H∗

i (p) = sup
q∈R

(pq −Hi(q))
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and that
Hi = L∗

i . (1.4)

Therefore we can rewrite equation (1.1) as follows

{

uit +Hi(u
i
x) = 0 on (0, T )× J∗

i for i = 1, ..., N,
ut +maxi=1,...,N H

−
i (u

i
x) = 0 on (0, T )× {0} . (1.5)

The optimal control framework. In this paragraph, we give an optimal control in-
terpretation [33, 6, 4] of the Hamilton-Jacobi equation. We define the set of admissible
controls at a point x ∈ J by

A(x) =

{

Rei0 if x ∈ J∗
i0
,

⋃

i=1,...,N R
+ei if x = 0.

For (s, y), (t, x) ∈ [0, T ]× J with s ≤ t (the case s = t being trivial and forcing y = x), we
define the set of admissible trajectories from (s, y) to (t, x) by

A(s, y; t, x) =







X ∈ W 1,1([s, t];R2) :

∣

∣

∣

∣

∣

∣

X(τ) ∈ J for all τ ∈ (s, t),

Ẋ(τ) ∈ A(X(τ)) for a.e. τ ∈ (s, t)
X(s) = y and X(t) = x







. (1.6)

For P = pei ∈ A(x) with p ∈ R, we define the Lagrangian on the junction

L(x, P ) =

{

Li(p) if x ∈ J∗
i

L0(p) if x = 0
(1.7)

with
L0(p) = min

j=1,...,N
Lj(p).

1.2 Main results

We make the following assumptions:

(A0) The initial data u0 is Lipschitz continuous.

(A1) There exists a constant γ > 0, and for all i = 1, ..., N , there exists C2(R) functions
Li satisfying L

′′
i ≥ γ > 0, such that (1.4) and (1.3) hold.

Theorem 1.1. (Existence and uniqueness) Assume (A0)-(A1) and let T > 0. Then
there exists a unique viscosity solution u of (1.1)-(1.2) on JT in the sense of Definition 2.2,
satisfying for some constant CT > 0

|u(t, x)− u0(x)| ≤ CT for all (t, x) ∈ JT .

Moreover the function u is Lipschitz continuous with respect to (t, x) on JT .

4



On one hand, we will see below that the existence of a solution can be obtained with
Perron’s method under weaker assumptions than (A1) (see Theorem 2.6). On the other
hand, we are able to get uniqueness of the solution only under assumption (A1) and this
is a consequence of the following result:

Theorem 1.2. (Comparison principle) Assume (A0)-(A1). Let T > 0 and let u (resp.
v) be a subsolution (resp. a supersolution) of (1.1)-(1.2) on JT in the sense of Defini-
tion 2.2. We also assume that there exists a constant CT > 0 such that for all (t, x) ∈ JT

u(t, x) ≥ −CT (1 + |x|) (resp. v(t, x) ≤ CT (1 + |x|)) .
Then we have u ≤ v on JT .

In order to prove this strong uniqueness result, we will use in an essential way the value
function associated to the optimal control problem described in Subsection 1.1: for t ≥ 0,

uoc(t, x) = inf
y∈J, X∈A(0,y;t,x)

{

u0(y) +

∫ t

0

L(X(τ), Ẋ(τ))dτ

}

(1.8)

where L is defined in (1.7) and A(0, y; t, x) is defined in (1.6).

Theorem 1.3. (Optimal control representation of the solution) Assume (A0)-(A1)
and let T > 0. The unique solution given by Theorem 1.1 is u = uoc with uoc given in
(1.8). Moreover, we have the following Hopf-Lax representation formula

uoc(t, x) = inf
y∈J

{

u0(y) + tD0

(y

t
,
x

t

)}

(1.9)

with

D0(x, y) = inf
X∈A(0,y;1,x)

{
∫ 1

0

L(X(τ), Ẋ(τ))dτ

}

.

The comparison principle is obtained by combining

• a super-optimality principle for surpersolutions v, which implies v ≥ uoc;

• a direct comparison result with subsolutions u, which gives uoc ≥ u.

We finally have the following result which shed light on the role of the junction condition
(see the second line of (1.5)).

Theorem 1.4. (Comparison with continuous solutions outside de junction point)
Assume (A0)-(A1) and let T > 0. Let u ∈ C([0, T )× J) be such that u(0, ·) = u0 and for
each i ∈ {1, ..., N}, the restriction ui of u to (0, T )× Ji is a classical viscosity solution of

uit +Hi(u
i
x) = 0 on (0, T )× J∗

i .

Then u is a subsolution of (1.1)-(1.2) on JT in the sense of Definition 2.2, and u ≤ uoc.

An immediate consequence of Theorem 1.4 is the fact that the optimal control solution
uoc is the maximal continuous function which is a viscosity solution on each open branch.

We apply in Section 6 our HJ approach to describe traffic flows on a junction. In partic-
ular, we recover the well-known junction conditions of Lebacque (see [30]) or equivalently
those for the Riemann solver at the junction as in the book of Garavelo and Piccoli [24].
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1.3 Comments

We already mentioned that the main difficulties we have to overcome in order to get our
main results are on one hand the singular geometry of the domain and on the other hand
the discontinuity of the Hamiltonian.

Discontinuity. There is an important literature concerning Hamilton-Jacobi equations
with discontinuous coefficients; see for instance [7, 47, 5, 41, 35, 15, 8, 9, 44, 46, 13, 11, 45,
17, 16]. There are also many results concerning scalar conservation laws with discontinuous
flux functions; see for instance [38, 3, 12] and references therein. But there are very few
results (if any) building bridges between these two kinds of results.

Networks. As it is explained in [12] for instance, the study of traffic flows on networks is
an important source of problems for scalar conservation laws with discontinuous coefficients
[24, 18]. The study of Hamilton-Jacobi equations on networks is more recent; the reader
is referred to [1, 37] and references therein. To the best of our knowledge, comparison
principles in such a setting were only proved for continuous Hamiltonians up to now.

The optimal control interpretation. As explained above, the comparison principle
is proved by using in an essential way the optimal control interpretation of the Hamilton-
Jacobi equation. The use of representation formulas and/or optimality principles is classical
in the study of Hamilton-Jacobi equations [34, 42, 43, 25, 26]. More specifically, it is also
known that a “metric” interpretation of the Hamilton-Jacobi equation is fruitful [39]. Such
an interpretation plays a central role in the weak KAM theory [19].

As far as our problem is concerned, we are not able to adapt the classical viscosity
solution approach to get uniqueness (doubling variables techniques). On the contrary, we
get it by proving e.g. a super-optimality principle (see the discussion above) and by using
representation formulas in the spirit of the works cited above.

We would like next to be a bit more precise. The technical core of the paper lies in
Theorem 3.4. This result implies that the function

D(s, y; t, x) = (t− s)D0

(

y

t− s
,

x

t− s

)

is semi-concave with respect to (t, x) and (s, y) and, if there are at least two branches
(N ≥ 2), that D satisfies

{

Dt +H(x,Dx) = 0,
−Ds +H(y,−Dy) = 0

(in a weak sense made precise in the statement of Theorem 3.4). In the case where the
Lagrangians coincide at the junction point (L1(0) = ... = LN(0)), it turns out that the
restriction Dji

0 (y, x) of D0 to Jj × Ji belong to C1(Jj × Ji) and is convex. A more general
case is considered in this paper: Lagrangians can differ at the junction point and in this
case, the functions Dji

0 are not convex nor C1 anymore for some (i, j).
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Viability and state constraints. We would like to make a final comment: in view of
the geometric framework we chose, we see that the problem under analysis has to do with
state constraints problems [40, 29, 14, 28]; indeed, the trajectories of the dynamical system
are constrainted to stay on the junction. Similarly, our problem is related to the viability
theory [2, 20, 21, 22, 23]. However, we did not use this approach/these techniques here.

Generalization and open problems Eventually, we briefly mention natural general-
izations of our results and some important open problems. First of all, it is natural to
let Hamiltonians Hi depend on the space variable x. It is also natural to consider general
networks by considering several junction points. We believe these generalizations can be
achieved but this could be very technical. Dealing with non-convex and/or non-coercive
Hamiltonians is quite challenging and some intermediate conditions should probably be
imposed. For instance, the controllability of the underlying dynamical system ensures that
we can work with continuous viscosity solutions.

1.4 Organization of the article

In Section 2, the definition of (viscosity) solutions is made precise. In Section 3, the first
important properties of optimal trajectories are given. Section 4 is devoted to the proof of
the main results of the paper. In particular, the comparison principle is proved by proving
a super-optimality principle and by comparing subsolutions with the solution given by
the optimal control interpretation of the equation. Section 5 is devoted to the proof of
the technical core of the paper, namely the existence of test functions for the “distance
function” associated with the optimal control interpretation.

1.5 Notation

Distance and coordinates in the junction. We denote by d the geodesic distance
defined on J by

d(x, y) =

{

|x− y| if x, y belong to the same branch Ji for some i,
|x|+ |y| if x, y do not belong to the same branch.

For x ∈ J , B(x, r) denotes the (open) ball centered at x of radius r. We also consider balls
B((t, x), r) centered at (t, x) ∈ (0,+∞) × J of radius r > 0. For x ∈ J , let us define the
index i(x) of the branch where x lies. Precisely we set:

i(x) =

{

i0 if x ∈ J∗
i0
,

0 if x = 0.

Up to reordering the indices, we assume that there exists an index k0 ∈ {1, ..., N} such
that

L0(0) = L1(0) = · · · = Lk0(0) < Lk0+1(0) ≤ · · · ≤ LN(0). (1.10)

We also set
I0 = {1, .., k0} and IN = {1, ..., N} .
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Functions defined in J2. For a function ϕ defined on J × J , we call ϕij its restriction
to Ji × Jj. Then we define the space

C1
∗(J

2) =
{

ϕ ∈ C(J2), ϕij ∈ C1(Ji × Jj) for all i, j ∈ IN
}

.

We also call for x = xiei with xi ≥ 0 and y = yjej with yj ≥ 0

∂ixϕ(x, y) =
∂

∂xi
ϕij(xiei, y) and ∂jyϕ(x, y) =

∂

∂yj
ϕij(x, yjej)

and

∂xϕ(x, y) =

{

∂ixϕ(x, y) if x ∈ J∗
i ,

(∂ixϕ(x, y))i=1,...,N if x = 0

and similarly

∂yϕ(x, y) =

{

∂jyϕ(x, y) if y ∈ J∗
j ,

(

∂jyϕ(x, y)
)

j=1,...,N
if y = 0.

We also set
{

x∂xϕ(x, y) = xi∂
i
xϕ(x, y) if x ∈ Ji,

y∂yϕ(x, y) = yj∂
j
yϕ(x, y) if y ∈ Jj.

2 Viscosity solutions

In this section, we consider a weaker assumption than (A1). We introduce the following
assumption:

(A1’) For each i ∈ IN ,

• the function Hi : R → R is continuous and

lim
|p|→+∞

Hi(p) = +∞;

• there exists pi0 such that Hi is non-increasing on (−∞, pi0] and non-decreasing on
[pi0,+∞);

When (A1’) holds true, the function H−
i is defined by H−

i (p) = infq≤0Hi(p + q). We now
make the following useful remark.

Lemma 2.1. Assumption (A1) implies assumption (A1’).
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2.1 Definition of viscosity solutions

In this subsection, we give equivalent definitions of viscosity solutions for (1.1). We give
a first definition where the jonction condition is satisfied in “the classical sense”; we then
prove that it is equivalent to impose it in “the generalized sense”.

We give the definition of viscosity solutions for (1.1) in terms of test functions by
imposing the junction condition in the classical sense. We recall the definition of the upper
and lower semi-continuous envelopes u∗ and u∗ of a function u : [0, T )× J :

u∗(t, x) = lim sup
(s,y)→(t,x)

u(s, y) and u∗(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

Definition 2.2. (Viscosity solutions) A function u : [0, T )× J → R is a subsolution
(resp. supersolution) of (1.1) on JT if it is upper semi-continuous (resp. lower semi-
continuous) and if for any φ ∈ C1

∗(JT ) such that u ≤ φ in B(P, r) for some P = (t, x) ∈ JT ,
r > 0 and such that u = φ at P ∈ JT , we have

φt(t, x) +H(x, φx(t, x)) ≤ 0 (resp. ≥ 0),

that is to say

• if x ∈ J∗
i , then

φt(t, x) +Hi(φx(t, x)) ≤ 0 (resp. ≥ 0);

• if x = 0, then
φt(t, 0) + max

i∈IN
H−

i (φ
i
x(t, 0)) ≤ 0 (resp. ≥ 0). (2.1)

A function u : [0, T )×J → R is a subsolution (resp. supersolution) of (1.1)-(1.2)
on JT if it is a subsolution (resp. supersolution) of (1.1) on JT and moreover satisfies
u(0, ·) ≤ u0 (resp. u(0, ·) ≥ u0).

A function u : [0, T ) × J → R is a (viscosity) solution of (1.1) (resp. (1.1)-(1.2))
on JT if u∗ is a subsolution and u∗ is a supersolution of (1.1) (resp. (1.1)-(1.2)) on JT .

Proposition 2.3. (Equivalence with relaxed junction conditions) Assume (A1’).
A function u : JT → R is a subsolution (resp. supersolution) of (1.1) on JT if and only if
for any function φ ∈ C1

∗(JT ) such that u ≤ φ in JT and u = φ at (t, x) ∈ JT ,

• if x ∈ J∗
i , then

φt(t, x) +Hi(φx(t, x)) ≤ 0 (resp. ≥ 0)

• if x = 0, then either there exists i ∈ IN such that

φt(t, 0) +Hi(φx(t, 0)) ≤ 0 (resp. ≥ 0)

or (2.1) holds true.
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Proof of Proposition 2.3. We classically reduce to the case where the ball B(P, r) is re-
placed with JT .

The “if” part is clear. Let us prove the “only if” one. We distinguish the subsolution
case and the supersolution one. We start with supersolutions since it is slightly easier.

Case 1: supersolution case. We consider a test function φ ∈ C1
∗(JT ) such that u ≥ φ

in JT and u = φ at (t, x). There is nothing to prove if x 6= 0 so we assume x = 0. We
have to prove that φt(t, 0) + supi∈IN

H−
i (φ

i
x(t, 0)) ≥ 0. We argue by contradiction and we

assume that
φt(t, 0) + sup

i∈IN

H−
i (φ

i
x(t, 0)) < 0. (2.2)

Then it is easy to see that there exists a function φ̃ ∈ C1
∗(JT ) such that φ ≥ φ̃ with

equality at the point (t, 0) and such that

φ̃i
x(t, 0) = min(φi

x(t, 0), p
i
0) and φ̃t(t, 0) = φt(t, 0). (2.3)

Notice that
H−

i (φ̃
i
x(t, 0)) ≤ Hi(φ̃

i
x(t, 0)) ≤ H−

i (φ
i
x(t, 0)). (2.4)

The first inequality is straightforward. To check the second inequality, we have to distin-
guish two cases. Either we have φ̃i

x(t, 0) < φi
x(t, 0), and then φ̃i

x(t, 0) = pi0 and we use the
fact that the minimum of H−

i is Hi(p
i
0). Or φ̃i

x(t, 0) = φi
x(t, 0) and then this common value

belongs to the interval (−∞, pi0] on which we have Hi = H−
i .

Since u ≥ φ̃ in JT and u = φ̃ at (t, 0), we conclude that either

φ̃t(t, 0) + sup
i∈IN

H−
i (φ̃

i
x(t, 0)) ≥ 0

or there exists i ∈ IN such that

φ̃t(t, 0) +Hi(φ̃
i
x(t, 0)) ≥ 0.

In view of (2.3) and (2.4), we obtain a contradiction with (2.2).

Case 2: subsolution case. We consider a function φ ∈ C1(JT ) such that u ≤ φ in JT
and u = φ at (t, x). There is nothing to prove if x 6= 0 and we thus assume x = 0. We
have to prove that φt(t, 0) + supi∈IN

H−
i (φ

i
x(t, 0)) ≤ 0. We argue by contradiction and we

assume that
φt(t, 0) + sup

i∈IN

H−
i (φ

i
x(t, 0)) > 0. (2.5)

In order to construct a test function φ̃, we first consider Ī1 ⊂ IN the set of j’s such that

H−
j (φ

j
x(t, 0)) < sup

i∈IN

H−
i (φ

i
x(t, 0)).

Since Hj is coercive, there exists qj ≥ pj0 such that Hj(q
j) = supi∈IN

H−
i (φ

i
x(t, 0)).
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We next consider a test function φ̃ ∈ C1
∗(JT ) such that φ ≤ φ̃ with equality at (t, 0)

and such that

φ̃i
x(t, 0) =

{

max(φi
x(t, 0), q

i) if i ∈ Ī1,
φi
x(t, 0) if not,

and φ̃t(t, 0) = φt(t, 0). (2.6)

Notice that for all j ∈ IN ,

Hj(φ̃
j
x(t, 0)) ≥ sup

i∈IN

H−
i (φ̃

i
x(t, 0)) = sup

i∈IN

H−
i (φ

i
x(t, 0)) (2.7)

where for the inequality, we have in particular used the fact that Hj is non-decreasing on
[pj0,+∞).

Since u ≤ φ̃ in JT and u = φ̃ at (t, 0), we conclude that either

φ̃t(t, 0) + sup
i∈IN

H−
i (φ̃

i
x(t, 0)) ≤ 0

or there exists j ∈ IN such that

φ̃t(t, 0) +Hj(φ̃
j
x(t, 0)) ≤ 0.

In view of (2.6) and (2.7), we obtain a contradiction with (2.5). This ends the proof of the
Proposition.

Proposition 2.4. (Continuity implies the subsolution property at the junction
point) Assume (A1’) and let T > 0. Let u : JT → R be upper semi-continuous such that
for each i ∈ IN , the restriction ui of u to (0, T )×Ji is a classical viscosity subsolution, i.e.
satisfies

uit +Hi(u
i
x) ≤ 0 on (0, T )× J∗

i .

If moreover u (as a function on JT ) is continuous on (0, T )× {0}, then u is a subsolution
of (1.1) on JT in the sense of Definition 2.2.

Proof of Proposition 2.4. Let us consider a function φ ∈ C1
∗(JT ) such that v ≤ φ with

equality at (t0, 0) with t0 ∈ (0, T ). Up to modify φ, we can always assume that the
suppremum for u−φ is strict (and reached at (t0, 0)). For η = (η1, ..., ηN) ∈ (R+)N , we set

Mη = sup
(t,x=xjej)∈JT

(

u(t, x)− φ(t, x)− ηj
|xj|

)

.

Because u is continuous at (t0, 0), we get for η ∈ (R+
∗ )

N that







Mη →M0

(tη, xη) → (t0, 0)

∣

∣

∣

∣

∣

∣

as soon as one of the component ηi0 → 0. (2.8)

where (tη, xη) ∈ JT is a point where the suppremum in Mη is reached.

11



Moreover given the components ηj > 0 for j ∈ IN\ {i0}, we can use (2.8) in order to
find ηi0 > 0 small enough to insure that xη ∈ J∗

i0
. Then we have in particular the following

subsolution viscosity inequality at that point (tη, xη):

φt +Hi0

(

φx −
ηi0
|xη|2

)

≤ 0.

Therefore passing to the limit ηi0 → 0, we get

φt +H−
i0
(φi0

x ) ≤ 0 at (t0, 0).

Because this is true for any index i0 ∈ IN , we finally get the subsolution viscosity inequality
at the junction:

φt +max
i∈IN

H−
i (φ

i
x) ≤ 0 at (t0, 0).

This ends the proof of the proposition.

2.2 Stability results

In view of Proposition 2.3, the following stability results are classical in the viscosity
solution framework. See for instance [6].

Proposition 2.5. (Stability) Assume (A1’) and let T > 0.

• Consider a family of subsolutions (resp. supersolutions) (uα)α∈A of (1.1) on JT such
that the u.s.c. (resp. l.s.c.) envelope u of

sup
α∈A

uα (resp. inf
α∈A

uα)

is finite everywhere. Then u is a subsolution (resp. supersolution) of (1.1) on JT .

• Consider a family of subsolutions (resp. supersolutions) (uε)ε∈(0,1) of (1.1) on JT
such that the upper (resp. lower) relaxed semi-limit u is finite everywhere. Then u
is a subsolution (resp. supersolution) of (1.1) on JT .

2.3 Perron’s method

In this subsection, we explain how to construct a solution of (1.1)-(1.2) by using Perron’s
method which is the classical way to get existence in the viscosity solution framework. In
the next section, we will construct a solution by considering an associated optimal control
problem.

Theorem 2.6. (Existence) Assume (A0)-(A1’) and let T > 0. Then there exists an
upper semi-continuous function u : [0, T ) × J → R which is a viscosity solution of (1.1)-
(1.2) on JT and satisfies

|u(t, x)− u0(x)| ≤ Ct for (t, x) ∈ [0, T )× J

12



Proof of Theorem 2.6. We first consider u±(t, x) = u0(x)± Ct. We claim that for C large
enough, u+ (resp. u−) is a supersolution (resp. subsolution) of (1.1) on JT . Indeed, it is
enough to choose C such that

C ≥ max
i∈IN ,|p|≤‖Du0‖∞

Hi(p) and − C ≤ min
i∈IN ,|p|≤‖Du0‖∞

H−
i (p).

The following is quite classical. We consider the set of all subsolutions lying between u−

and u+,

S = {v : [0, T )× J → R : u− ≤ v ≤ u+, v subsolution of (1.1) on JT};

we then consider the upper-semi continuous envelope u of supv∈S v. Notice that u = u0(x).
Proposition 2.5 implies that u is still a subsolution of (1.1) on JT . Moreover, it is

maximal. Notice also that the initial condition is satisfied: u(0, x) = u∗(0, x) = u0(x).
We next assume by contradiction that the lower semi-continuous envelope u∗ of u is

not a supersolution at (t0, 0) with t0 ∈ (0, T ) (otherwise the raisoning is classical outside
the junction point). Using the equivalence of the definition of viscosity supersolution with
relaxed junction conditions (see Proposition 2.3) we can assume that there exists a function
φ ∈ C1

∗(JT ) such that u∗ ≥ φ on a neighborhood of (t0, 0) with equality at (t0, 0) and






φt(t0, 0) + supi∈IN
H−

i (φ
i
x(t0, 0)) < 0,

φt(t0, 0) +Hi(φ
i
x(t0, 0)) < 0 for all i ∈ IN

Our goal is to construct a bump function Q to contradict the maximality of u. We define
for x = xiei with xi ≥ 0 and small δ, ε > 0

Q(t, x) = u∗(t0, 0)+(pi−ε)xi+λ(t− t0)+δ−ε|t− t0| with pi = φi
x(t0, 0), λ = φt(t0, 0)

Then it is straighforward to check that Q is a subsolution in B((t0, 0), r) for all 0 < r ≤ r(ε)
with r(ε) > 0 small enough. On the other hand, we have

φ(t, x) ≥ u∗(t0, 0) + pixi + λ(t− t0) + o(|t− t0|+ |xi|).

Therefore

u∗(t, x) ≥ φ(t, x) ≥ Q(t, x)−δ+ε(|xi|+|t−t0|)+o(|t−t0|+|xi|) > Q(t, x) on ∂B((t0, 0), r)

for 0 < δ ≤ δ(ε, r(ε)) small enough. Then we consider (with r < t0)

ũ =







max (u,Q) on B((t0, 0), r)

u on ([0, T )× J) \B((t0, 0), r)

It is straightforward to check that ũ is a subsolution. It is then easy to check that we do
not have ũ ≤ u for δ > 0. Thererefore ũ is a subsolution which is bigger than the maximal
subsolution u at some point. Contradiction. This ends the proof of the Theorem.
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3 Study of the optimal control solution

In this section, we prove a few properties related to the following “optimal control solution”
for t ≥ 0

uoc(t, x) = inf
y∈J, X∈A(0,y;t,x)

{

u0(y) +

∫ t

0

L(X(τ), Ẋ(τ))dτ

}

(3.1)

We will prove in the next Section that this is the solution of (1.1)-(1.2). Let us define the
action

E t
s(X) :=

∫ t

s

L(X(τ), Ẋ(τ))dτ.

3.1 The minimal action D
Then it is convenient to introduce the following minimal action: for s < t

D(s, y; t, x) = inf
X∈A(s,y;t,x)

E t
s(X) (3.2)

and for s = t

D(t, y; t, x) =

{

0 if y = x,
+∞ if y 6= x.

Then, by definition of D, we can rewrite uoc(t, x) for (t, x) ∈ [0, T )× J as

uoc(t, x) = inf
y∈J

{u0(y) +D(0, y; t, x)} . (3.3)

We also recall that we set
D0(y, x) = D(0, y; 1, x). (3.4)

Then we have the following result

Lemma 3.1. (Bound from below on D) Assume (A1). For all x, y ∈ J and s < t, we
have

D(s, y; t, x) = (t− s)D0

(

y

t− s
,

x

t− s

)

(3.5)

and

D(s, y; t, x) ≥ γ

4(t− s)
d(y, x)2 − C0(t− s) with C0 := max(0,−L0(0) +

γ20
γ
) (3.6)

where γ appears in (A1), γ0 = maxi∈IN |L′
i(0)| and L0(0) is chosen as in (1.10).

Proof of Lemma 3.1. On the one hand, equality (3.5) follows from the fact that the La-
grangian L is independent on time, and by a simple change of variable. One the other
hand, we have

Li(p) ≥ γ

2
p2 + L′

i(0)p+ Li(0)

≥ γ

2
p2 − γ0|p|+ L0(0)

≥ γ

4
p2 + L0(0)− γ2

0

γ

14



where we have used Young’s inequality to bound γ0|p|. This shows that

Li(p) ≥
γ

4
p2 − C0. (3.7)

Thus we can write
∫ t

s

L(X(τ), Ẋ(τ)) dτ ≥ −C0(t− s) +
γ

4

∫ t

s

(Ẋ(τ))2 dτ. (3.8)

Then Jensen’s inequality allows us to conclude to (3.6). This ends the proof of the Lemma.

Lemma 3.2. (Optimal trajectories are piecewise linear) Assume (A1). For all x, y ∈
J and s < t, let X ∈ A(s, y; t, x) be an optimal trajectory, i.e. such that D(s, y; t, x) =
E t
s(X). Then X is continuous and we have two cases:

• Either it is a “junction” trajectory: there exists τ1, τ2 satisfying s ≤ τ1 ≤ τ2 ≤ t
such that X = Xτ1,τ2 with

Xτ1,τ2(τ) =







− y

τ1−s
(τ − τ1) for τ ∈ [s, τ1)

0 for τ ∈ [τ1, τ2]
x

t−τ2
(τ − τ2) for τ ∈ (τ2, t]

(3.9)

with τ1 = s if and only if y = 0, and τ2 = t in and only if x = 0. Moreover we have

E t
s(Xτ1,τ2) = e1(τ1, y) + e2(τ2, x)

with more generally for s ≤ τ1 ≤ τ2 ≤ t






























e1(τ1, y) =

{

(τ1 − s)Lj

(

− yj
τ1−s

)

− τ1L0(0), for y = yjej 6= 0,

−sL0(0), for y = 0

e2(τ2, x) =

{

(t− τ2)Li

(

xi

t−τ2

)

+ τ2L0(0), for x = xiei 6= 0,

tL0(0), for x = 0

(3.10)

with the convention

0Lk

(zj
0

)

=

{

0 if zj = 0,
+∞ if zj ∈ R\ {0} ;

• or it is a “straight line” trajectory: We have

X(τ) = y +
x− y

t− s
(τ − s) for τ ∈ [s, t] (3.11)

and

E t
s(X) = (t− s)Li

(

xi − yi
t− s

)

with x = xiei, y = yiei.

Notice that this last case (3.11) can only occur if y and x belong to the same branch
J∗
i for some i ∈ IN .
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Moreover given y, x ∈ J , s < t, there is at most one optimal trajectory of type (3.9) and
one optimal trajectory of type (3.11).

Proof of the Lemma 3.2. The proof proceeds in several steps.

Step 1: comparison with piecewise linear trajectories. We recall that

Li(p) ≥ Li(p0) + L′
i(p0)(p− p0) +

γ

2
(p− p0)

2. (3.12)

Case A: X((t1, t2)) ⊂ J∗
i . We assume that a curve X stays in one of the branch J∗

i on the
time interval (t1, t2) with t1 < t2, and let us consider the curve X̃ with same end points

X(t1) and X(t2) in Ji but linear. Then we deduce with p0ei =
˙̃X and pei = Ẋ(τ) that

∫ t2

t1

L(X(τ), Ẋ(τ))dτ ≥
∫ t2

t1

L(X̃(τ), ˙̃X(τ))dτ +
γ

2

∫ t2

t1

|Ẋ(τ)− ˙̃X(τ)|2dτ. (3.13)

Case B: X([t1, t2]) ⊂ Ji with X(t1) = X(t2) = 0. In that case, let us set X̃(τ) = 0 for
τ ∈ [t1, t2]. Using (3.12) with p0 = 0 and the definition of L0 as a minimum of the Lj’s
(see (1.10)), we get that

Li(p) ≥ L0(0) + L′
i(0)p+

γ

2
p2

from what we deduce that (3.13) still holds true.
Case C: the general case. By assumption, we have X ∈ A(s, y; t, x) ⊂ C([s, t]). We
then distinguish two cases. Either 0 6∈ X([s, t]), and then we define X̃ as in (3.11). Or 0 ∈
X([s, t]), and then we call [τ1, τ2] ⊂ [s, t] the largest interval such that X(τ1) = 0 = X(τ2),
and define X̃ as in (3.9). Using again the continuity of X, we can find a decomposition of
[τ1, τ2] as a disjoint union of intervals Ik (with an at most countable union)

[τ1, τ2] =
⋃

k

Ik

such that for each k






X(Ik) ⊂ Jik for some ik ∈ IN ,

X = 0 on ∂Iik .

Using Case A or Case B on each segment Ik, we deduce that

E t
s(X) ≥ E t

s(X̃) +
γ

2

∫ t

s

|Ẋ(τ)− ˙̃X(τ)|2dτ.

Step 2: minimizing among piecewise linear curves. This shows that if Xk is a
minimizing sequence, then we can replace it by a piecewise linear curve X̃k of one of the
two types (3.9) or (3.11), such that

E t
s(X̃

k) ≤ E t
s(X

k)
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where the inequality is strict if Xk 6≡ X̃k. Notice also that from (3.8), the sequence (X̃k)k
is bounded in H1((s, t);R2). This implies that we can easily pass to the limit and proves
the existence of a minimizer X ∈ A(s, y; t, x) of type (3.9) or (3.11), i.e. the existence of
an optimal trajectory.

Step 3: minimizers are piecewise linear. The same argument as the one of Step 1
applies to minimizers and show that they have to be piecewise linear, and then of one of
the two types (3.9) or (3.11). The uniqueness of the optimal trajectory of type (3.9) follows
from the strict convexity of the functions e1 and e2 respectively in τ1 and τ2. This ends
the proof of the Lemma.

Lemma 3.3. (Lower semi-continuity of D) Assume (A1). Then

• the map (s, y; t, x) 7→ D(s, y; t, x) defined in (3.2) for s ≤ t, is lower semi-continuous;

• D(s, y; t, x) is finite for s < t;

• D(s, x; t, x) → 0 as s→ t with s < t uniformly in (t, x) ∈ R× J .

Proof of the Lemma 3.3. We first write

D = min(Da,Db)

with Da,Db are two lower semi-continuous functions defined as follows

Da(s, y; t, x) = inf
0≤τ1≤τ2≤1

{e1(τ1, y) + e2(τ2, x)} (3.14)

where e1 and e2 are two lower semi-continuous functions defined in (3.10), and

Db(s, y; t, x) =







(t− s)Li

(

xi−yi
t−s

)

if (y, x) ∈ J2
i \ {0}2 ,

(t− s)L0(0) if y = 0 = x,
+∞ otherwise.

(3.15)

Moreover D(s, y; t, x) and Da(s, y; t, x) are finite for s < t.
Given A > 0, we consider the function defined for (τ, y) ∈ (0, A]× J by

g(τ, y) =

{

τLi(−yi
τ
) if y = yiei 6= 0

τL0(0) if y = 0

and for τ = 0 by

g(0, y) =

{

+∞ if y 6= 0,
0 if y = 0.

We only have to check the lower semi-continuity at points (τ, 0) with τ ∈ (0, A] and (0, y)
for y ∈ J , because it is clear for the other values of (τ, y), because of the continuity of the
Li’s.
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Case 1: (τ, 0) with τ ∈ (0, A]. The lower semi-continuity of g at points (τ, 0) for τ > 0,
follows again from the continuity of the Li’s and the fact that L0(0) ≤ Li(0).

Case 2: (0, y) for y ∈ J. The lower semi-continuity of g at points (0, y) follows from the
inequality for τ > 0 (consequence of (3.7)):

g(τ, y) ≥ γ

4

|y|2
τ

− C0τ.

This implies that g is lower semi-continuous on [0, A] × J . We deduce that the map
(s, τ1, y) 7→ e1(τ1, y) is lower semi-continuous (see the definition of e1 in Lemma 3.2).
Proceeding similarly for e2, we conclude that the function

G(τ1, τ2; s, y; t, x) = e1(τ1, y) + e2(τ2, x)

is lower semi-continuous for y, x ∈ J , s ≤ t and 0 ≤ τ1 ≤ τ2 ≤ 1. Therefore the function

Da(s, y; t, x) = inf
0≤τ1≤τ2≤1

G(τ1, τ2; s, y; t, x)

is also lower semi-continuous. On the other hand Db is also lower semi-continuous. From
Lemma 3.2, we deduce that

D = min(Da,Db)

which is also a lower semi-continuous function. Moreover G(s, y; t, x; τ1, τ2) < +∞ for
s < τ1 < τ2 < t and then D(s, y; t, x) < +∞ for s < t. From (3.6), we deduce that
D(s, y; t, x) is finite for s < t.

To prove that D → 0 as s→ t, s < t, we simply write for x ∈ Ji:

D(s, x; t, x) ≤ Db(s, x; t, x) = (t− s)Li(0) → 0 as s→ t.

On the other hand (3.6) implies D(s, x; t, x) ≥ −C0(t − s). This ends the proof of the
lemma.

3.2 The key property of D
The following result can be considered as the core of our analysis; it will be proved in the
Section 5.

Theorem 3.4. (Key inequalities for D) Consider (s0, y0) and (t0, x0) ∈ (0, T )×J with
s0 < t0. Then there exist two functions φ, ψ ∈ C1

∗(JT ) and r > 0 such that

• φ ≥ D(s0, y0; ·, ·) on a ball B(P0, r) with equality at P0 = (t0, x0) and

φt +H(x0, φx) ≥ 0 at (t0, x0). (3.16)
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• ψ ≥ D(·, ·; t0, x0) on a ball B(Q0, r) with equality at Q0 = (s0, y0) and

{

−ψs +H(y0,−ψy) ≤ 0 at (s0, y0) if N ≥ 2,
−ψs +H1(−ψy) ≤ 0 at (s0, y0) if N = 1.

(3.17)

Moreover, for all R > 0, there exists a constant CR > 0 such that we have

d(y0, x0) ≤ R =⇒ |φx(t0, x0)|+ |ψy(s0, y0)| ≤ CR. (3.18)

Remark 3.5. As we shall see when proving this result, we can even require equalities
instead of inequalities in (3.16) and (3.17).

3.3 The optimal control represention of the solution

Lemma 3.6. (Properties of uoc) Assume (A0)-(A1). Then the function uoc defined in
(3.1) satisfies

|uoc(t, x)− u0(x)| ≤ Ct.

Proof of the Lemma 3.6. We first get a bound from below. Using (3.6), we deduce (denot-
ing by Lu0

the Lipschitz constant for u0):

u0(y) +D(s, y; t, x) ≥ u0(x) +
γ

4t
(d(y, x))2 − C0t− Lu0

d(y, x)

≥ u0(x)− C2t

with
−C2 = inf

a∈[0,+∞)

{γ

4
a2 − C0 − Lu0

a
}

> −∞.

This implies that
uoc(x) ≥ u0(x)− C2t.

We next get a bound from above. We have

uoc(x) ≤ u0(x) +D(0, x; t, x) ≤ u0(x) +Mt

with
M = sup

i∈IN

Li(0).

This ends the proof of the lemma.

Remark 3.7. (Dynamic Programming Principle) Under assumptions (A0)-(A1), it
is possible (and easy) to prove the following Dynamic Programming Principle: for all x ∈ J
and s ∈ [0, t],

uoc(t, x) = inf
y∈J

{uoc(s, y) +D(s, y; t, x)} .

Notice that a super-optimality principle will be proved in Proposition 4.1.
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4 Proofs of the main results

In this section, we investigate the uniqueness of the solution of (1.1)-(1.2). In particular,
we will show that the solution constructed by Perron’s method coincide with the function
uoc coming from the associated optimal control problem.

4.1 Supersolutions and super-optimality

In this subsection, we will show that a supersolution satisfies a super-optimality principle.
For the sake of clarity, we first give a formal argument to understand this claim. We
consider the auxiliary function, for s ≤ t,

Ut,x(s) = inf
y∈J

{u(s, y) +D(s, y; t, x)} (4.1)

and we are going to explain formally that it is non-decreasing with respect to s as soon
as u is a supersolution of (1.1). We call this property a super-optimality principle. Notice
that this is strongly related to the fact that the quantity Ut,x(s) is constant in s if u is
equal to the optimal control solution uoc.

Assume that the infimum defining U is attained for some ȳ ∈ J . Then we write

U ′
t,x(s) = ∂su(s, ȳ) + ∂sD(s, ȳ; t, x)

∂xu(s, ȳ) = −∂yD(s, ȳ; t, x).

Moreover assuming D to be smooth (which is not the case), we formally get from (3.17)
the fact that ∂sD(s, ȳ; t, x) ≥ H(ȳ,−∂yD(s̄, ȳ; t, x)) (at least in the case N ≥ 2). Hence

U ′
t,x(s) ≥ ∂su(s, ȳ) +H(ȳ, ∂xu(s, ȳ)) ≥ 0.

We thus conclude that Ut,x is non-decreasing if u is a supersolution of (1.1). We now give
a precise statement and a rigourous proof.

Proposition 4.1. (Super-optimality of supersolutions) Assume (A1). Let u : [0, T )×
J → R be a supersolution of (1.1) on JT such that there exists σ > 0 such that for all
(t, x) ∈ JT ,

u(t, x) ≥ −σ(1 + d(x, 0)) (4.2)

Then for all (t, x) ∈ JT and s ∈ (0, t],

u(t, x) ≥ inf
y∈J

{u(s, y) +D(s, y; t, x)} (4.3)

Assume moreover (A0) and that u is a supersolution of (1.1)-(1.2) on JT . Then we have
u ≥ uoc on [0, T )× J .

20



Proof of Proposition 4.1. The proof proceeds in several steps.

Step 1: preliminary. Notice first that from (3.6), we get

u(s, y) +D(s, y; t, x) ≥ γ

4(t− s)
d(y, x)2 − C0(t− s)− σ(1 + |y|).

Using the lower semi-continuity of D (see Lemma 3.3), we see that the infimum in y of
this function is then reached for bounded y. Moreover by lower semi-continuity of the map
(s, y; t, x) 7→ u(s, y) +D(s, y; t, x), we deduce in particular that the map (s; t, x) 7→ Ut,x(s)
(and then also s 7→ Ut,x(s)) is lower semicontinuous.

Step 2: the map s 7→ Ut,x(s) is non-decreasing. We are going to prove that for
s ∈ (0, t), U ′

t,x(s) ≥ 0 in the viscosity sense. We consider a test function ϕ touching Ut,x

from below at s̄ ∈ (0, t). There exists ȳ such that

Ut,x(s̄) = u(s̄, ȳ) +D(s̄, ȳ; t, x).

We deduce from the definition of Ut,x that

ϕ(s)−D(s, y; t, x)− [ϕ(s̄)−D(s̄, ȳ; t, x)] ≤ u(s, y)− u(s̄, ȳ).

By Theorem 3.4, there exists a test function ψ such that ψ ≥ D(·, ·; t, x) on a ball B(Q̄, r)
with equality at Q̄ = (s̄, ȳ). Hence, we can rewrite the previous inequality by replacing D
with ψ. We then obtain that (s, y) 7→ ϕ(s)− ψ(s, y) is a test function touching u at (s̄, ȳ)
from below. Since u is a super-solution of (1.1), we have in the cases N ≥ 2 or N = 1 and
ȳ 6= 0

ϕ′(s̄) ≥ ψs(s̄, ȳ)−H(ȳ,−∂yψ(s̄, ȳ)) ≥ 0

and in the case N = 1 and ȳ = 0

ϕ′(s̄) ≥ ψs(s̄, ȳ)−H−
1 (−∂yψ(s̄, ȳ)) ≥ ψs(s̄, ȳ)−H1(−∂yψ(s̄, ȳ)) ≥ 0

where we used the properties of the function ψ given by Theorem 3.4.

Step 3: conclusion. Let us define for (t, x) ∈ JT the following kind of lower semi-
continuous envelope (for the past in time)

u(t, x) = lim inf
{(tn,xn)→(t,x), tn<t}

u(tn, xn).

Let us notice that we have
u∗ = u∗ = u on JT . (4.4)

Given a point (t, x) ∈ JT , let us consider a sequence such that

u(t, x) = lim
n→+∞

u(tn, xn).

Then we have for any s < tn < t

Ut,xn
(s) ≤ Ut,xn

(tn) ≤ u(tn, xn) +D(tn, xn, t, xn) → u(t, x)
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where we have used the third item of Lemma 3.3. Therefore from the lower semicontinuity
of U , we get

Ut,x(s) ≤ u(t, x).

Again from the lower semi-continuity of the map (t, x) 7→ Ut,x(s), we get passing to the
lower semi-continuous envelopes in (t, x):

Ut,x(s) ≤ u∗(t, x) = u(t, x)

where we have used (4.4). This shows (4.3) for 0 < s < t. This is still true for s = t by
definition of D. The proof is now complete.

4.2 Comparison with subsolutions

Proposition 4.2. (Comparison with subsolutions) Let u : JT → R be a subsolution
of (1.1)-(1.2) on JT , such that there exists σ > 0 such that for all (t, x) ∈ JT ,

u(t, x) ≤ σ(1 + d(x, 0)). (4.5)

Then we have u ≤ uoc on JT .

In order to prove Proposition 4.2, we will need the following result that we first prove:

Lemma 4.3. (Bound from above on subsolutions) Assume (A0)-(A1). Let u : [0, T )×
J → R be a subsolution of (1.1)-(1.2) on JT , satisfying (4.5). Then there exists a constant
C > 0 such that

u(t, x) ≤ u0(x) + Ct for all (t, x) ∈ JT . (4.6)

Proof of Lemma 4.3. Using the Lipschitz regularity of u0, we can easily consider a smooth
approximation uη0 of u0 such that uη0 ≥ u0 and |uη0 −u0|L∞(J) → 0 as η → 0. Then consider
the following supremum for η, α > 0

Nη,α = sup
(t,x)∈[0,T )×J

{u(t, x)− uη0(x)− Ct− αd(x, 0)2 − η

T − t
}.

We claim that Nη,α ≤ 0 for some C large enough independent on η, α > 0 small enough.
The lemma will be obtained by letting α and η go to 0. We argue by contradiction
and assume that Nη,α > 0. Thanks to (4.5), the supremum Nη,α is attained for some
(t, x) ∈ [0, T ) × J . If t = 0, we have Nη,α ≤ 0. Therefore t > 0 and we can use the fact
that u is a subsolution to obtain for x = xiei

η

T 2
+ C −max

j∈IN
Lj(0) ≤

η

T 2
+ C +H(x, ∂xu

η
0(x) + 2αxi) ≤ 0

where we have used assumption (A1) to estimate H from below. Notice that we have also
made use of a slight abuse of notation in the case x = 0. Choosing C = maxj∈IN |Lj(0)|
allows us to conclude to a contradiction. This ends the proof of Lemma 4.3.
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We now turn to the proof of Proposition 4.2.

Proof of Proposition 4.2. The proof proceeds in several steps.

Step 1: preliminaries. Let us consider

M = sup
(t,x)∈[0,T )×J

{u(t, x)− uoc(t, x)} .

From Lemmas 3.6 and 4.3, we deduce that we have

M ≤ 2CT < +∞.

We want to prove that M ≤ 0.
To this end, we perform the usual corrections considering the following supremum for

η, α > 0

Mη,α = sup
(t,x)∈[0,T )×J

{

u(t, x)− uoc(t, x)− αd(x, 0)2 − η

T − t

}

.

As it is proved classically, we also have that Mη,α →Mη,0 as α → 0 where

Mη,0 = sup
(t,x)∈[0,T )×J

{

u(t, x)− uoc(t, x)−
η

T − t

}

.

We argue by contradiction by assuming that M > 0 and then Mη,0 ≥ M/2 > 0 for η > 0
small enough and fixed for the rest of the proof.

Step 2: reduction to t̄ > 0. Notice that the supremum Mη,α is achieved for points
(t̄, x̄) ∈ [0, T )× J . Using again Lemmas 3.6 and 4.3, we also deduce that

M/2 < Mη,0 ≤Mη,α + oα(1) ≤ 2Ct̄

and hence t̄ ≥ M
4C

> 0 for α small enough.

Step 3: a priori bounds. Using the argument of Step 1 of the proof of Proposition 4.1,
we see that there exists y ∈ J such that

uoc(t̄, x̄) = u0(ȳ) +D(0, ȳ; t̄, x̄).

Therefore we can rewrite Mη,α as

Mη,α = sup
0≤t<T,x,y∈J

{u(t, x)− u0(y)−D(0, y; t, x)− αd(x, 0)2 − η

T − t
}.

and the supremum is achieved for (t̄, x̄, ȳ) ∈ (0, T )× J2. Notice that this supremum looks
like the classical one for proving the comparison principle for viscosity solutions, with the
usual penalization term (y − x)2/ε replaced here by the function D(0, y; t, x).

In view of the bound (3.6) from below on D and (4.6), we derive from Mη,α > 0 that

η

T − t̄
+ αd(x̄, 0)2 +

γ

4t̄
d(ȳ, x̄)2 ≤ C0t̄+ Ct̄+ Lu0

d(ȳ, x̄)
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where Lu0
denotes the Lipschitz constant of u0. We conclude that there exists CT such

that
αd(x̄, 0)2 ≤ CT and d(ȳ, x̄) ≤ CT (4.7)

where CT depends on T , C0,C, Lu0
and γ.

Step 4: getting the viscosity inequality. Since t̄ > 0, we have in particular that

u(t, x)−
(

D(0, ȳ; t, x) + αd(x, 0)2 +
η

T − t

)

≤ u(t̄, x̄)−
(

D(0, ȳ; t̄, x̄) + αd(x̄, 0)2 +
η

T − t̄

)

.

By Theorem 3.4, there exists a test function φ such that φ ≥ D(0, ȳ; ·, ·) on a ball B(P̄ , r)
with equality at P̄ = (t̄, x̄). Hence, we can rewrite the previous inequality by replacing D
with φ. We then obtain that (t, x) 7→ φ(t, x) + αd(x, 0)2 + η

T−t
touches u from above at

(t̄, x̄) with t̄ > 0. We use next that u is a subsolution of (1.1) and get for x̄ = x̄iei

η

T 2
+ φt(t̄, x̄) +H(x̄, φx(t̄, x̄) + 2αx̄i) ≤ 0

where we have made use of a slight abuse of notation in the case x̄ = 0. On the other
hand, we have

φt(t̄, x̄) +H(x̄, φx(t̄, x̄)) ≥ 0

therefore
η

T 2
+H(x̄, φx(t̄, x̄) + 2αx̄i)−H(x̄, φx(t̄, x̄)) ≤ 0.

On the one hand, from (4.7), we have 0 ≤ αxi ≤
√
αCT . On the other hand, we can use

(4.7) and (3.18) in order to conclude that

|φx(t̄, x̄)| ≤ C̄

for some constant C̄ which does not depend on α. We can now use the fact that the
Hamiltonians are locally Lipschitz continuous in order to get the desired contradiction for
α small enough. This ends the proof of the Proposition.

4.3 Proof of the main results

In this subsection, we prove the main results announced in the introduction.

Proof of Theorem 1.2. We simply apply Propositions 4.1 and 4.2 and get u ≤ uoc ≤ v
which implies the result.

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. The uniqueness of the solution follows from Theorem 1.2. The exis-
tence were obtained in Theorem 2.6. We should next prove that it is Lipschitz continuous.
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Lemma 4.4. Assume (A0)-(A1). Let u be the solution of (1.1)-(1.2) on JT given by
Theorem 2.6. Then u is Lipschitz continuous with respect to (t, x) on JT .

The proof of Theorem 1.1 is now complete.

Proof of Lemma 4.4. We first recall (see Lemma 2.1) that (A1) implies (A1’). We know
that the solution u = u∗ given by Theorem 2.6 satisfies for some constant C > 0 and all
(t, x) ∈ JT ,

|u(t, x)− u0(x)| ≤ Ct.

From the comparison principle (Theorem 1.2), we deduce that u = u∗ ≤ u∗ and then the
solution u = u∗ = u∗ is continuous.

For h0 > 0 small (with h0 < T ), we now consider h ∈ (0, h0) and

v(t, x) = u(t+ h, x)− sup
x∈J

(u(h, x)− u0(x)).

This new function satisfies in particular v(0, x) ≤ u0(x). Therefore v is a subsolution of
(1.1)-(1.2) on JT−h0

. We thus conclude from the comparison principle that v(t, x) ≤ u(t, x),
which implies

u(t+ h, x) ≤ u(t, x) + Ch for all (t, x) ∈ JT−h0
.

Arguing similarly, we can prove that u(t+ h, x) ≥ u(t, x)−Ch. Because h0 can be chosen
arbitrarily small, we conclude that u is Lipschitz continuous with respect to time on the
whole JT .

Since u is a viscosity solution of (1.1), it satisfies in particular (in the viscosity sense)
for each i ∈ IN :

Hi(ux) ≤ C on (0, T )× J∗
i .

This implies that there exists a constant C̃ such that (in the viscosity sense)

|ux| ≤ C̃ on (0, T )× J∗.

It is then classical that this implies that u is Lipschitz continuous with respect to space
(see for instance the equivalence between viscosity solutions and solutions in the sense of
distributions [27]). This ends the proof of the lemma.

Proof of Theorem 1.3. The fact that the solution is equal to uoc follows from the compar-
ison principle. The representation formula (1.9) follows from (3.3) and (3.5).

Proof of Theorem 1.4. The fact that u is a subsolution follows from Proposition 2.4. The
inequality u ≤ uoc then follows from the comparison principle.
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5 Study of the minimal action D0

In view of Theorem 1.3 and Lemma 3.1, the minimal action D defined by (3.2) turns
out to be a fundamental object in our analysis. This section is devoted to the proof of
Theorem 3.4. In view of (3.5), it is thus sufficient to prove the following one

Theorem 5.1. (Key equalities for D0) Let us assume (A1). Then for all y, x ∈ J ,
the D0(y, x) is finite. It is continuous in J2 and for all y, x ∈ J , there exists a function
ϕ0 ∈ C1

∗(J
2) such that ϕ0 ≥ D0 on J2, ϕ0(y, x) = D0(y, x) and we have

if x 6= 0 : (ϕ0 − x∂xϕ0 − y∂yϕ0)(y, x) +H(x, ∂xϕ0(y, x)) = 0 (5.1)

if x = 0 : (ϕ0 − x∂xϕ0 − y∂yϕ0)(y, 0) + supi∈IN
H−

i (∂
i
xϕ0(y, 0)) = 0 (5.2)

and if y 6= 0,
(ϕ0 − x∂xϕ0 − y∂yϕ0)(y, x) +H(y,−∂yϕ0(y, x)) = 0 (5.3)

and if y = 0,

{

(ϕ0 − x∂xϕ0 − y∂yϕ0)(0, x) + supj∈IN
H−

j (−∂jyϕ0(0, x)) = 0 if N ≥ 2,
(ϕ0 − x∂xϕ0 − y∂yϕ0)(0, x) +H1(−∂jyϕ0(0, x)) = 0 if N = 1.

(5.4)

Moreover, for all R > 0, there exists CR > 0 such that for all x, y ∈ J ,

d(y, x) ≤ R ⇒ |∂xϕ0(y, x)|+ |∂yϕ0(y, x)| ≤ CR. (5.5)

Remark 5.2. If I0 = IN , then we have D0 ∈ C1
∗(J

2). This good case corresponds to the
case where all the Li(0)’s are equal.

Proof of Theorem 3.4. In view of (3.5), we set

ϕ(s, y; t, x) = (t− s)ϕ0

(

y

t− s
,

x

t− s

)

.

Now for y0, x0 ∈ J and 0 < s0 < t0 < T , we define

φ̃(t, x) = ϕ(s0, y0; t, x) for (t, x) ∈ (s0,+∞)× J

and
ψ̃(s, y) = ϕ(s, y; t0, x0) for (s, y) ∈ (−∞, t0)× J.

Without changing the values of φ̃ (resp. ψ̃) in a ball B(P0, r) for some r small with
P0 = (t0, x0) (resp. in a ball B(Q0, r) for some r small with Q0 = (s0, y0)) we can extend
it as a function φ (resp. ψ) in C1

∗(JT ) such that

φ ≥ D(s0, y0; ·, ·) (resp. ψ ≥ D(·, ·; t0, x0)) on JT

and φ and ψ satisfy all the properties announced in Theorem 3.4. This ends the proof of
the theorem.
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5.1 New functions

In view of Lemma 3.2, we recall that optimal curves are of two types: either they reach
the junction point, or they stay in a branch and are straight lines. This is the reason why
we introduce

D0(y, x) = min (Dstr(y, x),Djun(y, x)) .

with

Dstr(y, x) =







Li (xi − yi) if (y, x) ∈ J2
i \ {0}2 ,

L0(0) if y = 0 = x,
+∞ otherwise.

and
Djun(y, x) = inf

0≤τ1≤τ2≤1
{e1(τ1, y) + e2(τ2, x)}

where, setting t = 1 and s = 0 in (3.10), we get































e1(τ1, y) =

{

τ1Lj

(

−yj
τ1

)

− τ1L0(0), for y = yjej 6= 0,

0, for y = 0

e2(τ2, x) =

{

(1− τ2)Li

(

xi

1−τ2

)

+ τ2L0(0), for x = xiei 6= 0,

L0(0), for x = 0

(5.6)

We will see below that Djun is either linear (Djun−lin) or defined implicitely (Djun−imp).
It will be defined implicitely when the minimum is attained for trajectories reaching the
junction point but without staying at it. Precisely, we define on one hand, for (y, x) ∈ J2,

Djun−imp(y, x) = inf
0≤τ≤1

{e1(τ, y) + e2(τ, x)} . (5.7)

It is defined implicitely by e1(T (y, x), y)+ e2(T (y, x), x) where T (y, x) is a (the) minimizer
(see Lemma 5.8 below for further details). On the other hand, we define for (y, x) ∈ J j×J i

Dji
jun−lin(y, x) = −L′

j(ξ
−
j )y + L′

i(ξ
+
i )x+ L0(0). (5.8)

See Proposition 5.7 below for a precise statement.

5.2 Continuity of D0

The aim of this subsection is to prove the continuity of D0.

Lemma 5.3. (Continuity of D0) The function D0 is continuous in C(J2).

In order to do so, we first prove the continuity of Djun.

Lemma 5.4. (Continuity of Djun) The function Djun is continuous in C(J2).
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Proof of Lemma 5.4. We already know from Lemma 3.3 that Djun is lower semi-continuous
and finite. We now show that Djun is upper semi-continuous at any point (y, x). We have

Djun(y, x) = e1(τ1, y) + e2(τ2, x) with 0 ≤ τ1 ≤ τ2 ≤ 1

where we recall that τ1 > 0 if y 6= 0 and τ2 < 1 if x 6= 0. Moreover e1(τ1, 0) = e1(0, 0) = 0
and e2(τ2, 0) = e2(1, 0) = L0(0).

We also consider a sequence (yk, xk) → (y, x), and we want to show that

Djun(y
k, xk) ≤ Djun(y, x) + ok(1) (5.9)

This follows (and we will check it in the four cases below) from the inequality

Djun(y
k, xk) ≤ e1(τ

k
1 , y

k) + e2(τ
k
2 , x

k)

with

(τ k1 , τ
k
2 ) =







































(τ1, τ2) ∈ (0, 1)× (0, 1) if (y, x) ∈ J∗ × J∗ (case 1)

(|yk|, max(τ2, |yk|)) ∈ [0, 1)× [0, 1) if (y, x) ∈ {0} × J∗ (case 2)

(min(τ1, 1− |xk|), 1− |xk|) ∈ (0, 1]× (0, 1] if (y, x) ∈ J∗ × {0} (case 3)

(|yk|, 1− |xk|) ∈ [0, 1)× (0, 1] if (y, x) ∈ {0} × {0} (case 4)

Let us recall that
e1 is continuous on (0, 1]× J∗ (5.10)

e2 is continuous on [0, 1)× J∗ (5.11)

Case 1: y ∈ J∗
j , x ∈ J∗

i . In this case, we have

e1(τ
k
1 , y

k) → e1(τ1, y) because of (5.10)

and
e2(τ

k
2 , x

k) → e2(τ2, x) because of (5.11)

Hence we conclude to (5.9).
Case 2: y = 0, x ∈ J∗

i . We still have τ k2 → τ2 and then

e2(τ
k
2 , x

k) → e2(τ2, x) because of (5.11)

We also have (if yk ∈ Jj)

e1(τ
k
1 , y

k) ≤ |yk|Lj

(

− ykj
|yk|

)

− |yk|L0(0) → 0 = e1(τ1, 0) (5.12)

Hence we conclude to (5.9).
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Case 3: y ∈ J∗
j , x = 0. We still have τ k1 → τ1 and then

e1(τ
k
1 , y

k) → e1(τ1, y) because of (5.10)

We also have (if xk ∈ Ji)

e2(τ
k
2 , x

k) ≤ |xk|Li

(

xki
|xk|

)

+ (1− |xk|)L0(0) → L0(0) = e2(τ2, 0) (5.13)

Hence we conclude to (5.9).
Case 4: y = 0, x = 0. We deduce (5.9) from (5.12) and (5.13).

We can now prove Lemma 5.3.

Proof of Lemma 5.3. Notice that for y = yiei and x = xiei we have

Djun(y, x) ≤







e1(1, y) + e2(1, x) if xi = 0

e1(0, y) + e2(0, x) if yi = 0

and then
Djun(y, x) ≤ Li (xi − yi) if yi = 0 or xi = 0

Therefore for each i ∈ IN , we have

Djun(y, x) ≤ Dstr(y, x) for (y, x) ∈ ∂(Ji × Ji) = (Ji × {0}) ∪ ({0} × Ji)

Therefore we have with y = yiei, x = xiei

D0(y, x) =







min(Djun(y, x), Li(xi − yi)) for (y, x) ∈ Ji × Ji

Djun(y, x) for (y, x) ∈ ∂(Ji × Ji)

and

D0(y, x) = Djun(y, x) for (y, x) ∈ (J × J)\
(

⋃

j∈IN

J∗
j × J∗

j

)

This implies that D0 ∈ C(J2) and ends the proof of the lemma.

The continuity of Djun−imp will be used later on.

Lemma 5.5. (Continuity of Dji
jun−imp) We have Dji

jun−imp ∈ C((Jj × Ji)\ {0}2) and

Dji
jun−imp ∈ C(Jj × Ji) if j ∈ I0 or i ∈ I0.
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Proof of Lemma 5.5. We proceed as in the proof of Lemma 5.4.
We already know from Lemma 3.3 that e1 and e2 are lower semi-continuous, and then

Dji
jun−imp is also lower semi-continuous on Jj × Ji. We now show that Dji

jun−imp is upper

semi-continuous at any point (y, x) ∈ (Jj × Ji)\ {0}2 and also at (0, 0) if j ∈ I0 or i ∈ I0.
We have

Dji
jun−imp(y, x) = e1(τ, y) + e2(τ, x) with 0 ≤ τ ≤ 1

where we recall that τ > 0 if y 6= 0 and τ < 1 if x 6= 0. Moreover e1(τ, 0) = e1(0, 0) = 0
and e2(τ, 0) = e2(1, 0) = L0(0).

We also consider a sequence (yk, xk) → (y, x) with (yk, xk) ∈ Jj × Ji, and we want to
show that

Dji
jun−imp(y

k, xk) ≤ Dji
jun−imp(y, x) + ok(1) (5.14)

This follows (and we will check it in the cases below) from the inequality

Dji
jun−imp(y

k, xk) ≤ e1(τ
k, yk) + e2(τ

k, xk)

with

τ k =























































τ ∈ (0, 1) if (y, x) ∈ J∗
j × J∗

i (case 1)

|yk| ∈ [0, 1) if (y, x) ∈ {0} × J∗
i (case 2)

1− |xk| ∈ (0, 1] if (y, x) ∈ J∗
j × {0} (case 3)

1− |xk| ∈ (0, 1] if (y, x) ∈ {0} × {0} and j ∈ I0 (case 4’)

|yk| ∈ [0, 1) if (y, x) ∈ {0} × {0} and i ∈ I0 (case 4”)

Case 1: y ∈ J∗
j , x ∈ J∗

i . In this case, we have

e1(τ
k, yk) → e1(τ, y) because of (5.10)

and
e2(τ

k, xk) → e2(τ, x) because of (5.11)

Hence we conclude to (5.14).

Case 2: y = 0, x ∈ J∗
i . We have τ k → 0 = τ and then

e2(τ
k, xk) → e2(τ, x) because of (5.11)

We also have

e1(τ
k, yk) ≤ |yk|Lj

(

− ykj
|yk|

)

− |yk|L0(0) → 0 = e1(τ, 0) (5.15)

Hence we conclude to (5.14).
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Case 3: y ∈ J∗
j , x = 0. We still have τ k → 1 = τ and then

e1(τ
k, yk) → e1(τ, y) because of (5.10)

We also have

e2(τ
k, xk) ≤ |xk|Li

(

xki
|xk|

)

+ (1− |xk|)L0(0) → L0(0) = e2(τ, 0) (5.16)

Hence we conclude to (5.14).

Case 4’: y = 0, x = 0, j ∈ I0. We have with τ k = 1− |xk| → 1 = τ

e1(τ
k, yk) ≤ τ kLj

(

−y
k
j

τ k

)

− τ kL0(0) → Lj(0)− L0(0) = 0 = e1(1, 0) = e1(τ, 0)

We deduce (5.14) from (5.16).

Case 4”: y = 0, x = 0, i ∈ I0
We have with τ k = |yk| → 0 = τ

e2(τ
k, xk) ≤ (1− τ k)Li

(

xki
1− τ k

)

+ τ kL0(0) → Li(0) = L0(0) = e2(0, 0) = e2(τ, 0)

We deduce (5.14) from (5.15). This ends the proof of the lemma.

5.3 Study of Djun

In what follows, we will identify yj with y = yjej, and also identify xi with x = xiei. In
order to study Djun, we introduce the following function for l ∈ IN ,

Kl(ξ) = Ll(ξ)− ξL′
l(ξ)− L0(0).

Then we have the following result whose the proof is left to the reader:

Lemma 5.6. (Properties of Kl) Assume (A1). Then for any l ∈ IN , we have






K ′
l(ξ) ≥ γ|ξ| for ξ ∈ (−∞, 0)

K ′
l(ξ) ≤ −γ|ξ| for ξ ∈ (0,+∞)

We define (K−
l )

−1 as the inverse of the function Kl restricted to (−∞, 0], and (K+
l )

−1 as
the inverse of the function Kl restricted to [0,+∞). We set

ξ±l = (K±
l )

−1(0)

Then we have






±ξ±l = 0 if l ∈ I0,

±ξ±l > 0 if l ∈ IN\I0.
Moreover we have

Kl(ξ) = −Hl(L
′
l(ξ))− L0(0). (5.17)
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Proposition 5.7. (Properties on J∗
j × J∗

i ) Assume (A1). Recall that Djun−imp and
Djun−lin are defined in (5.7) and (5.8). We also consider

∆ji =











{

(y, x) ∈ Jj × Ji,
x

ξ+i
− y

ξ−j
< 1
}

if i, j ∈ IN\I0,

∅ otherwise.

Then we have

Dji
jun(y, x) =







Dji
jun−lin(y, x) if (y, x) ∈ ∆ji

Dji
jun−imp(y, x) if (y, x) ∈ (Jj × Ji)\∆ji.

Then the functions Dj,i
jun, Dj,i

jun−lin and Dj,i
jun−imp are convex and C1 in J∗

j × J∗
i and, if D̃ is

one of them, it satisfies for (y, x) ∈ J∗
j × J∗

i







D̃(y, x)− x∂xD̃(y, x)− y∂yD̃(y, x) +Hi(∂xD̃(y, x)) = 0,

D̃(y, x)− x∂xD̃(y, x)− y∂yD̃(y, x) +Hj(−∂yD̃(y, x)) = 0.

(5.18)

Moreover for (y, x) ∈ J∗
j × J∗

i , there exists a unique τ = T (y, x) ∈ (0, 1) such that

Dji
jun−imp(y, x) = e1(τ, y) + e2(τ, x);

for such a τ , we also have







∂xDji
jun−imp(y, x) = L′

i (ξx) with ξx = x
1−τ

,

∂yDji
jun−imp(y, x) = −L′

j (ξy) with ξy = − y

τ
.

Proof of Proposition 5.7. The proof proceeds in several steps.

Step 1: first study of Dji
jun. Let us define

G0(τ1, τ2, y, x) = e1(τ1, y) + e2(τ2, x).

For τ1, τ2 ∈ (0, 1), and setting

ξy = −y
τ 1
, ξx =

x

1− τ2
(5.19)

and Vy = (ξy, 0, 1, 0) and Vx = (0, ξx, 0, 1), we compute

D2G0(τ1, τ2, y, x) =
L′′
j (ξy)

τ1
V T
y Vy +

L′′
i (ξx)

1− τ2
V T
x Vx ≥ 0.
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Therefore G0 is in particular convex on (0, 1)× (0, 1)×J∗
j ×J∗

i . Because G0 is in particular
lower semi-continuous on [0, 1]× [0, 1]× J∗

j × J∗
i (by Lemma 3.3), and

G0(0, τ2, y, x) = +∞ = G0(τ1, 1, y, x) for (y, x) ∈ J∗
j × J∗

i (5.20)

we deduce that

Dji
jun(y, x) = inf

0<τ1≤τ2<1
G0(τ1, τ2, y, x) for (y, x) ∈ J∗

j × J∗
i

This implies that Dji
jun is also convex on J∗

j × J∗
i . Notice that in particular

D2
τ1τ1

G0(τ1, τ2, y, x) =
y2

τ 31
L′′
j (ξy) > 0

and

D2
τ2τ2

G0(τ1, τ2, y, x) =
x2

(1− τ2)3
L′′
i (ξx) > 0.

The map (τ1, τ2) 7→ G0(τ1, τ2, y, x) is then strictly convex on the convex set

{

(τ1, τ2) ∈ (0, 1)2, τ1 ≤ τ2
}

.

Therefore using again (5.20) and the lower semi-continuity of G0, we deduce that it has a
unique minimum that we denote by (τ1, τ2) satisfying 0 < τ1 ≤ τ2 < 1.

Step 2: study of Dji
jun−imp. Let us consider the following function

e(τ, y, x) = G0(τ, τ, y, x).

For τ ∈ (0, 1), setting

ξy = −y
τ
, ξx =

x

1− τ

and proceeding similarly as in Step 1, we can deduce that

Dji
jun−imp(y, x) = inf

τ∈(0,1)
e(τ, y, x) for (y, x) ∈ J∗

j × J∗
i

and that Dji
jun−imp is also convex on J∗

j ×J∗
i . We can also deduce that the map τ 7→ e(τ, y, x)

is strictly convex on (0, 1) for (y, x) ∈ J∗
j × J∗

i and that it has a unique minimum that we
denote by τ ∈ (0, 1) such that

Dji
jun−imp(y, x) = e(τ, y, x).

Using the derivative with respect to τ , we see that τ is characterized by the equation

F = 0 with F (τ, y, x) := Kj(−
y

τ
)−Ki(

x

1− τ
). (5.21)
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Moreover
∂τF (τ, y, x) = D2

ττe(τ, y, x) > 0.

Using the regularity C2 of Ll given in assumption (A1), we see that the unique solution
τ = T (y, x) of F (τ, y, x) = 0 is continuously differentiable with respect to (y, x). Therefore
we deduce that Dji

jun−imp ∈ C1(J∗
j × J∗

i ).
We have

Dji
jun−imp(y, x) = e1(T (y, x), y) + e2(T (y, x), x), (5.22)

∂yDji
jun−imp(y, x) = (∂ye1)(T (y, x), y) = −L′

j(ξy), (5.23)

∂xDji
jun−imp(y, x) = (∂xe2)(T (y, x), x) = L′

i(ξx). (5.24)

Writing τ for T (y, x), and using the optimality condition (5.21), we get

(Dji
jun−imp − x∂xDji

jun−imp − y∂yDji
jun−imp)(y, x) = τKj(−

y

τ
) + (1− τ)Ki(

x

1− τ
) + L0(0)

= Kj(−
y

τ
) + L0(0) = −Hj(L

′
j(−

y

τ
))

= −Hj(−∂yDji
jun−imp(y, x))

= Ki(
x

1− τ
) + L0(0) = −Hi(L

′
i(

x

1− τ
))

= −Hi(∂xDji
jun−imp(y, x))We

where we have used (5.17) in the second and in the fourth line. Hence Dji
jun−imp satisfies

(5.18) on J∗
j × J∗

i .

Step 3: further study of Dji
jun. We concluded at the end of Step 1 that for (y, x) ∈ J∗

j ×J∗
i

we have
Dji

jun(y, x) = e1(τ1, y) + e2(τ2, x)

with 0 < τ1 ≤ τ2 < 1. Then we can distinguish two cases.

Case 1: τ1 < τ2. In that case this implies that

∂τ1e1(τ1, y) = 0, ∂τ2e2(τ2, x) = 0

which can be written as
Kj(ξy) = 0, Ki(ξx) = 0 (5.25)

with ξy ≤ 0 ≤ ξx defined in (5.19).
Using Lemma 5.6, we conclude that (5.25) holds true if and only if Kj(0) > 0 and

Ki(0) > 0; i.e. j, i ∈ IN\I0. In this case we have ξy = ξ−j and ξx = ξ+i and then

τ1 = − y

ξ−j
, τ2 = 1− x

ξ+i
. (5.26)
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Moreover, we have in this case

Dji
jun(y, x) = −

(

Lj(ξ
−
j )

ξ−j
− L0(0)

ξ−j

)

y +

(

Li(ξ
+
i )

ξ+i
− L0(0)

ξ+i

)

x+ L0(0)

= Dji
jun−lin(y, x).

with
Dji

jun−lin(y, x) = −L′
j(ξ

−
j )y + L′

i(ξ
+
i )x+ L0(0). (5.27)

Using Legendre-Fenchel’s equality together with Kj(ξ
−
j ) = 0 and Ki(ξ

+
i ) = 0, we have

Dji
jun−lin(y, x)− y∂yDji

jun−lin(y, x)− x∂xDji
jun−lin(y, x) = L0(0), (5.28)

and
Hi(∂xDji

jun−lin(y, x)) = Hi(L
′
i(ξ

+
i )) = ξ+i L

′
i(ξ

+
i )− Li(ξ

+
i ) = −L0(0),

and
Hj(−∂yDji

jun−lin(y, x)) = Hj(L
′
j(ξ

−
j )) = ξ−j L

′
j(ξ

−
j )− Lj(ξ

−
j ) = −L0(0).

Hence Dji
jun−lin satisfies (5.18) on J∗

j × J∗
i .

Finally we deduce from (5.26) that the condition: 0 < τ1 < τ2 < 1 is equivalent to
(y, x) ∈ ∆ji ∩ (J∗)2 and then by continuity of Dji

jun and Dji
jun−lin, we get

Dji
jun = Dji

jun−lin on ∆ji.

Case 2: τ1 = τ2. If for (y, x) ∈ J∗
j × J∗

i we have

Dji
jun(y, x) = e1(τ1, y) + e2(τ2, x)

with τ1 = τ2, then we have seen that (y, x) ∈ (J∗
j ×J∗

i )\∆ji and Dji
jun(y, x) = Dji

jun−imp(y, x).

From Lemma 5.5, we also have that Dji
jun−imp ∈ C(Jj × Ji) if j ∈ I0 or i ∈ I0 and in that

case ∆ji = ∅. On the other hand, we have Dji
jun−imp ∈ C((Jj × Ji)\ {0}2) if j, i ∈ IN\I0

with {0}2 ∈ ∆ij in that case. Therefore in all cases we have

Dji
jun−imp ∈ C((Jj × Ji)\∆ji).

Now from the continuity of Djun, we deduce that

Dji
jun = Dji

jun−imp on (Jj × Ji)\∆ji.

Step 4: on the boundary (∂∆ji) ∩ (J∗)2. We already know that Djun is continuous,
therefore if j, i ∈ IN\I0:

Dji
jun−lin = Dji

jun−imp on

{

(y, x) ∈ Jj × Ji,
x

ξ+i
− y

ξ−j
= 1

}
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On the other hand, recall that (y, x) ∈ J∗
j × J∗

i , the real τ ∈ (0, 1) is characterized by
(5.21), i.e.

Kj (ξy) = Ki (ξx) with ξy = −y
τ
, ξx =

x

1− τ
. (5.29)

Notice that if we choose
τ = − y

ξ−j

we deduce from x

ξ+i
− y

ξ−j
= 1 that

ξy = ξ−j and ξx = ξ+i (5.30)

which are obvious solutions of (5.29). Therefore we conclude that this is the solution.
Using (5.23)-(5.24) and the expression (5.27) of Dji

jun−lin, (5.30) implies the equality of the

gradients of Dji
jun−lin and Dji

jun−imp on the boundary (∂∆ji)∩ (J∗)2. Finally this shows that

Dji
jun ∈ C1(J∗

j × J∗
i ). This ends the proof of the proposition.

Lemma 5.8. (Uniqueness and continuity of T ) There is a unique τ = T (y, x) ∈ [0, 1]
such that

Dji
jun−imp(y, x) = e1(τ, y) + e2(τ, x) if (y, x) ∈ (Jj × Ji)\ {0}2 .

Moreover we have T ∈ C((Jj × Ji)\ {0}2). We have with τ = T (y, x)















τ = max
(

0, 1− x

ξ+i

)

if (y, x) ∈ ({0} × J∗
i )\∆ji,

τ = min
(

1,− y

ξ−j

)

if (y, x) ∈ (J∗
j × {0})\∆ji.

Proof of Lemma 5.8. The proof proceeds in several steps.

Step 1: continuity of T . We set for (τ, y, x) ∈ [0, 1]× Jj × Ji

e(τ, y, x) = e1(τ, y) + e2(τ, x).

From Proposition 5.7, we already know that there exists a unique τ ∈ [0, 1] such that

Dji
jun−imp(y, x) = e(τ, y, x) if (y, x) ∈ J∗

j × J∗
i .

On the other hand, we have

e(τ, y, x) =







(1− τ)Li

(

x
1−τ

)

+ τL0(0) if (y, x) ∈ {0} × J∗
i (case 1),

τLj

(

− y

τ

)

+ (1− τ)L0(0) if (y, x) ∈ J∗
j × {0} (case 2).

(5.31)

Notice that in Cases 1 and 2, there is a unique τ ∈ [0, 1] such that

Dji
jun−imp(y, x) = e(τ, y, x) (5.32)
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and τ ∈ [0, 1) in case 1, τ ∈ (0, 1] in case 2. Then the continuity of τ = T (y, x) in
(Jj × Ji)\ {0}2 follows from the lower semi-continuity of e on [0, 1] × Jj × Ji and the
uniqueness of τ such that (5.32) holds.

Step 2: computation of T . We distinguish cases.

Case 1: (y, x) ∈ ({0} × J∗
i )\∆ji. Notice that we have

∂τe(τ, 0, x) = −Ki(ξx) with ξx =
x

1− τ
.

Subcase 1.1: x ≥ ξ+i . Therefore

∂τe(τ, 0, x) ≥ 0

and
T (0, x) = 0.

Subcase 1.2: x < ξ+i . Then ξx = ξ+i is a solution of ∂τe(τ, 0, x) = −Ki(ξx) = 0 and

T (0, x) = 1− x

ξ+i
.

Case 2: (y, x) ∈ (J∗
j × {0})\∆ji. Notice that we have

∂τe(τ, y, 0) = Kj(ξy) with ξy = −y
τ
.

Subcase 2.1: y ≥ −ξ−j . Therefore

∂τe(τ, y, 0) ≤ 0

and
T (y, 0) = 1.

Subcase 2.2: y < −ξ−j . Then ξy = ξ−j is a solution of ∂τe(τ, y, 0) = Kj(ξy) = 0 and

T (y, 0) = − y

ξ−j
.

This ends the proof of the lemma.

Lemma 5.9. (Boundary regularity of Dji
jun) Then we have Dji

jun ∈ C1(Jj × Ji) with







∂xDji
jun(y, x) = L′

i (ξx)

∂yDji
jun(y, x) = −L′

j (ξy)

(5.33)
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where ξy ≤ 0 ≤ ξx satisfy






































ξx = max(x, ξ+i ), ξy = (K−
j )

−1(Ki(ξx)) if (y, x) ∈ ({0} × Ji)\∆ji

ξx = ξ+i , ξy = ξ−j if (y, x) ∈ ({0} × Ji) ∩∆ji

ξx = (K+
i )

−1(Kj(ξy)), ξy = −max(y,−ξ−j ) if (y, x) ∈ (Jj × {0})\∆ji

ξx = ξ+i , ξy = ξ−j if (y, x) ∈ (Jj × {0}) ∩∆ji

(5.34)
Moreover we have











Dji
jun(0, x) =

x
ξx
(Li(ξx)− L0(0)) + L0(0) for x ∈ J∗

i

Dji
jun(y, 0)) = − y

ξy
(Lj(ξy)− L0(0)) + L0(0) for y ∈ J∗

j

(5.35)

and

Dji
jun(x, y)− x∂xDji

jun(x, y)− y∂yDji
jun(x, y)

=

{

L0(0) +Ki(max(x, ξ+i )) if (y, x) ∈ {0} × Ji,
L0(0) +Kj(−max(y,−ξ−j )) if (y, x) ∈ Jj × {0} . (5.36)

Proof of Lemma 5.9. The proof proceeds in several steps.

Step 1: continuity. From Proposition 5.7, we already know that Dji
jun ∈ C1((J∗

j × J∗
i ) ∪

∆ji) and (5.33) holds true with






ξx = x
1−τ

, ξy = − y

τ
if (y, x) ∈ (J∗

j × J∗
i )\∆ji

ξx = ξ+i , ξy = ξ−j if (y, x) ∈ ∆ji

where τ = T (y, x) in the first line. Therefore, in order to prove that Dji
jun ∈ C1(Jj × Ji),

it is sufficient to prove that if (y, x) ∈ (∂(Jj × Ji))\∆ji = (({0} × Ji) × (Jj × {0}))\∆ji,
and if (yk, xk) ∈ (J∗

j × J∗
i )\∆ji is a sequence of points such that (yk, xk) → (y, x), then we

have with τ k = T (yk, xk)

−y
k

τ k
→ ξy and

xk

1− τ k
→ ξx (5.37)

where (ξy, ξx) is given by (5.34). Let us recall that τ k is characterized by the equation

Kj

(

−y
k

τ k

)

= Ki

(

xk

1− τ k

)

(5.38)

We will assume (up to extract a subsequence) that τ k → τ0 for some limit τ0 ∈ [0, 1].
Because we have |xk|2 + |yk|2 ≤ R2, it is easy to deduce from (5.38), that there exists a
constant CR such that

∣

∣

∣

∣

−y
k

τ k

∣

∣

∣

∣

+

∣

∣

∣

∣

xk

1− τ k

∣

∣

∣

∣

≤ CR (5.39)
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This can be proved by contradiction, distinguishing the cases τ0 = 0, τ0 = 1 and τ0 ∈ (0, 1).
Up to extract a subsequence, we can then pass to the limit in (5.38) and get

Kj (ξy) = Ki (ξx) with ξy ≤ 0 ≤ ξx (5.40)

In the following cases, we now identify one of the two quantities ξy or ξx, the other one
being determined by (5.40).

Case 1: (y, x) ∈ ({0} × J∗
i )\∆ji. From Lemma 5.8, we know that τ0 = max

(

0, 1− x

ξ+i

)

,

and then
ξx = max(x, ξ+i ), ξy = (K−

j )
−1(Ki(ξx))

and from (5.31), we get

Dji
jun(0, x) =

x

ξx
(Li(ξx)− L0(0)) + L0(0) (5.41)

Case 2: (y, x) ∈ (J∗
j ×{0})\∆ji. From Lemma 5.8, we know that τ0 = min

(

1,− y

ξ−j

)

, and

then
−ξy = max(y,−ξ−j ), ξx = (K+

i )
−1(Kj(ξy))

and from (5.31), we get

Dji
jun(y, 0) = − y

ξy
(Lj(ξy)− L0(0)) + L0(0) (5.42)

Case 3: (y, x) ∈ {0}2 \∆ji. This case only occurs if j ∈ I0 or i ∈ I0. Moreover at least

one of the two quantities − yk

τk
and xk

1−τk
tends to zero.

If ξy = 0, then Ki(ξx) = Kj(0) and hence

ξy = 0 =⇒ Li(0) ≥ Lj(0) = L0(0)

If ξx = 0, then Kj(ξy) = Ki(0) and hence

ξx = 0 =⇒ Lj(0) ≥ Li(0) = L0(0)

This implies that






















ξx = ξ+i = 0, ξy = ξ−j < 0, if Li(0) = L0(0) < Lj(0)

ξx = ξ+i > 0, ξy = ξ−j = 0, if Li(0) > Lj(0) = L0(0)

ξx = ξ+i = 0, ξy = ξ−j = 0, if Li(0) = Lj(0) = L0(0)

By the uniqueness of the limit, this finally shows that Dji
jun ∈ C1(Jj × Ji) and (5.34) holds.

Step 2: checking (5.31) and (5.36). From (5.41) and (5.42), we deduce (5.31) on
((J∗

j × {0}) ∪ ({0} × J∗
i ))\∆ji. From Dji

jun = Dji
jun−lin on ∆ji, we deduce that (5.31) is also

true on ((J∗
j × {0}) ∪ ({0} × J∗

i )) ∩∆ji.
Then (5.36) follows from a simple computation for (y, x) 6= (0, 0). This is still true for

(y, x) = 0, because Dji
jun is C1. This ends the proof of the lemma.
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Lemma 5.10. (Properties of Dji
str) For j = i ∈ IN , we have for (y, x) ∈ Jj × Ji with

(y, x) 6= (0, 0) if j = i ∈ IN\I0:

Dji
str(y, x)− x∂xDji

str(y, x)− y∂yDji
str(y, x) =























L0(0) +Ki(x− y)

−Hi(∂xDji
str(y, x))

−Hj(−∂yDji
str(y, x))

and
∂xDji

str(y, x) = L′
i(ξ), ∂yDji

str(y, x) = −L′
j(ξ) with ξ = x− y

Proof of Lemma 5.10. We compute

∂xDji
str(y, x) = L′

i(x− y), ∂yDji
str(y, x) = −L′

i(x− y)

and
Dji

str(y, x)− x∂xDji
str(y, x)− y∂yDji

str(y, x) = Ki(x− y) + L0(0)

= −Hi(L
′
i(x− y))

= −Hi(∂xDji
str(y, x))

= −Hi(−∂yDji
str(y, x))

5.4 Proof of Theorem 5.1

We are now in position to prove Theorem 5.1. We prove two lemmas successively.

Lemma 5.11. (Properties of Dji
0 ) For (y, x) ∈ Jj × Ji, we have

Dji
0 (y, x) =























Dji
jun(y, x) if i 6= j

Li(x− y) if i = j ∈ I0

min(Dji
jun(y, x), Li(x− y)) if i = j ∈ IN\I0

with for i = j ∈ IN\I0

Dji
0 (y, x) =







Dji
jun−lin in a neighborhood of any point of (∂(Jj × Ji)) ∩∆ji

Li(x− y) in a neighborhood of any point of (∂(Jj × Ji))\∆ji

(5.43)
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We have Dji
0 ∈ C1(Jj × Ji) except in the case i = j ∈ IN\I0 for which there exists a curve

Γji connecting Yj and Xi with

Yj = (−ξ−j , 0) and Xi = (0, ξ+i )

with Γji contained in (J∗
j × J∗

i ) ∩∆ji. In this last case, we have Dji
0 ∈ C1((Jj × Ji)\(Γji ∪

{Yj, Xi})). For all indices i, j, we have the following relation where Dji
0 is C1:

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(y, x) = −Hi(∂xDji

0 )(y, x)) = −Hj(−∂yDji
0 )(y, x)) (5.44)

Moreover we have for all x ∈ Ji with x 6= ξ+i if j = i ∈ IN\I0

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(0, x) = L0(0) +Ki(max(x, ξ+i )) (5.45)

and for all y ∈ Jj with y 6= −ξ−j if j = i ∈ IN\I0

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(y, 0) = L0(0) +Kj(−max(y,−ξ−j )) (5.46)

We also have
∂xDji

0 (y, x) = L′
i(ξx), ∂yDji

0 (y, x) = −L′
j(ξy) (5.47)

for all (y, x) ∈ ∂(Jj × Ji) except for i = j ∈ IN\I0 for which we exclude points (y, x) ∈
{Yj, Xi}.

Moreover for j = i ∈ I0, we have

ξx = ξy = x− y for all (y, x) ∈ ∂(Jj × Ji) (5.48)

and j = i ∈ IN\I0, we have

{

ξy = x− y, ξx = x− y

ξy = ξ−j , ξx = ξ+i for (y, x) ∈ (∂(Jj × Ji)) ∩∆ji
(5.49)

The results of this lemma are illustrated in Figures 2, 3, 4 and 5.

Proof of Lemma 5.11. We first treat the case i = j and we then treat other cases.

Part I: cases i = j. We notice that e(τ, y, x) = e1(τ, y) + e2(τ, x) satisfies for τ ∈ (0, 1):

e(τ, y, x) = τLi

(

−y
τ

)

+ (1− τ)Li

(

x

1− τ

)

≥ Li(x− y)

where we have used the convexity of Li. Therefore for (y, x) ∈ J∗
j ×J∗

i with j = i, we have

Dji
jun−imp(y, x) = inf

0<τ<1
e(τ, y, x) ≥ Li(x− y)

Subcase I.1: i = j ∈ I0. In this case we have Dji
jun(y, x) = Dji

jun−imp(y, x), and then

Dji
jun(y, x) ≥ Li(x− y) = Dji

str(y, x) = Dji
0 (y, x)
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Figure 2: (j, i) = (1, 1)
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Figure 3: i 6= j and (i ∈ I0 or j ∈ I0)
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for (y, x) ∈ J∗
j × J∗

i and then also for (y, x) ∈ Jj × Ji, by continuity of the functions.

Subcase I.2: i = j ∈ IN\I0. We proceed in several steps.

Step A: Proof of (5.43). We recall that in this case we have

Dji
jun(y, x) =







Dji
jun−imp(y, x) for (y, x) ∈ (Jj × Ji)\∆ji

Dji
jun−lin(y, x) for (y, x) ∈ ∆ji

and then

Dji
0 (y, x) = min(Dji

jun(y, x),Dji
str(y, x))

=

{

Dji
str(y, x) = Li(x− y) for (y, x) ∈ (Jj × Ji)\∆ji,

min(Dji
jun−lin(y, x),Dji

str(y, x)) for (y, x) ∈ ∆ji.
(5.50)

On the other hand, we have (a striclty convex function being above its tangent) for x 6= ξ+i ,

Li(x) > Li(ξ
+
i ) + (x− ξ+i )L

′
i(ξ

+
i ) = xL′

i(ξ
+
i ) + L0(0) = Dji

jun−lin(0, x)

and for y 6= −ξ−j

Lj(−y) > Lj(ξ
−
j ) + (−y − ξ−j )L

′
j(ξ

−
j ) = −yL′

j(ξ
−
j ) + L0(0) = Dji

jun−lin(y, 0).

This shows that
Dji

str > Dji
jun−lin on (∂(Jj × Ji)) ∩∆ji. (5.51)

We see that (5.50) and (5.51) imply (5.43).

Step B: description of
{

Dji
jun−lin = Dji

str

}

∩∆ji. Notice that







Dji
jun−lin(0, ξ

+
i ) = ξ+i L

′
i(ξ

+
i ) + L0(0) = Li(ξ

+
i ) = Dji

str(0, ξ
+
i ),

Dji
jun−lin(−ξ−j , 0) = ξ−j L

′
j(ξ

−
j ) + L0(0) = Lj(ξ

−
j ) = Dji

str(−ξ−j , 0).

This means that the functions Dji
jun−lin and Dji

str coincide at the two points Xi = (0, ξ+i )

and Yj = (−ξ−j , 0). Therefore we have

Dji
str < Dji

jun−lin on the open interval ]Xi, Yj[

because Dji
jun−lin is linear and Dji

str is strictly convex as a function of y − x.

The function (y, x) 7→ Dji
str(y, x)−Dji

jun−lin(y, x) being convex because Dji
jun−lin(y, x) is linear,

we can consider the convex set

Kji =
{

(y, x) ∈ Jj × Ji, Dji
str(y, x) ≤ Dji

jun−lin(y, x)
}

.
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Then for i = j ∈ IN\I0, the set

Γji =
{

(y, x) ∈ ∆ji, Dji
jun−lin(y, x) = Dji

str(y, x)
}

is contained in the boundary of the convex set Kji. More precisely, we have

Γji = ((∂Kji) ∩∆ji) ⊂ J∗
j × J∗

i

which shows that Γji is a curve and

Γji = Γji ∪ {Xi, Yj} .
Part II: Proof of (5.45), (5.46), (5.44), (5.47), (5.48) and (5.49). Using Proposi-
tion 5.7 for Dji

jun, Lemma 5.10 for Dji
str, and (5.28) for Dji

jun−lin and the property (5.43), we
get

(Dji
0 −x∂xDji

0 −y∂yDji
0 )(0, x) =







































L0(0) +Ki(max(x, ξ+i )) if i 6= j

L0(0) +Ki(x) if i = j ∈ I0







L0(0) +Ki(x) if x > ξ+i

L0(0) if x < ξ+i

∣

∣

∣

∣

∣

∣

if i = j ∈ IN\I0

which implies (5.45). Similarly we get

(Dji
0 −x∂xDji

0 −y∂yDji
0 )(y, 0) =







































L0(0) +Kj(−max(y,−ξ−j )) if i 6= j

L0(0) +Kj(−y) if i = j ∈ I0







L0(0) +Kj(−y) if y > −ξ−j

L0(0) if y < −ξ−j

∣

∣

∣

∣

∣

∣

if i = j ∈ IN\I0

which implies (5.46). Relations (5.44) and (5.47) follow both from Proposition 5.7 and
Lemma 5.10. Finally (5.48) and (5.49) follows from the previous results. This ends the
proof of the lemma.

Lemma 5.12. (Boundary properties of D0) At any point (y, x) ∈ {0}×Ji with x 6= ξ+i
if i ∈ IN\I0, we have for any j ∈ IN

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(y, x)

=







−maxk∈IN H
−
k (−∂yDki

0 (y, x)) if N ≥ 2,

−H1(−∂yDki
0 (y, x)) if N = 1.

(5.52)

Similarly at any point (y, x) ∈ Jj ×{0} with y 6= −ξ−j if j ∈ IN\I0, we have for any i ∈ IN

(Dji
0 − x∂xDji

0 − y∂yDji
0 )(y, x) = −max

k∈IN
H−

k (∂xDjk
0 (y, x)) (5.53)
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Proof of Lemma 5.12. We first remark the general fact that

Hk(L
′
k(ξ)) = H−

k (L
′
k(ξ)) if ξ ≤ 0.

i) Proof of (5.52). On the one hand, from Lemma 5.11, we have for points (y, x) ∈ {0}×Ji
where Dki

0 is C1

−(Dki
0 − x∂xDki

0 − y∂yDki
0 )(y, x) = Hk(−∂yDki

0 (y, x)) ≥ H−
k (−∂yDki

0 (y, x))

and this commom quantity is independent on k. Therefore to conclude to (5.52) in the
case N ≥ 2, it is enough to show that there exists at least an index k such that

Hk(−∂yDki
0 (y, x)) = H−

k (−∂yDki
0 (y, x)). (5.54)

Case A: N ≥ 2 and k 6= i. Then we have ξy ≤ 0 and then

Hk(−∂yDki
0 (y, x)) = Hk(L

′
k(ξy)) = H−

k (L
′
k(ξy)) = H−

k (−∂yDki
0 (y, x)).

Therefore (5.54) holds true for k 6= i.

Case B: N = 1 and k = i = 1 ∈ I0. Then we have

D0(y, x) = D1,1
0 (y, x) = L1(x− y)

and by Lemma 5.10, we have for

(D11
0 − x∂xD11

0 − y∂yD11
0 )(y, x) = −H1(−∂yD11

0 (y, x))

which is in particular true for y = 0. This shows (5.52) in the case N = 1.

ii) Proof of (5.53). On the one hand, from Lemma 5.11, we have for points (y, x) ∈
Jj × {0} where Djk

0 is C1

−(Djk
0 − x∂xDjk

0 − y∂yDjk
0 )(y, x) = Hk(∂xDjk

0 (y, x)) ≥ H−
k (∂xDjk

0 (y, x))

and this commom quantity is independent on k. Therefore to conclude to (5.53), it is
enough to show that there exists at least an index k such that

Hk(∂xDjk
0 (y, x)) = H−

k (∂xDjk
0 (y, x)). (5.55)

Case A: j ∈ I0. Then from Lemma 5.11, we have with k = j

∂xDjk
0 (y, x) = L′

k(ξx) with ξx = x− y ≤ 0. (5.56)

Therefore (5.53) holds true for k = j.

Case B: j ∈ IN\I0. We distinguish subcases.

Subcase B.1: y > −ξ−j . From Lemma 5.11, we still have (5.56) with k = j, which again
implies (5.53) for k = j.

Subcase B.2: y < −ξ−j . Then we choose an index k ∈ I0, and Lemma 5.11 implies that

∂xDjk
0 (y, x) = L′

k(ξx) with ξx = ξ+k = 0

which again implies (5.53) for such k ∈ I0. This ends the proof of the lemma.
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We can now prove Theorem 5.1.

Proof of Theorem 5.1. From Lemma 5.11, we know that D0 has the regularity C1
∗ except

on certain curves Γji ∪ {Yj, Xi} for j = i ∈ IN\I0. So if (y, x) is a point of local C1
∗

regularity of D0, then we simply set

ϕ0 = D0 locally around (y, x).

If (y, x) is a point where D0 is not C1
∗ , then we have D0(y, x) = Djun(y, x), and we can

simply set
ϕ0 = Djun on J2.

The required equalities follow from Lemmas 5.11 and 5.12. Estimate (5.5) follows from
the fact that D0 is the mimimum of Djun ∈ C1

∗(J
2) and of functions in C1(J2

i ) for some i.
This ends the proof of the theorem.

6 Application to the modeling of traffic flows

In this section we present the derivation of the Hamilton-Jacobi formulation of traffic on
a junction. We also discuss the meaning of our junction condition in this framework and
relate it to known results.

6.1 Primitive of the densities of cars

i = N

i = 1

i = 3

i = 2

Figure 6: A divergent traffic junction

We consider a junction (represented on Figure 6) with a single incoming road (labeled
by the index i = 1) and N − 1 ≥ 1 outgoing roads (labeled by i = 2, ..., N). This means
that the cars move on the incoming road in the direction of the junction and then have to
choose to go on one of the N − 1 outgoing roads. We assume that the proportion of cars
coming from the branch i = 1 and going on each branch j ∈ {2, ..., N} is a fixed number
γj > 0, with the obvious relation (for conservation of cars)

∑

j=2,...,N

γj = 1
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We denote by ρi(t,X) ≥ 0 the car density at time t and at the position X on the branch
i. In particular, we assume that the traffic is described on each branch i by a flux function
f i : R → R. We assume that

each function f i is concave and has a unique maximum value at ρ = ρic > 0. (6.1)

The typical example of such flux function is given by the LWR model (Lighthill,
Whitham [32] and Richards [36]), with

f(ρ) = ρv(ρ) with the velocity v(ρ) = Vmax(1−
ρ

ρmax

) (6.2)

where Vmax and ρmax are respectively the maximal velocity and the maximal car density in
the model). In this model the critical car density ρc where f is maximal, is equal to 1

2
ρmax.

We assume that the car densities are solutions of scalar conservation laws






ρ1t + (f 1(ρ1))X = 0, X < 0,

ρjt + (f j(ρj))X = 0, X > 0, for j = 2, ..., N
(6.3)

where we assume that the junction point is located at the origin X = 0.
We do not make precise yet the junction condition at X = 0, and we derive formally

the Hamilton-Jacobi model of such a junction. For a function g to be determined later on,
let us consider the functions











U1(t,X) = g(t) +
∫ X

0
ρ1(t, Y ) dY, X < 0,

U j(t,X) = g(t) + 1
γj

∫ X

0
ρj(t, Y ) dY, X > 0, for j = 2, ..., N.

(6.4)

Then we can compute formally for j = 2, ..., N

U j
t = g′(t) + 1

γj

∫ X

0
ρjt(t, Y ) dY

= g′(t)− 1
γj

∫ X

0
(f j(ρj(t, Y )))X dY

= − 1
γj f

j(ρj(t,X)) + g′(t) + 1
γj f

j(ρj(t, 0+)).

This shows that for j = 2, ..., N

U j
t +

1

γj
f j(γjU

j
X) = hj(t) (6.5)

where

hj(t) := g′(t) +
1

γj
f j(ρj(t, 0+)).
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Remark that we can show similarly that (6.5) is still true for j = 1 with

h1(t) = g′(t) + f 1(ρ1(t, 0−)).

In particular, this shows that we can choose g such that

g′(t) = −f 1(ρ1(t, 0−)) (6.6)

then we have
hi(t) ≡ 0 for i = 1, ..., N

if and only if
f j(ρj(t, 0+)) = γjf 1(ρ1(t, 0−)) for j = 2, ..., N (6.7)

which is exactly the expected condition which says that the proportion of incoming cars
choosing to go on the branch j ∈ {2, ..., N} is equal to γj.

Let us notice that if we choose the initial condition g(0) = 0, then we deduce from (6.6)
that

−U1(t, 0) = −g(t) =
∫ t

0

f 1(ρ1(τ, 0−)) dτ

which shows that −U1(t, 0) can be interpreted as the total quantity of cars passing
through the junction point X = 0 during the time interval [0, t). As a consequence,
the quantity −U1

t (t, 0) can also be interpreted as the instantaneous flux of cars passing
through the junction point.

Imagine for a moment, that we come back to a discrete description of the traffic, where
each car of label k has a position xk(t) with the ordering xk(t) < xk+1(t) < 0. We can
be interested in the label k of the car xk(t) ≤ 0 which is the closest to the junction point
X = 0. Let us call it K(t). We can normalize the initial data such that K(0) = 0. Then
the quantity of cars that have passed through the junction point X = 0 during the time
interval [0, t) is equal to −K(t), which is the exact discrete analogue of the continuous
quantity −U1(t, 0).

On the other hand the number of cars between the positions a = xA(t) and b = xB(t) is

obviously equal to B−A, and its continuous analogue is
∫ b

a
ρ1(t,X) dX = U1(t, b)−U1(t, a).

This shows clearly that U1(t,X) can be interpreted as the exact continuous analogue of
the discrete labeling of the cars moving in the traffic.

This interpretation can be pushed forward on the branches for j ∈ {2, ..., N}, where
U j(t,X) is the continuous analogue of the discrete label of the cars that have decided to
choose the branch j and which is at time t close to the position X > 0.

6.2 Getting the Hamilton-Jacobi equations

We now set






u1(t,X) = −U1(t,−X), X > 0,

uj(t,X) = −U j(t,X), X > 0, for j = 2, ..., N
(6.8)
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and we define the convex Hamiltonian






H1(p) = −f 1(p),

Hj(p) = − 1
γj f

j(−γjp) for j = 2, ..., N.
(6.9)

Then we deduce from (6.5) that we have

uit +Hi(u
i
X) = 0, X > 0, for i = 1, ..., N (6.10)

with equality of the functions at the origin, i.e.

ui(t, 0) = u(t, 0) for any i ∈ {1, ..., N} .

Notice that for the choice Vmax = 1 = ρmax in (6.2), we get with f i(ρ) = f(ρ) = ρ(1−ρ)
for all i ∈ IN , that

L1(q) =
1

4
(1 + q)2 and Lj(q) =

1

γj
L1(−q) for j = 2, ..., N.

In particular this shows that the Li(0) are not all the same, even in the simplest case.

6.3 The junction condition and its interpretation

There is still a junction condition lacking to uniquely define the solution of (6.10). In view
of Theorem 1.4, if we restrict our attention to continuous solutions u, then we will have
u ≤ uoc where uoc is the solution associated to the optimal control problem. This shows in
particular that we have

u(t, 0) ≤ uoc(t, 0)

which means (in view of (6.8) and the interpretation of −U1 given in Subsection 6.1) that
we have a universal bound on the total amount of cars passing through the junction point
during the time interval [0, t). If we assume moreover that this amount of cars is maximal,
then we can choose (and indeed have to choose) u = uoc and the natural junction condition
is then

ut(t, 0) + max
i=1,...,N

H−
i (u

i
X(t, 0

+)) = 0 (6.11)

with
H−

i (p) = sup
q≤0

(pq − Li(q)) and Li(p) = sup
q∈R

(pq −Hi(q)) .

Using our assumption (6.1) on the functions f i, let us define for i = 1, ..., N the Demand
functions

f i
D(p) =

{

f i(p) for p ≤ ρic
f i(ρ1c) for p ≥ ρic

and the Supply functions

f i
S(p) =

{

f i(ρ1c) for p ≤ ρic,
f i(p) for p ≥ ρic.
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From assumption (6.1) on the functions f i, we deduce that

{

H−
1 (p) = −f 1

D(p),

H−
j (p) = − 1

γj f
j
S(−γjp), for j = 2, ..., N.

Condition (6.11) means that

− U1
t (t, 0) = ut(t, 0) = min

i=1,...,N
−H−

i (u
i
X(t, 0

+))

= min

(

f 1
D(ρ

1(t, 0−)), min
j=2,...,N

1

γj
f j
S(ρ

j(t, 0+))

)

. (6.12)

Notice that from (6.7), it is natural to compare f 1(ρ1(t, 0−)) and 1
γj f

j(ρj(t, 0+)). Then

condition (6.12) is nothing else that the Demand and Supply condition of Lebacque, which
claims that the passing flux is equal to the mimimum between the Demand and the Supply,
as it is defined in [31].

This condition (6.12) is also equivalent to the condition defining the Riemmann solver
at the junction point in the book of Garavello and Piccoli [24].
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