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Abstract

In this paper, we focus on the resource-constrained modulo schedul-
ing problem, a general periodic scheduling problem, abstracted from
the problem solved by compilers when optimizing inner loops at in-
struction level for VLIW parallel processors. Heuristic solving scheme
have been proposed since many years to solve this problem, among
which the decomposed software pipeling method. In this method, a
cyclic scheduling problem ignoring resource constraints is first consid-
ered and a so-called legal retiming of the operations is issued. Second,
a standard acyclic problem, taking this retiming as input, is solved
through list scheduling techniques. In this paper, we propose an hy-
brid approach, which uses the decomposed software pipeling method
to obtain a good retiming. Then the obtained retiming is used to build
an Integer Linear Programming formulation of reduced size, which al-
lows to solve it exactly. Experimental results show that a lot more
problems are solved with this new approach. The gap to the optimal
solution is really small (0 or 1%) on all the tested problem instances.
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1 Introduction

A cyclic scheduling problem is specified by a set of generic operations that
are processed an infinity of times and a set of constraints linked to precedence
relations between the operations or to usage of limited resources. The objec-
tive is to generally maximize the throughput of scheduling. In this paper, we
focus on the resource-constrained modulo scheduling problem (RCMSP), a
general periodic scheduling problem, abstracted from the problem solved by
compilers when optimizing inner loops at instruction level for VLIW parallel
processors.

We briefly describe the context of the RCMSP in terms of parallel com-
puting and very long instruction word (VLIW) architectures. We refer to
[dD04, SMD04, RS02, ED97, EDA94, DAA08] for more details. In VLIW
architectures, the instruction scheduling problem is a major compilation is-
sue. To reduce the troughput, software pipelining is widely used. Software
pipeling is a technique that allows to interleave the successive operations of
a loop. Among software pipeling techniques, this paper focuses on the mod-
ulo scheduling technique, which implements software pipelining by generat-
ing periodic schedules. This is a suboptimal policy compared to k-periodic
scheduling [HM94] but it is used in practice for ease of implementation. The
goal is to find a valid schedule for the instructions of a loop (the local sched-
ule) that can be overlapped with itself infinitely. In the modulo scheduling
framework, the interval between two local schedules is called initiation in-
terval (or period) and is the main indicator of the schedule quality. The
modulo scheduling algorithm must take into account the constraints of the
target processor, this is, latencies of operations, resources, and size of the
register files. Also, it should consider optimizing secondary goals such as,
minimizing the schedule length of a loop iteration, minimizing the register
requirements of the resulting modulo schedule. Algorithms based on op-
timal solvers have been proposed, and are referred to as optimal modulo
schedulers. In this study, register constraints and objectives are ignored. In
this context, The RCMSP can be informally defined as a periodic schedul-
ing problem consisting in minimizing the period, while satisfying precedence
and resource constraints.

Solving the instruction scheduling problem at compilation phase in less
time critical than for real time scheduling, integer linear programming (ILP)
is a relevant technique for the RCMSP [dD04, ED97, EDA94, DAA08].
Hence, different ILP formulations for the RCMSP have been proposed and
used in practice. These formulations can be presented as generalizations
of the classical non preemptive time-indexed formulations of Pritsker et al.
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[PWW69] and the tighter variant presented by Christofides et al. [CAVT87],
for the (non periodic) resource constrained project scheduling problem
(RCPSP). However, because of the periodic nature of the problem, the
time-indexed formulation of the RCPSP can be extended in two different
ways, yielding two categories of ILP formulations. Eichenberger et Davidson
[ED97] proposed a first extension comprising both binary and integer vari-
ables. We call this category of formulations the decomposed formulations.
Dupont de Dinechin [dD04, Dup07] proposed a second extension comprising
only binary variables. We call the latter category the direct formulations.
Ayala and Artigues [AA10] performed a series of computational experiments
on a set of industrial and randomly-generated instances. They show that
in terms of exact solving, the ILP formulations perform reasonably well al-
though high computational times may be required to reach optimality for
moderate size instances. For some hard instances optimum could not even
be found after hours of computing.

Heuristic solving scheme have been proposed since many years to solve
this problem, among which the decomposed software pipeling technique
[Rau93, GS94, BdDH06, CDR98a]. This approach decomposed this problem
into two subproblems solved consecutively. First, a cyclic scheduling pro-
blem ignoring resource constraints is considered and a so-called legal retiming
of the operations is issued. Second, a standard acyclic problem, taking this
retiming as input, is solved through list scheduling techniques. An exten-
sion of decomposed software pipelining has been proposed by [BH09a] for
the resource-constrained cyclic scheduling problem with precedence delays.
This approach has a very good performance in time and distance to opti-
mum. However, even for the best variant of this approach, the optimum is
not always reached, especially when the operations have non unit resource
demands, which corresponds to the general case.

In this paper, we propose an hybrid approach, which uses the decom-
posed software pipeling method to obtain a good retiming. Then the ob-
tained retiming is used to build a ILP formulation using the Eichenberger et
Davidson [ED97] scheme. The formulation has a reduced size which allows
to solve it exactly. Experimental results show that a lot more problems are
solved with this new approach. The gap to the optimal solution is really
small (0 or 1%) on all the tested problem instances.

Section 2 defines the considered resource-constrained modulo scheduling
problem and presents the data intances used for the experiments. Section 3
presents the ILP formulations proposed by Eichenberger et Davidson [ED97]
and Dupont de Dinechin [dD04, Dup07] and reports experimental results in
terms of exact solving of the considered problem instances. In Section 4,
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the approximation algorithms based on decomposed software pipeling are
presented, as well as their results on the same problem instances. Section
5 details the proposed hybrid method and gives its results in comparison
with the two previously-presented methods. Concluding remarks are drawn
in Section 6.

2 The Resource-Constrained Modulo Scheduling
Problem (RCMSP)

Instruction schedules, produced by the compiler in modern processors like
VLIW (Very Long Insctruction Word) architectures, are a performance crit-
ical optimization that has a direct impact on the overall system cost and
energy consumption. High-quality instruction schedules enable to reduce
the operating frequency given real-time processing requirements.

This combinatorial problem is also known as software pipelining [AJLA95]
and can be expressed by a cyclic scheduling problem with resource con-
straints. Among the different cyclic scheduling frameworks, modulo schedul-
ing [Rau94] focuses on finding a periodic schedule with the minimal period
λ and it is the most successful in production compilers. In order to model
the software pipelining problem, [DAA08] proposes an extension of the clas-
sic modulo scheduling problem to Resource-Constrained Modulo Schedul-
ing Problems RCMSP where the resources are adapted from the renewable
resource of the Resource-Constrained Project Scheduling Problem RCPSP
[BDM+99].

2.1 Problem formulation

Modulo scheduling is equivalent to periodic scheduling with an integral pe-
riod λ ≥ 1. We consider a set V = {O1, . . . , On} of n generic operations
of unit duration. A schedule is defined by a mapping σ : V × N 7→ N,
where σ(Oi, q) represents the start time of the qth instance (Oi, q) of generic
operation Oi. For ease of notation, σ(Oi, q) will be denoted as σq

i in the
remainder of the paper. In addition, a periodic schedule satisfies:

σq
i = σ0

i + qλ,∀i ∈ V,∀q ∈ N (1)

Let E be the set that represents dependencies among operations, each de-
pendence constraint can be written:

σq
i + θji ≤ σ

q+ωj
i

j ,∀(Oi, Oj) ∈ E,∀q ∈ N
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where θji is the latency and represents dependence length while ωj
i is the

distance, representing the number of iterations separating the two operations
involved.

Introducing σi as a shortcut for σ0
i , the start time of the operation at

the first iteration (defining the local schedule), and using (1) we obtain the
following dependence constraints:

σi + θji − ωj
iλ ≤ σj ,∀(Oi, Oj) ∈ E (2)

Each operation i ∈ {1, . . . , n} requires bsi ∈ N units of each resource
s ∈ {1, . . . , k}. Each resource s has a limited availability ms ∈ N. Note that
since λ ≥ 1, (1) implies that several instances of the same operation cannot
be scheduled in parallel. Consequently, the set of operation instances in
process at a time step t ∈ N is the set A(t) = {i ∈ {1, . . . , n}|∃q ∈ N, σq

i = t}.
The resource constraint can be written as follows:

∑

i∈A(t)

bsi ≤ ms, ∀s ∈ {1, . . . , k},∀t ∈ N

Consider now a “generic” time step τ ∈ {0, . . . , λ − 1} and the set B(τ) =
{i ∈ {1, . . . , n}|∃q ∈ N, σi = τ + qλ} of operations having their start time
σi equal to τ modulo λ. Thanks to the schedule periodicity, the resource
constraint can be also simplified as it can be shown that there always exists
T ∈ N such that for t ≥ T , we have A(t) = B(τ) and for each t < T we
have A(t) ⊂ B(τ) where t = τ + qλ. The resource constraints can then be
replaced by the following “modulo” resource constraints:

∑

i∈B(τ)

bsi ≤ ms, ∀s ∈ {1, . . . , k},∀τ ∈ {0, . . . , λ− 1} (3)

Finally the RCMSP aims at finding a schedule σ ∈ N
n that satisfies

constraints (2-3) and minimizes the period λ.

2.2 Example

To illustrate the resource-constrained modulo scheduling problem that oc-
curs in software pipeline, a sample C program and the corresponding ST200
VLIW processor operations are given in Figure 1. ([DAA08],p.270).
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Figure 1: A sample C program and the corresponding ST200 operations.

The dependence graph corresponding to the example in Figure 1 is dis-
played in Figure 2. Each node represents a generic operation and each arc
represents a dependence. Pairs of values for (θji , ω

j
i ) are displayed close to

their arc. A dummy node 0 represents the start of schedule and a dummy
node n+ 1 = 8 represents the end of the schedule.

Figure 2: Generic dependencies of the modulo scheduling problem.

In Table 1 we display the resource1 availabilities and the resource re-
quirements of each operation class2.

1The resources are: Issue for the instruction issue width; MEM for the memory access
unit; and CTL for the control unit. An artificial resource LANE0 is also introduced to
satisfy some encoding constraints.

2There are in our example, 10 classes of operations. ALU, MUL, MEM and CTL
correspond repectively to the arithmetic, multiply, memory and control operations. The
classes ALUX, MULX and MEMX represent the operations that require an extended
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Resource ISSUE MEM CTL ODD EVEN LANE0

Availability 4 1 1 2 2 2

ALL 4 0 0 0 0 0
ALU 1 0 0 0 0 0
ALUX 2 0 0 1 1 0
CTL 1 0 1 1 1 0
ODD 1 0 0 1 0 0
ODDX 2 0 0 1 1 0
MEM 1 1 0 0 0 0
MEMX 2 1 0 1 1 0
PSW 1 1 1 1 1 0
EVEN 1 0 0 0 1 0

Table 1: Resources availabilities and operation requirements.

Figure 3 displays, on a Gantt chart, a modulo schedule in which each
operation is suffixed by the instance number. The operations of the local
schedule are highlighted.

Figure 3: 1-periodic schedule with period λ = 2.

immediate operand. LDH, MULL, ADD, CMPNE and BRF belong respectively to classes
MEM, MUL, ALU and CTL.
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2.3 Lower bounds on the optimal period

Without resource constraints, the modulo scheduling problem is polynomi-
ally solvable. However, finding a modulo schedule of minimal period λ is
known to be NP-hard when resources are limited [HM94].

If we assume infinite availability of resources, the optimal period of a
schedule is defined by

λ∞ = max
C circuit of G

L(C)

H(C)

where L(C) and H(C) are respectively the sum of latencies and the sum of
distances of arcs along the circuit C. It is well known (see. [HM94]) that
λopt ≥ λ∞. This bound is due to precedence constraints only and can be
computed in polynomial time using a critical circuit algorithm.

On the other hand, a bound due to resource constraints only can be
defined by

λres = max
1≤s≤k

∑n
i=1 b

s
i

ms
.

That is the minimum such that the renewable resources are not over-subscribed
and it can be easily proven that λopt ≥ λres.

In the rest of the paper we shall denote by λmin = max(λres, λ∞), the
largest of the two above-defined lower bounds.

2.4 Architecture and data

In this paper, we made our experiments on a real benchmark of graphs
issued from the ST200 compiler with real ressource requirements, where the
smallest instance “gsm-st231.10.rcms” has 10 operations and 42 dependence
edges, and the biggest one “gsm-st231.18.rcms” has 214 operations and 1063
edges.

Firstly, we made our experiments on a real VLIW architecture (ST200 of
STMicroelectronics) with 6 functional units (resources) whose availabilities
and operation demands are described in Table 1 Then, we considered the
instances presented in [AA10] obtained from the above-defined instances
by setting to 10 the availability of each resource and, for each operation,
by randomly generating a resource demand vector whose components are
chosen in the interval {1, · · · , 10}.

Table 2 presents, for each original instance from the ST200 compiler, the
number of operations #operations, the number of dependence constraints
#prec, the precedence-based lower bound λprec, the resource-based lower
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bound for the original instances λres (ind) and the resource-based lower
bound for the modified instances λres (mod). One observes the resource
constraints are much tighter for the modified instances.

The tests were performed on an INTEL(R) Core(TM) 2 DUO 1.99GHz
RAM.

In our experimental framework,

• two ILP formulations, presented in section 3, are tested: Eichenberger
et al. Decomposed formulation [ED97] and Dupont-de-Dinechin et al.
Direct Formulation (FDI) [dD04]. We applied CPLEX 11 to solve the
different ILP formulations.

• different DSP algorithms are introduced in section 4 and tested con-
sidering several retiming policies (Gasperoni and Schwiegelshohn’s ap-
proach [GS94], longest path in the pattern minimization [CDR98b],
zero weighted edges minimization and combined longest path and zero
weighted edges minimizations [DH00a]) and different acyclic schedul-
ing strategies (As early as possible scheduling, a list with critical paths
as priorities, a list with Zinder-Roper [ZR98] priorities).

• a new algorithm, that combines the two previous approachs, is intro-
duced in section 5.

We notice that this is the first study that compares and combines ILP for-
mulations and DSP approximation algorithms for RCMSP.
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Table 2: Characteristics of the industrial and modified instances
Instance name #operations #prec λprec λres (ind) λres (mod)
adpcm-st231.1 86 405 11 21 52
adpcm-st231.2 142 722 38 35 82
gsm-st231.1 30 190 24 12 16
gsm-st231.2 101 462 12 26 59
gsm-st231.5 44 192 4 11 26
gsm-st231.6 30 130 3 7 17
gsm-st231.7 44 192 4 11 28
gsm-st231.8 14 66 1 8 9
gsm-st231.9 34 154 28 8 21
gsm-st231.10 10 42 1 4 6
gsm-st231.11 26 137 20 6 16
gsm-st231.12 15 70 1 8 10
gsm-st231.13 46 210 19 11 27
gsm-st231.14 39 176 5 10 20
gsm-st231.15 15 70 1 8 9
gsm-st231.16 65 323 4 16 38
gsm-st231.17 38 173 8 9 23
gsm-st231.18 214 1063 8 53 120
gsm-st231.19 19 86 2 8 12
gsm-st231.20 23 102 3 6 13
gsm-st231.21 33 154 18 8 20
gsm-st231.22 31 146 18 8 18
gsm-st231.25 60 273 10 16 37
gsm-st231.29 44 192 4 11 28
gsm-st231.30 30 130 3 7 16
gsm-st231.31 44 192 4 11 26
gsm-st231.32 32 138 15 8 21
gsm-st231.33 59 266 4 15 33
gsm-st231.34 10 42 2 4 7
gsm-st231.35 18 80 2 6 12
gsm-st231.36 31 143 2 10 18
gsm-st231.39 26 118 3 8 15
gsm-st231.40 21 103 2 10 12
gsm-st231.41 60 315 2 18 33
gsm-st231.42 23 102 3 6 14
gsm-st231.43 26 115 8 6 15
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3 ILP formulations for the RCMSP

For the non periodic resource-constrained project scheduling (RCPSP), Pritsker
et al. [PWW69] proposed an ILP formulation based on time-indexed binary
variables zti such that zti = 1 if and only if the start time of operation i is
equal to t. According to the periodic nature of the RCMSP, there are two
ways for extending this model, yielding the two ILP models described in
this section. To obtain easily linear constraints, both formulations suppose
that λ is fixed. Hence the minimum λ for which the corresponding ILP is
feasible is the desired optimum period. In our experiments, we simply per-
form a linear search by iteratively solving the ILP starting with λ = λmin.
Note that this solving scheme allows to easily integrate a secondary objec-
tive. Although, in this paper, only period minimization is considered, the
ILP are in fact solved with an objective function set to the weighted sum
of the operation start times. If wi denote the weight of an operation i, the
objective is min

∑n
i=1wiσi. As a preamble, Ayala and Artigues [AA10] have

shown that, with this objective, the two formulations presented below are
equivalent in the sense they give the same LP relaxation lower bound.

3.1 Direct formulation [dD04, Dup07]

Dupont-de-Dinechin [dD04, Dup07] proposed a time-indexed formulation
based on a direct discretization of start times σi. This formulation is based
on binary variables xti such that xti = 1 if and only if σi = t and we have
σi =

∑T−1
t=0 txti, where T is any upper bound of the makespan allowing to

achieve the optimum λ. For ease of notation, we suppose there is an integer
Q such that T = Qλ (we can always increase T as needed to obtain this
property). This formulation (direct) is expressed as follows:

min
n
∑

i=1

wi(
T−1
∑

t=0

txti) (4)

T−1
∑

t=0

xti = 1 ∀i ∈ {1, . . . , n} (5)

T−1
∑

t=0

txti + θji − λωj
i ≤

T−1
∑

t=0

txtj, ∀(i, j) ∈ E (6)

n
∑

i=1

T/λ−1
∑

q=0

xτ+qλ
i bsi ≤ ms,∀τ ∈ {0, . . . , λ− 1}, s ∈ {1, . . . , k} (7)
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xti ∈ {0, 1} ∀i ∈ {1, . . . , N},∀t ∈ {0, . . . , T − 1} (8)

As already mentionned, objective (4) is minimization of the weighted
sum of the operation start times. Constraints (5) state that each generic
operation has to be started exactly once in {0, . . . , T − 1}. Constraints (7)
ensure that the usage of a resource never exceeds its availability. Here, set
B(τ) is the set of operations such that xti = 1 for any t such that t = τ + qλ
with q ∈ {0, . . . , Tλ − 1 = Q− 1}.

Inspired by the results of Christophides et al for the RCPSP [CAVT87],
Dupont-de-Dinechin [dD04, Dup07] introduced the following so-called “dis-
aggregated” precedence constraints:

T−1
∑

h=t

xhi +

t+θji−λωj
i−1

∑

h=0

xhj ≤ 1,∀t ∈ {0, . . . , T − 1},∀(i, j) ∈ E (9)

As in the preceding case, replacing constraints (6) by constraints (9)
yields a tighter formulation (direct+). The proof can be extended from the
results obtained for the RCPSP (see e.g. [SBJ99]).

3.2 Decomposed formulation [ED97]

The start time of the generic operation i can be decomposed according to
the division by λ. We have σi = τi+αiλ with τi ∈ {0, . . . , λ−1} and αi ∈ N.

Following this decomposition, Eichenberger and Davidson [ED97] intro-
duce integer variables αi and binary variables yτi such that, yτi = 1 if only

if τi = τ which yields also τi =
∑λ−1

τ=0 τy
τ
i . The formulation (decomp) is

expressed as follows:

min
n
∑

i=1

wi(
λ−1
∑

τ=0

τyτi + αiλ) (10)

λ−1
∑

τ=0

yτi = 1, ∀i ∈ {1, . . . , n} (11)

λ−1
∑

τ=0

τyτi + αiλ+ θji − λωj
i ≤

λ−1
∑

τ=0

τyτj + αjλ, ∀(i, j) ∈ E (12)

n
∑

i=1

yτi b
s
i ≤ ms, ∀s ∈ {1, . . . , k},∀τ ∈ {0, . . . , λ− 1} (13)

yτi ∈ {0, 1} ∀i ∈ {1, . . . , n},∀τ ∈ {0, . . . , λ− 1} (14)
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αi ∈ {0, . . . , Q− 1} ∀i ∈ {1, . . . , n} (15)

As for the direct formulation, by replacing σi by
∑λ−1

τ=0 τy
τ
i +αiλ, objec-

tive (10) represent the weighted sum of operation start times. Constraints
(12) are the precedence constraints (2). Constraints (11) state that each
generic operation has to be started exactly once in the period or, equiva-
lently, that the remainder of the division of σi by λ lies in {0, . . . , λ − 1}.
With this decomposition, set B(τ) is precisely the set of operations such that
yτi = 1, which directly gives resource constraints (13) from original modulo
resource constraints (3).

Based on results obtained by Chaudhuri et al. [CWM94], Eichen-
berger and Davidson [ED97] propose a new precedence constraint, they call
“structured” precedence constraint.

λ−1
∑

x=τ

yxi +

(τ+θji−1) mod λ
∑

x=0

yxj + αi − αj ≤ ωj
i − ⌊

τ + θji − 1

λ
⌋+ 1,

∀τ ∈ {0, . . . , λ− 1},∀(i, j) ∈ E (16)

Replacing constraints (12) with constraints (16) yields a tighter formu-
lation (decomp+) (see [ED97] for the proof).

3.3 Experimental study

We now evaluate the performance of the standard (direct+) and (decomp+)
formulations on the industrial and modified instances for obtaining opti-
mal solutions. First, remark that a lower bound of the optimal period can
be obtained by finding the minimal λ for wich the LP relaxation is fea-
sible. Theoretical results from [AA10] established that the (direct) and
(decomposed) ILP yield the same lower bound, as well as (direct+) and (de-
composed+). Unfortunately, the computational experiments carried out in
[AA10] also showed that for the same industrial and modified instances as
the one considered in the present paper, the lower bound obtained this way
never exceeds λmin, the trivial lower bound. A better lower bound can be
obtained by the new formulation proposes in [AA10] but this formulaiton
has an exponential number of variables and cannot be used for direct ILP
solving.

For integer solving, we use here the (direct+) and (decomp+) formula-
tions. Starting with the trivial lower bound on the period λmin, the branch-
and-bound of the ILP solver is used, incrementing the period until a feasible
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solution is found which yields the optimal period. Tables 13 and 15 shows
the optimal of best known integer solutions obtained by (direct+) and (de-
comp+).

Tables 3, 4, 5 and 6 show a classification of instances according to the
time of execution and the size of the instance.

Table 3: Formulation decomp+ industrial instances
♯operat ♯instances ms sec min > 1h No1

0 - 30 16 14 2 - - -
31 - 60 15 7 3 4 1 -
61 - 100 2 - - - 2 -
> 100 3 - - - 2 1

Total 36 21 5 4 5 1

Table 4: Formulation direct+ industrial instances
♯operat ♯instances ms sec min > 1h No1

0 - 30 16 14 2 - - -
31 - 60 15 7 2 5 1 -
61 - 100 2 - - - 2 -
> 100 3 - - - 2 1

Total 36 21 4 5 5 1

Table 5: Formulation decomp+ modified instances
♯operat ♯instances ms sec min > 1h No1

0 - 30 16 3 9 4 - -
31 - 60 15 1 2 9 23 1
61 - 100 2 - - - - 2
> 100 3 - - - - 3

Total 36 4 11 13 2 6
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Table 6: Formulation direct+ modified instances
♯operat ♯instances ms sec min > 1h No1

0 - 30 16 3 8 5 - -
31 - 60 15 - 3 9 - 3
61 - 100 2 - - - - 2
> 100 3 - - - - 3

Total 36 3 11 14 0 8

Table 13 shows that all industrial ST200 instances except one (gsm-
st231.18) can be solved to optimality. The (decomp+) formulation is faster
than the (direct+) formulation. However, if some instances are solved very
quickly, more than 161 hours are necessary to solve instance adpcm-st231.2.
For the most part solved industrial instances, the optimal period is equal to
the trivial lower bound λmin. In just one case (instance ”adpcm-st231.2”)
the optimal period is not equal to the trivial lower bound.

Table 15 shows the optimal of best known integer solutions obtained by
(direct+) and (decomp+) on the modified instances. It appears that the
modified instances are harder to solve as less optimal solutions are found.
There are 6 instances whose optimal solution is not found after three weeks
of time run. We have two instances for which, after three weeks of time run,
a feasible but not optimal solution is found (with gaps of 1.75% and 8%).
The hardess of the modified instances, compared to the industrial instances,
is also reflected by the fact that, for the optimally solved modified instances,
the minimal period is now larger than the trivial lower bound.

4 Approximation algorithms

Among the software pipelining algorithms, a guaranteed approach, called
Decomposed Software Pipelining (DSP), has been proposed by Gasperoni
and Schwiegelshohn [GS94], followed by the retiming method by Calland,
Darte and Robert [CDR98b] to solve the problem for parallel processors
and ordinary precedence. The main idea of DSP is to decouple the problem
into dependence constraints and resource constraints so as to decompose the
problem into two subproblems: a cyclic scheduling problem ignoring resource
constraints: loop shifting, and a standard acyclic graph for which efficient
techniques are known: loop compaction. Initialy defined on parallel iden-

1Not solved instances.
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tical processors, this approach has been extended to pipelined processors
with latencies in [DH00a]. The worst case analysis of the extended algo-
rithm is given in [BH09b] which provides a performance guarantee when
arbitrary list schedule is used for loop compaction in the acyclic stage.

4.1 Loop shifting

The idea behind DSP is to define a shift for each operation to extract an
acyclic subgraph of the initial uniform precedence graph and to schedule it
using any non-cyclic scheduling algorithm. The acyclic schedule provided
by the algorithm is then moved, using the initial shift, to a periodic schedule
which period is the makespan of the acyclic schedule. [CDR98b] propose to
use retiming as a shift and they define a legal retiming by:

R : V → Z, ∀(Oi, Oj) ∈ E, Rj + ωj
i −Ri ≥ 0

The intuition behind retiming is that (Oi, q), which corresponds to the (q+
1)th execution of the first instance (Oi, 0), can also be interpreted as the
(q + 1+Ri)

th execution of a new first operation O′
i = (Oi,−Ri). Changing

the definition of first occurences of operations allows to interleave operations
of different iterations into the new first iteration. Precedence relations also
move: if (Oi, q) precedes (Oj , q+ωj

i ) then (O′
i, q) precedes (O

′
j , q+Rj+ωj

i −

Ri). So the value Rj + ωj
i − Ri is the distance of a new cyclic precedence

relation.
Moreover, if Rj + ωj

i − Ri = 0 then (O′
i, q) precedes (O′

j , q) for enough
large integer q. Otherwise, (O′

i, q) precedes an occurrence (O′
j , q

′) with q′ >
q. Hence for these new generic operations (O′

i)1≤i≤n, the first iteration fulfils
the precedence relations given by a graph called GR computed from G by
keeping only the arcs for which Rj +ωj

i −Ri = 0. Notice that GR is acyclic
since G has no zero height circuit.

Several ideas have been investigated to find a legal retiming: Gasperoni
and Schwiegelsohn [GS94] approach can be reformulated as finding a legal
retiming associated to a periodic schedule assuming unlimited resources. In
[CDR98b], where using retiming for loop shifting is formalized, the authors
consider two optimizations:

• the length of the longest path in GR minimization

• the number of edges in GR minimization, so as to reduce the number
of precedence constraints for loop compaction
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For the first objective, such retiming can be computed in polynomial
time using the retiming algorithm due to Leiserson and Saxe [LS88] for clock-
period minimization. Huard and Darte [DH00a] extended this algorithm to
precedence latency problems.

For the second optimization, in [CDR98b] an ILP formulation was for-
mulated to solve this problem. Then, [DH00a] defines a polynomial purely
graph algorithm inspired by a minimal cost flow algorithm proposed by Fulk-
erson, known as out-of-kilter method [GM85]. An algorithm that computes
retiming which combines longest path and zero weighted edges minimiza-
tions was also proposed to solve this problem.

4.2 Loop compaction

The idea behind DSP approach is to choose a particular retiming R, use
a guaranteed algorithm to get a schedule π of GR, and then to extend the
guarantee to the induced periodic schedule.

List scheduling algorithms are the most used heuristics for scheduling
with precedence and resource constraints. A simple list scheduling algo-
rithm consist on scheduling operations as early as possible in order to meet
resource constraints. To each operation, we can give a label to reflect the
scheduling priority of that operation. Then, a list algorithm with priorities
builds a solution by scheduling at each time the heighest priority operation
among a set of concurrent operations ready to be issued. An intuitive pri-
ority would be the longest path in the acyclic graph. Zinder and Roper
[ZR98] proposes to compute priorities taking into acount also the resouce
constraints. The mean idea is to compute the priority of each operation
using the schedule, that meets the precedence and resource constraints, of
its successors. This algorithm was initially introduced for parallel processors
systems and extended to pipelined processors in [BH10].

4.3 DSP algorithm

To formalize DSP approach, let R be a legal retiming of G and π be any
(non cyclic) schedule of GR that fulfills the resource constraints as well as
the precedences induced by GR. We note πi the start time of operation Oi

in this schedule. In fact, a slightly lower value of λR can be computed as
follows: If CR

max = max
Oi∈V

πi + 1 and

IRmax = max
(Oi,Oj)∈G\GR

πi − πj + θji

Rj −Ri + ωj
i

,
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we denote
λR = max(CR

max, I
R
max).

Then, for any integer q ∈ N setting

σq
i (R) = πi + (q +Ri)λ

R,

we have the following result:

Lemma 1 For any feasible retiming R, σ(R) is a feasible periodic schedule
of G with period λR.

Proof. First, we prove that, at any time slot t, the operations scheduled at t
in σ(R) meet the resource constraints. We note Ft = {Oi|q ∈ N, σq

i (R) = t}
the set of operations whose occurrences are scheduled at t. Let Oi and Oj

be two operations in Ft. We note q and q′ their corresponding occurrences
issued in time slot t. Hence,

t = σq
i (R) = σq′

j (R)

πi + (q +Ri)λ
R = πj + (q′ +Rj)λ

R

πi − πj −
(

Rj −Ri + q′ − q
)

λR = 0.

Since πi < CR
max ≤ λR and similarly πj < λR, −λR < πi − πj < λR and

then,

πi = πj and Ri + q = Rj + q′.

Hence, Oi and Oj are performed on the same time slot πi in the acyclic
schedule π. Thus, Oj ∈ Fπi

and then Ft ⊆ Fπi
. Since π fulfills the resource

constraints induced by GR, Fπi
(and then Ft) meets the resource constraints.

For precedence constraints, we need to prove that, for any arc (Oi, Oj) ∈
E and any integer q ∈ N:

σq
i (R) + θji ≤ σ

q+ωj
i

j (R)

⇔ πi + (q +Ri)λ
R + θji ≤ πj +

(

q +Rj + ωj
i

)

λR

Hence, we have to verify that the following inequality is satisfied for each
arc (Oi, Oj)

πi − πj + θji ≤
(

Rj −Ri + ωj
i

)

λR.

We have two cases: either (Oi, Oj) is kept in GR or not.
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• In the first case, Rj − Ri + ωj
i = 0. Since π fulfills the precedence

constraints induced by GR, we have πi+ θji ≤ πj . Then the inequality
is satisfied.

• In the second case, Rj −Ri + ωj
i > 0 and by definition, λR ≥ IRmax =

max
(Oi,Oj)∈G\GR

πi − πj + θji

Rj −Ri + ωj
i

. Thus the inequality is available in this

case too.

which achieves the proof.
Now to illustrate the DSP approach, we consider the following generic

algorithm by using a list algorithm to produce π.

Algorithm 1: Extended DSP

1. Find a legal retiming R for G;

2. for (Oi, Oj) ∈ E do

if Rj −Ri + ωj
i = 0 then

keep (Oi, Oj) in GR ;

3. Perform a list scheduling on GR coping with both precedence and
resource constraints. Compute πi the start time of operation Oi in
this schedule and λR;

4. Define the cyclic schedule σ(R) by:

for 1 ≤ q ≤ N do

for Oi ∈ V do

σq
i (R) = πi + λR(q +Ri) ;

A legal retiming for G of Figure 2 is given in Table 7. The only arcs of
G remaining in GR are (O6, O4) and (O3, O7).

Operations O1 O2 O3 O4 O5 O6 O7

Ri 0 1 2 0 1 1 2

Table 7: A retiming R of G.

A schedule built by Algorithm 1 with period λR = 3 is depicted in Figure
4. The two arcs of GR are shown.
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Figure 4: A periodic schedule generated by Algorithm 1 with λR = 3.

We remark that, in this cyclic schedule, there are some idle cycles. In
[BH09b] the following worst case bound is established when one of the retim-
ings described in section 4.1 is applied for loop shifting and a list algorithm
is considered for loop compaction:

Theorem 1

λDSP ≤

(

k + 1−
1

Bmax · θmax

)

λopt +

(

1−
1

Bmax · θmax

)

(θmax − 1)

where Bmax and θmax denote respectively the maximum capacity of each
resource and the maximum precedence latency.

Notice that [DH00a] studied the worst case behavior only on identical
parallel processors and this is the first worst case performance bound pro-
duced for pipelined processors.

This theoretical worst case ratio is quite large, and could discourage
people to use such approach in industrial applications. Thus, in the next
section, we propose to study the efficency of different DSP algorithms, ex-
tending those given in the litterature, from an experimental point of view.

4.4 Experimental study

The first experimental observations for shifting algorithms are depicted in
the following table:
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Model ST200 RCCSP
Shifting ǫmoy ǫ = 0 ǫmoy ǫ = 0

GS 0.42 69% 0.44 69%
Clock 0.58 75% 0.33 78%
MinEdge 1.44 44% 0.17 89%
ClockEdge 0.78 64% 0.25 83%

Table 8: Average distances to the best period given by DSP algorithms.

For ST200 architecture, the first and the second optimise the critical part
of the acyclic graph and give the best period for more than 80% of instances.
However, the third and the fourth retimings are more efficient for random
resource demands. This observation confirms the conclusion of [DH00b],
that zero weighted edges minimization is efficient mainly when resources are
very limited, while Gasperoni and Schwiegelsohn heuristic give good results
in the opposite case.

For the acyclic scheduling level, using priorities like longest path or
Zinder-Roper priorities gives significantly better results than a simple as
early as possible algorithm. We compared compaction using this two algo-
rithms without any shifting and their results were almost similar (see. Table
9), with a slight advantage of longest path priorities whose running time is
smaller.

Model ST200 RCCSP
Compaction ǫmoy ǫ = 0 ǫmoy ǫ = 0

liste0 0.72 75% 0.78 64%
liste1 0.14 95% 0.22 78%
liste2 0.06 95% 0.14 89%

Table 9: Comparaison of list algorithms for loop compaction.

As these algorithms are relatively fast, one can properly design a plat-
form implementing them all and choosing the minimal period among the
computed values.

Now we consider the best period given by approximation algorithms con-
sidering only the instances solved by ILP formulations in order to compare
the two approaches. An extract of the corresponding results is given in Table
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10.

Model ST200 RCCSP

Tests reaching λopt 30/361 20/282

Average ratio to λopt 1.03 1.04
Maximal ratio to λopt 1.33 1.21
Average distance to λopt 0.25 0.82
Maximal distance to λopt 3 5

Table 10: Comparaison of DSP solutions to optimal periods computed by
ILP.

We first evaluated the ratio between the period given by DSP algorithms
and the optimal period given by ILP formulation. With a value not greater
than 1.3, it appears that the practical worst case ratio is much lower than the
theoritical one. Also for the random ressource allocations, the average ratio
is below 1.05. Moreover, we can see from these statistics that the optimal
period is reached for more than 82% of instances. For the other instances,
except some critical ones, the distance to the optimal period is equal to
one. This proves that decomposed software pipelining is still an interesting
technique even with complex resource and precedence constraints.

But like any heuristic, DSP algorithms can fall into traps and, for some
of our instances, they might give a period with five time slots more than the
optimal period.

In conclusion, we notice that ILP formulations may induce very long
execution times and could not solve some instances of the problem in a
reasonable time. On the other hand, DSP approach is very efficient in
general, but can have a relatively large deviation from the optimal for critical
instances. However there are opportunities for improvement, and in the next
section, we present a new algorithm to overcome the weaknesses of this two
approachs.

1For (gsm-st231.18), which is not solved by ILP, the period given by DSP is equal to
λmin. Therefore, it is optimally solved and we counted it in the statistics.

2The number 28 is the number of optimally solved instances by ILP formulations for
RCCSP madel.
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5 The hybrid approach

In this section, we propose to combine exact method and approximation
algorithms to exploit the good properties by applying them to problems
they can efficiently solve and to avoid as much as possible their respective
defects.

5.1 Hybrid algorithm

The mean idea is to use an optimal algorithm for loop compaction instead
of an approximation algorithm. So we propose to use the results of the
first level of DSP approach and then the Eichenberger et al. formulation
described in section 3.2 is applied for the second level. We get the following
algorithm:

Algorithm 2: The hybrid approach

1. Find a legal retiming R for G;

2. Compute λR by solving the following system

min

n
∑

i=1

wi(

λ−1
∑

τ=0

τyτi +Riλ)

λ−1
∑

τ=0

yτi = 1,∀i ∈ [1, n]

λ−1
∑

τ=0

τyτi +Riλ+ θji − λωj
i ≤

λ−1
∑

τ=0

τyτj +Rjλ,∀(Oi, Oj) ∈ E

n
∑

i=1

yτi b
s
i ≤ ms,∀s ∈ {1, . . . , k}, τ ∈ [0, λ)

yτi ∈ {0, 1}

3. Define the cyclic schedule σ(R) by:

for 1 ≤ q ≤ N do

for Oi ∈ V do

σq
i (R) = πi + λR(q +Ri) ;

Algorithm 2 replaces the third step of Algorithm 1 by the computation

23



of an exact solution by ILP instead of a list algorithm. Thus it computes for
each operation Oi, the corresponding retiming Ri by one of DSP algorithms.
Then, these values are injected in Eichenberger et al formulation to replace
the variables αi (period in which the first occurrence of operation Oi is
placed in the schedule). Notice that unlike the ILP approach described in
section 3, once a legal retiming is given, the minimization of the period λ can
be solved directly by integer linear programming, without a second criteria
and binary search for the minimal λ.

5.2 Experimental study

This algorithm is computed for the architectures described above and the
corresponding statistics are given in Table 11.

Model ST200 RCCSP
CPU ms sec min > 1h No1 ms sec min > 1h No2

♯Oper ♯Instances

10 - 30 16 16 - - - - 16 - - - -
31 - 60 15 15 - - - - 13 - 2 - -
61 - 100 2 2 - - - - - - 1 1 -
> 100 3 2 1 - - - - - - 1 2

Total 36 35 1 0 0 0 29 0 3 2 2

Table 11: Distribution of instances depending on theirs sizes and computing
times by the hybrid approach.

Compared to ILP formulation results given in Tables 13 and 15, we
notice that there is a significant decreasing in computation time and more
instances are solved.

1Not solved instances.
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Model ST200 RCCSP

Unsolved tests 0/36 2/36
Tests with λ = λopt 36/36 20/28
Mean ratio λ/λopt 1 1.03
Maximal ratio λ/λopt 1 1.21
Mean distance λ− λopt 0 0.62
Maximal distance λ− λopt 0 5

Table 12: Experimental efficiency of the Hybrid approach.

For ST200 architecture, all tests reach the optimal solution, even for the
critical instance that is not solved by ILP formulation, as the period given
by the hybrid approach is equal to the resource bound.

For the random resource allocation architecture (modified instances), the
improvement is seen mainly in the computation time and in the number of
instances solved by this approach compared to ILP formulations. However,
there is almost no difference compared to list algorithms results given in
Table 10. The hybrid approach improves the DSP period by one time slot
for 4 instances, and for the remaining ones, the period is equal to that given
by list algorithms. This proves that list algorithms give very efficient results
for the acyclic level of DSP. On the other hand, the limited efficiency of this
approach in this case may be due to the fact that the retiming does not take
into account the criticality of resources which is more important for this
architecture. This points a little weakness of DSP approach which is based
on the separation into two levels: retime then compact. So, even if we rely
on an optimal algorithm in the second level, the choice of the retiming may
not be the best one for loop compaction.

6 Concluding remarks

This paper reports an experimental study of integer linear programming
(ILP) formulations and Decomposed Software Pipelining (DSP) algorithms
to solve the resource-constrained modulo scheduling problem. The exper-
iments were ran on a set of real instances as well as randomly modified
instances to reach more variability on resource usage. Although experi-
ments had been made separately on both techniques, it is the first time
that the results of DSP algorithms are compared to the real optimum. The
experiments indicate that ILP formulation cannot solve all the problem in-
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stances in reasonable execution time, and that DSP may fail in some cases
to find a really close to optimal solution although the performance of this
approach is very good in terms of execution time and mean deviation to
optimal. To overcome the drawbacks of the two algorithms, we proposed a
new hybrid algorithm based on a combination of the retiming approach and
of ILP formulation. The methods solves fastly the set of industrial instances
to optimality and obtain good solutions on the set of harder instances with
random resource demands. The approach shows however some limits that
suggest that an integration of resource constraints during the retiming phase
as well as the design of a dedicated branch and bound replacing ILP for the
second phase are promising research directions.
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and E. Néron, editors, Resource Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications, Control Sys-
tems, Robotics and Manufacturing Series, pages 267–277. ISTE-
WILEY, 2008. ISBN 978-1-84821-034-9.

[dD04] B. Dupont de Dinechin. From machine scheduling to vliw in-
struction scheduling. ST Journal of Research, 1(2), 2004.

[DH00a] Alain Darte and Guillaume Huard. Loop shifting for loop com-
paction. Lecture Notes in Computer Science, 1863/2000:415–
431, 2000.

27



[DH00b] Alain Darte and Guillaume Huard. Loop shifting for loop com-
paction. Int. J. Parallel Program., 28(5):499–534, 2000.

[Dup07] B. Dupont de Dinechin. Time-indexed formulations and a
large neighborhood search for the resource-constrained modulo
scheduling problem. In P. Baptiste, G. Kendall, A. Munier-
Kordon, and F. Sourd, editors, 3rd Multidisciplinary Interna-
tional Scheduling conference: Theory and Applications. 2007.

[ED97] A. Eichenberger and E.S. Davidson. Efficient formulation for
optimal modulo schedulers. SIGPLAN - PLDI’97, 1997.

[EDA94] A. Eichenberger, E. S. Davidson, and S. G. Abraham. Minimum
register requirements for a modulo schedule. In 27th Annual
International Symposium on Microarchitecture, 1994.

[GM85] M. Gondran and M. Minoux. Graphes et algorithmes. Eyrolles,
1985.

[GS94] Franco Gasperoni and Uwe Schwiegelshohn. Generating close to
optimum loop schedules on parallel processors. Parallel Process-
ing Letters, 4:391–403, 1994.

[HM94] Claire Hanen and Alix Munier. Cyclic scheduling on parallel
processors: An overview. In Philippe Chrétienne, Edward G.
Coffman, Jan Karel Lenstra, and Zhen Liu, editors, Scheduling
theory and its applications. J. Wiley and sons, 1994.

[LS88] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry.
NASA STI/Recon Technical Report N, 89:17797–+, 1988.

[PWW69] A. Pritsker, L. Watters, and P. Wolfe. Multi-project schedul-
ing with limited resources: a zero-one programming approach.
Management Science, 16:93–108, 1969.

[Rau93] B. Ramakrishna Rau. Dynamically scheduled vliw processors. In
MICRO 26: Proceedings of the 26th annual international sym-
posium on Microarchitecture, pages 80–92, Los Alamitos, CA,
USA, 1993. IEEE Computer Society Press.

[Rau94] B. Ramakrishna Rau. Iterative modulo scheduling: an algorithm
for software pipelining loops. In MICRO 27: Proceedings of
the 27th annual international symposium on Microarchitecture,
pages 63–74, New York, NY, USA, 1994. ACM.

28



[RS02] S. Rajagopalan and Malik. Sharad. Resource-Constrained
Project Scheduling: Models, Algorithms, Extensions and Appli-
cations. CRC Press, 2002.

[SBJ99] J. Sankaran, D. Bricker, and S. Juang. A strong frac-
tional cutting-plane algorithm for resource-constrained project
scheduling. International Journal of Industrial Engineering,
pages 99–111, 1999.

[SMD04] M. Smelyanskiy, S. Mahlke, and E.S. Davidson. Probabilistic
predicate -aware modulo scheduling. In International symposium
on Code generation and optimization: feedback-directed and run-
time optimization, 2004.

[ZR98] Y. Zinder and D. Roper. An iterative algorithm for scheduling
unit-time operations with precedence constraints to minimise the
maximum lateness. Annals of Operations Research, 81:321–340,
1998.

29



Table 13: Optimal integer solutions of the industrial instances
Instances PLNE(decomp+) PLNE(direct+)

λ CPUs λ CPUs

adpcm-st231.1 21 14400 21 16235
adpcm-st231.2 40 582362 40 601000
gsm-st231.1 24 0.05 24 0.05
gsm-st231.2 26 79362 26 83991
gsm-st231.5 11 0.05 11 0.05
gsm-st231.6 7 17 7 20
gsm-st231.7 11 0.05 11 0.05
gsm-st231.8 8 0.05 8 0.05
gsm-st231.9 28 0.05 28 0.05
gsm-st231.10 4 0.05 4 0.05
gsm-st231.11 20 0.05 20 0.05
gsm-st231.12 8 0.05 8 0.05
gsm-st231.13 19 1856 19 2023
gsm-st231.14 10 301.25 10 478
gsm-st231.15 8 0.05 8 0.05
gsm-st231.16 16 7520 16 8156
gsm-st231.17 9 0.05 9 0.05
gsm-st231.18 - - - -
gsm-st231.19 8 0.05 8 0.05
gsm-st231.20 6 0.05 6 0.05
gsm-st231.21 18 0.05 18 0.05
gsm-st231.22 18 0.05 18 0.05
gsm-st231.25 16 3652 16 4001
gsm-st231.29 11 12.6 11 15
gsm-st231.30 7 12 7 15
gsm-st231.31 11 47 11 73
gsm-st231.32 15 0.05 15 0.05
gsm-st231.33 15 2365 15 2503
gsm-st231.34 4 0.05 4 0.05
gsm-st231.35 6 0.05 6 0.05
gsm-st231.36 10 27 10 42
gsm-st231.39 8 0.05 8 0.05
gsm-st231.40 10 0.05 10 0.05
gsm-st231.41 18 2356 18 2562
gsm-st231.42 6 0.05 6 0.05
gsm-st231.43 8 0.05 8 0.05
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Table 14: Optimal of feasible integer solutions of the modified instances
(random resource demands)

Instances PLNE(decomp+) PLNE(direct+)
λ CPUs λ CPUs

adpcm-st231.1 - - - -
adpcm-st231.2 - - - -
gsm-st231.1 25 250 25 375
gsm-st231.2 - - - -
gsm-st231.5 36 280 36 299.03
gsm-st231.6 27 152 27 265
gsm-st231.7 41 92 41 115
gsm-st231.8 12 0.27 12 0.31
gsm-st231.9 32 0.56 32 60
gsm-st231.10 8 0.10 8 0.11
gsm-st231.11 24 0.37 24 0.39
gsm-st231.12 13 12.65 13 19
gsm-st231.13 43 985.03 43 1236
gsm-st231.14 33 220 33 252
gsm-st231.15 12 12.36 12 13
gsm-st231.16 - - - -
gsm-st231.17 33 90 33 105
gsm-st231.18 - - - -
gsm-st231.19 15 38.23 15 43
gsm-st231.20 20 123 20 137
gsm-st231.21 30 42.03 30 59
gsm-st231.22 29 80.36 29 112
gsm-st231.25 56 (Gap=1.75%) 604800 - -
gsm-st231.29 42 210 42 513
gsm-st231.30 25 58 25 67
gsm-st231.31 39 142 39 169
gsm-st231.32 30 0.25 30 1.01
gsm-st231.33 52(Gap=8%) 604800 - -
gsm-st231.34 7 5.05 7 8
gsm-st231.35 14 52 14 53
gsm-st231.36 24 230 24 403
gsm-st231.39 21 95 21 168
gsm-st231.40 17 15 17 29
gsm-st231.41 - - - -
gsm-st231.42 18 12 18 17
gsm-st231.43 20 15 20 23
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7 Appendix I - Experimental result tables

Table 15: Periods given by DSP algorithms

Instances Industrial instances Modified instances
λDSP λDSP /λopt λDSP − λopt λDSP λDSP /λopt λDSP − λopt

adpcm-st231.1 21 1 0 80 - -
adpcm-st231.2 41 1,03 1 139 - -
gsm-st231.1 24 1 0 30 1,2 5
gsm-st231.2 26 1 0 93 - -
gsm-st231.5 11 1 0 36 1 0
gsm-st231.6 8 1,14 1 27 1 0
gsm-st231.7 11 1 0 41 1 0
gsm-st231.8 8 1 0 12 1 0
gsm-st231.9 28 1 0 32 1 0
gsm-st231.10 4 1 0 8 1 0
gsm-st231.11 20 1 0 24 1 0
gsm-st231.12 8 1 0 13 1 0
gsm-st231.13 19 1 0 43 1 0
gsm-st231.14 10 1 0 34 1,03 1
gsm-st231.15 8 1 0 12 1 0
gsm-st231.16 16 1 0 59 - -
gsm-st231.17 12 1,33 3 33 1 0
gsm-st231.18 53 1 0 194 - -
gsm-st231.19 8 1 0 15 1 0
gsm-st231.20 6 1 0 20 1 0
gsm-st231.21 18 1 0 30 1 0
gsm-st231.22 18 1 0 29 1 0
gsm-st231.25 16 1 0 55 - -
gsm-st231.29 11 1 0 42 1 0
gsm-st231.30 8 1,14 1 25 1 0
gsm-st231.31 11 1 0 39 1 0
gsm-st231.32 15 1 0 30 1 0
gsm-st231.33 15 1 0 52 - -
gsm-st231.34 4 1 0 8 1,14 1
gsm-st231.35 6 1 0 16 1,14 2
gsm-st231.36 10 1 0 29 1,21 5
gsm-st231.39 8 1 0 23 1,1 2
gsm-st231.40 10 1 0 17 1 0
gsm-st231.41 19 1,06 1 50 - -
gsm-st231.42 6 1 0 19 1,06 1
gsm-st231.43 10 1,11 1 23 1,15 3
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Table 16: Periods given by the hybrid approach for industrial instances
Instances HD retiming GS retiming

λhyb CPUs λhyb CPUs λhyb/λopt λhyb − λopt

adpcm-st231.1 21 0.0007 21 0.0020 1 0
adpcm-st231.2 40 0.0012 41 15.0000 1 0
gsm-st231.1 24 0.0001 24 0.0020 1 0
gsm-st231.2 26 0.0001 26 0.0020 1 0
gsm-st231.5 11 0.0001 11 0.0020 1 0
gsm-st231.6 7 0.0000 7 0.0020 1 0
gsm-st231.7 11 0.0001 11 0.0020 1 0
gsm-st231.8 8 0.0000 8 0.0020 1 0
gsm-st231.9 28 0.0001 28 0.0020 1 0
gsm-st231.10 4 0.0000 4 0.0020 1 0
gsm-st231.11 20 0.0001 20 0.0020 1 0
gsm-st231.12 8 0.0001 8 0.0020 1 0
gsm-st231.13 19 0.0001 19 0.0020 1 0
gsm-st231.14 10 0.0001 10 0.0020 1 0
gsm-st231.15 8 0.0000 8 0.0020 1 0
gsm-st231.16 16 0.0001 16 0.0020 1 0
gsm-st231.17 9 0.0001 12 0.0020 1 0
gsm-st231.18 53 45.0000 53 900.0000 1 0
gsm-st231.19 8 0.0000 8 0.0020 1 0
gsm-st231.20 6 0.0000 6 0.0020 1 0
gsm-st231.21 18 0.0001 18 0.0020 1 0
gsm-st231.22 18 0.0001 18 0.0020 1 0
gsm-st231.25 16 0.0002 16 0.0020 1 0
gsm-st231.29 11 0.0001 11 0.0020 1 0
gsm-st231.30 7 0.0000 7 0.0020 1 0
gsm-st231.31 11 0.0000 11 0.0020 1 0
gsm-st231.32 15 0.0000 15 0.0020 1 0
gsm-st231.33 15 0.0000 15 0.0020 1 0
gsm-st231.34 4 0.0000 5 0.0020 1 0
gsm-st231.35 6 0.0000 6 0.0020 1 0
gsm-st231.36 10 0.0000 10 0.0020 1 0
gsm-st231.39 9 0.0000 8 0.0020 1 0
gsm-st231.40 10 0.0000 10 0.0020 1 0
gsm-st231.41 18 0.0000 18 0.0020 1 0
gsm-st231.42 6 0.0000 6 0.0020 1 0
gsm-st231.43 9 0.0000 11 0.0020 1 0
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Table 17: Periods given by the hybrid approach for modified instances
Instances HD retiming GS retiming

λhyb CPUs λhyb CPUs λhyb/λopt λhyb − λopt

adpcm-st231.1 79 1 day - - - -
adpcm-st231.2 - - - - - -
gsm-st231.1 29 0.0030 28 0.0050 1.12 3
gsm-st231.2 93 1 day - - - -
gsm-st231.5 ? ? ? ? ? ?
gsm-st231.6 27 0.0020 27 0.0050 1 0
gsm-st231.7 41 0.0020 41 0.0050 1 0
gsm-st231.8 12 0.0020 12 0.0050 1 0
gsm-st231.9 32 0.0020 34 0.0050 1 0
gsm-st231.10 8 0.0020 8 0.0050 1 0
gsm-st231.11 24 0.0020 24 0.0050 1 0
gsm-st231.12 13 0.0020 13 0.0050 1 0
gsm-st231.13 43 0.0050 43 5 min 1 0
gsm-st231.14 34 0.0020 34 0.0050 1.03 1
gsm-st231.15 12 0.0020 12 0.0050 1 0
gsm-st231.16 59 600.0000 59 20 min - -
gsm-st231.17 33 0.0020 33 0.0050 1 0
gsm-st231.18 - - - - - -
gsm-st231.19 15 0.0020 15 0.0050 1 0
gsm-st231.20 20 0.0020 20 0.0050 1 0
gsm-st231.21 30 0.0020 30 0.0050 1 0
gsm-st231.22 29 0.0020 29 0.0050 1 0
gsm-st231.25 56 1 h 56 32 min - -
gsm-st231.29 42 0.0020 42 0.0050 1 0
gsm-st231.30 25 0.0020 25 0.0050 1 0
gsm-st231.31 39 0.0020 39 0.0050 1 0
gsm-st231.32 30 0.0020 30 0.0050 1 0
gsm-st231.33 52 15min 52 25 min - -
gsm-st231.34 8 0.0020 8 0.0050 1.14 1
gsm-st231.35 16 0.0020 16 0.0050 1.14 2
gsm-st231.36 29 0.0020 29 0.0050 1.21 5
gsm-st231.39 23 0.0020 23 0.0050 1.1 2
gsm-st231.40 17 0.0020 17 0.0050 1 0
gsm-st231.41 50 0.0020 50 2 min - -
gsm-st231.42 19 0.0020 19 0.0050 1.06 1
gsm-st231.43 23 0.0020 23 0.0050 1.15 3
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