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Smooth Switching H∞ PI Controller for
Local Traffic On-ramp Metering, an LMI

Approach

Antoine Lemarchand ∗ John J. Martinez ∗ Damien Koenig ∗

∗ Control system department, GIPSA-lab, UMR 5216, Grenoble-INP,
France.

Abstract: This paper deals with the design of robust H∞ PI controllers for traffic control. The
uncertain Cell Transmission Model (CTM) used in this article is a switched affine uncertain
system. A robust PI controller is calculated for each mode of the CTM. Since the switching law
contains uncertainties there is chattering issues at switching surface. To deal with this problem,
we propose to use a smooth switching rule. The smooth switching is realized applying a convex
combination of controllers on the system. The choice of the convex combination is motivated
by a statistical analysis of experimental data. The global stability of the closed loop system
is proven by computing a PieceWise Quadratic (PWQ) Lyapunov function. A LMI is given to
calculate the controllers. The approach is illustrated and validated in a study-case simulation.

Keywords: Traffic control, switching theory, uncertain linear systems

1. INTRODUCTION

The amount of vehicles on roads increases every day, and
causes a waste of time and money (Schrank and Lomax
[2007]). With the construction of new roads, traffic control
via on-ramp metering is one of the most explored ways to
deal with this problem. The on-ramp metering aims at the
improving of traffic condition by controlling the inflow of
freeways.
Most of the solution proposed are based on a hierarchical
control scheme (Stephanedes and Chang [1993],Kotsialos
and Papageorgiou [2005]). This architecture is constituted
by the high level (optimization layer) and by the low level
(local controller level).
The high level layer computes the optimal references (con-
centrations) to be tracked by the system. This layer is
usually based on linear programming algorithms (Jacquet
[2008],Jacquet et al. [2008],Gomes and Horowitz [2006]).
These references are open loop calculation based on a nom-
inal model. Due to parametric uncertainties and distur-
bances, the optimal solution computed by this algorithm
can’t be applied directly on the system.
Therefore, we use the low level layer to ensure that the
system really tracks optimal references. In this layer, ref-
erences are locally applied to on-ramps neighborhoods as
shown in Figure 1. Several approaches have been explored
to solve this issue such as ALINEA (Haj-Salem et al.
[2001]), and others such as (Sun and Horowitz [2005],Sun
and Horowitz [2006]). In this article, we focus on the local
regulation layer. We assume that the optimal trajectories
computed by the optimization layer are known. The pa-
rameters of the model are strongly uncertain. The Cell
Transmission Model (CTM) can be extended with a model
of uncertainties (Lemarchand et al. [2010b])(Lemarchand
et al. [2010a]). This model is presented in the form of a
uncertain state dependant switching system. Thanks to
this model, a bank of robust switched PI controller can

be designed (Lemarchand et al. [2010a]). These PI con-
trollers guarantee the attenuation of the H∞ norm of the
transfer function between disturbance and tracking error.
Since the switching rules contain uncertain parameters,
the switching sequence cannot be obtained directly from
the measurements. We propose to use probability functions
to deal with this problem. With this formulation, the
problem is similar to a Takagi-Sugeno model (Johansson
et al. [1999],Feng [2003]).
The paper is organized as follows. A brief presentation
of the uncertain CTM is provided in Section 2. Section 3
presents the study case. Section 4 presents the state space
partition, and the associated probability functions. Section
5 presents the design of robust switched PI controller.
The stability of the closed loop system is proved with a
PieceWise Quadratic (PWQ) Lyapunov function. The H∞
controllers are calculated by solving a LMI optimization
problem. Some simulation results are provided in Section
6. In Section 7, some concluding remarks end the paper.

Fig. 1. Local regulation.



2. UNCERTAIN CTM

The CTM is a discrete first order traffic model. It considers
the road section divided into elementary cells. In each cell,
the density of vehicles ρ(k) is considered homogenous. The
CTM is constituted of cells, junctions, on-ramps and off-
ramps. These elements are depicted in Figure 2. The CTM
is characterized by an equation of conservation for vehicles
and an equation of flow calculation.

Fig. 2. Cell Transmission Model.

2.1 Conservation Equation

For each cells,
ρi(k + 1)=ρi(k) + T

li
(φi(k) + ui(k)− φi+1(k)− φouti+1(k)),

(1)
where ρi(k) (veh/km) is the density of vehicles in cell i,
φi(k) and φi+1(k) (veh/h) are respectively the flow in
junction i and i + 1, ui(k) and φouti+1(k) (veh/h) are
respectively the flow entering and leaving cell i via on/off-
ramps, li is the length of cell i and T is the period of
discretized time.
To guarantee numerical stability, we must choose the
length of cells such that : li < T.vi,∀i = 1, ..., N (N , the
number of cells).

2.2 Flow Calculation

The flow between two cells is the minimum of three
quantities (C. F. Daganzo [1995]).

φi(k) = min(vi−1.ρi−1(k)− φouti+1(k), φMi
,

wi.(ρJi − ρi(k))− ui(k)). (2)

with vi, (km/h) the free flow speed, wi(km/h) the back-
ward congestion propagation speed, ρJi , (veh/km) the jam
density (i.e. maximal density), and φMi

, (veh/h) the max-
imum flow that can travel from upstream to downstream
cell.
Junction modes:
From(2) one can identify the three possible modes of the
junction: A free mode (F) where the flow is proportional
to the upstream cell concentration, a decoupled mode
(D) where the flow is equal to the maximal flow, and a
congested mode (C) where the flow is proportional to the
remaining space in downstream cell. A graphical repre-
sentation of (2) is provided in Figure 3. It is called the
fundamental diagram. This kind of diagram appears in
every traffic issues using macroscopic model (Geroliminis
and Daganzo [2008]).

2.3 Uncertain Fundamental Diagram

The nominal parameters of the fundamental diagram can
be computed using the calibration methods described in

Munoz et al. [2004] with experimental datas 1 . The obtain
diagram contains strong uncertainties. They can be mod-
eled as the following parametric uncertainties (Lemarc-
hand et al. [2010a]):

vi−1(k) = v0i−1 + ∆vi−1(k),
φMi

(k) = φM0i
+ ∆φMi

(k),
wi(k) = w0i + ∆wi(k),

(3)

where v0, φM0 and w0 are respectively the nominal free
flow speed, maximum flow, and backward congestion prop-
agation speed computed thanks to (Munoz et al. [2004]),
and ∆v, ∆φM and ∆w the corresponding uncertainties.
The uncertain fundamental diagram is depicted in Figure
3.

Fig. 3. Fundamental diagram with parametric uncertain-
ties.

2.4 Compact Matrix Form

For a given section of road, the CTM can be written as
a discrete uncertain linear switched system (Lemarchand
et al. [2010a]). Define

α(k) := [α1(k), · · · , αN+1(k)] (4)
where αi(k) ∈ {F,D,C} represents the mode of junction
i.
For all α(k) the dynamics of a freeway section can be
written as an uncertain dynamical system:

ρ(k + 1) = (A0α(k) + Fα(k)∆(k)G).ρ(k)
+aα(k) +Bα(k).u(k) + Eα(k).d(k) (5)

∆(k)T∆(k) < 1 (6)
where ρ(k) = [ρ1(k), ..., ρN (k)] is the state vector of vehicle
densities for each cell, aα(k) a constant, u(k) the on ramp
controlled flows and d(k) a vector of external disturbances.
A0α(k) , Bα(k), Eα(k), Fα(k), G are know matrices of appro-
priate dimensions. Each matrices and vectors are defined
in (Lemarchand et al. [2010a]).

3. STUDY CASE

In this article, we consider the neighborhood depicted in
Figure 4. We consider here that in normal traffic condition
(i.e. without accidents) the different mode of the section
that can occurs are the following:

• case 1 : α(k) = [FFFFFF ]
1 Real time measurements realized on D383 road (near Lyon,
France) provided by DDE69



Fig. 4. On-ramp neighborhood.

• case 2 : α(k) = [FFFFFD]
• case 3 : α(k) = [FFFFCD]
• case 4 : α(k) = [FFFCCD]
• case 5 : α(k) = [FFCCCD]
• case 6 : α(k) = [FCCCCD]

where α(k) is defined by (4).We notate Ω the set of cases.
In case 1, all the junctions of the section are in free mode
(F). Just before congestion appears (case 2) junction 4
switches to decoupled mode (D). Then in case 3, 4, 5 and
6, the congestion propagates backward (i.e. junction 5 to
2 switch to congested mode (C)).

4. PROBABILITY FUNCTIONS

Since there are uncertain parameters on the switching
rules, α(k) can’t be obtained directly from ρ(k). Consider
a junction without off/on-ramps. We take the following
notations:

vMi = v0i + ‖∆vi‖∞
vmi = v0i − ‖∆vi‖∞
wMi = w0i + ‖∆wi‖∞
wmi = w0i − ‖∆wi‖∞

(7)

Then, from (2) junction i is free if
vMi−1ρi−1(k) ≤ wmi(ρJi − ρi(k)), (8)

congested if
vmi−1ρi−1(k) ≥ wMi(ρJi − ρi(k)) (9)

On the partition of state space where both (8) and (9)
are false, the mode of junction i depends on uncertainties.
From their we deduce the subspace where junction i is

Fig. 5. Mode subspaces for junction i.

in free mode (ΨFi), in congested mode (ΨCi) in decou-
pled mode (ΨDi), either free or congested mode (ΨFCi),

either free or decoupled mode (ΨFDi), either decoupled or
congested mode (ΨDCi). These subspace are depicted in
Figure 5. We perform a statistical study of experimental
data to characterize the sub space ΨFCi . The normalized
probability density functions for uncertainties ∆v and ∆w
(defined in equation (3)) obtained are depicted in Figure 6.
The probability to be in a specific mode can be computed
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Fig. 6. Normalized probability density function of ∆v and
∆w.

from these probability density function, doing a convolu-
tion product. We approximate the cumulate probability
density by:

µ(x) =
arctan((x−ab−a − .5).β) + 1

2 ∗ arctan(β/2)
(10)

where a and b are the bound calculated thanks to (8) and
(9), and β a tuning parameter. The comparison between
the normalized cumulate convolution product and the ap-
proximate function (11) is given in Figure 7.

The probability for junction i to be in free, de-
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Fig. 7. Normalized cumulate convolution product, approx-
imation function (β = 8, a = −1, b = 1).

coupled or congested mode are respectively denoted
µFi(ρ), µDi(ρ), µCi(ρ). From (8),(9) and (11) we write:



µCi(ρ) =


0, ifρi < ρmi−1

1, ifρi > ρMi−1

arctan((
ρi−ρmi−1

ρMi−1−ρmi−1
− .5).β) + 1

2 ∗ arctan(β/2)
, otherwise

(11)

ρmi−1 =
wmi
vMi−1

(ρJi − ρi(k)) (12)

ρMi−1 =
wMi

vmi−1

(ρJi − ρi(k)) (13)

Figure 8 depicts µF (ρ) µC(ρ). From their, we can build

Fig. 8. Probability functions, µFi(ρ), µCi(ρ).

the subspaces for each case as an intersection of the
subspaces defined in Figure 5. We define ΨCase3 as the
subspace where the subsystem 3 is active, ΨCase4 as the
subspace where the subsystem 4 is active and ΨCase3,4 as
the subspace where the subsystem 3 or 4 may be active.
They are defined as follows :

ΨCase3 = ΨF1 ∩ΨF2 ∩ΨF3 ∩ΨF4 ∩ΨC5 ∩ΨD6

ΨCase4 = ΨF1 ∩ΨF2 ∩ΨF3 ∩ΨC4 ∩ΨC5 ∩ΨD6

ΨCase3,4 = ΨF1 ∩ΨF2 ∩ΨF3 ∩ΨFC4 ∩ΨC5 ∩ΨD6

(14)

We notate I the set of subspaces. I0 is the set of partitions
containing the origin, I1 = I\I1. We notate κ(Ψi) the
set of subsystem that may be active in subspace Ψi.
The probability to be in Case n is called µn(ρ). It can
be easily define as a product of corresponding individual
probabilities for each junctions. Remark that:

µn(ρ) = 0, ρ ∈ Ψi, n 6∈ κ(Ψi) (15)

µn(ρ) 6= 0, ρ ∈ Ψi, n ∈ κ(Ψi) (16)∑
n∈κ(Ψi)

µn(ρ) = 1 (17)

5. REGULATOR DESIGN

We propose to design a smooth switching PI controller.
A PI controller is designed for each case of Ω. Then a
convex combination of these PI controllers is applied on
the system. The convex combination is calculated with

the probabilities defined in the previous section. To design
the controllers that ensure the attenuation of disturbances,
the system has to be extended with an integrator (Section
5.1). To ensure stability of the closed loop system, we have
to compute a PWQ Lyapunov function (Section 5.2). The
final LMI formulation with the H∞ attenuation criteria is
presented in Section 5.3.

5.1 Extended system

We extend our system with an integrator. To keep the
stabilizability property of the system, we can only extend
one state of the system with an integrator. For the case 1
and 2, we choose to extend the system with an integrator
on ε5(k) (where ε5(k) = ρ5(k)− ρ∗5(k)) . For the case 3 to
6, we choose to extend the system with an integrator on
the density of the cell where the congestion front stand
(respectively ε4(k) to ε1(k)). So, the new state vector
becomes

X(k) =
(
ρ(k)
z(k)

)
(18)

with:

z(k + 1) = z(k) +


ε5(k) , if case 1 or 2
ε4(k) , if case 3
ε3(k) , if case 4
ε2(k) , if case 5
ε1(k) , if case 6

(19)

The extended system is described in a compact form as
follows:

X(k + 1) = (Aaα(k) + Faα(k) .∆(k).Ga).X(k)
+aα(k) +Baα(k) .u(k) + Eaα(k) .w(k)

Z(k) = Caα(k) .X(k)
(20)

where Z(k) is the tracking error of the cell where conges-
tion front stands.
For convenient notation, we also introduce:

Āaα(k) =
(
Aaα(k) aα(k)

0 0

)
F̄aα(k) =

(
Faα(k)

0

)
Ḡa = (Ga 0)

B̄aα(k) =
(
Baα(k)

0

)
Ēaα(k) =

(
Eaα(k)

0

)
C̄aα(k) =

(
Caα(k) 0

)
X̄(k) =

(
X(k)

1

)
5.2 PWQ Lyapunov Function

To ensure that the system is globally stable, we have to find
a candidate lyapunov function. Since a global Lyapunov
function can’t be found, we build a piecewise quadratic
Lyapunov function. On this purpose, we have to ensure
continuity at each bound of subspaces defined in (14).
These bounds are represented in continuous lines in Figure
5.



(Johansson and Rantzer [1998]) proposes the following
approach.
Proposition 1. Choose a candidate Lyapunov function of
the form:

V (X) =
{
XTPΨiX, ∀X ∈ Ψi, i ∈ I0
X̄T P̄ΨiX̄, ∀X ∈ Ψi, i ∈ I1

(21)

with I0 the set of partitions containing the origin, I1 =
I\I0 and where Pi is chosen as follows:

PΨi =
{
LTi TLi, ∀X ∈ Ψi, i ∈ I0
L̄Ti T L̄i, ∀X ∈ Ψi, i ∈ I1

(22)

If

L̄iX̄ = L̄jX̄, ∀X ∈ Ψi ∩Ψj , i, j ∈ I (23)

L̄i =
(

Li
0 · · · 0

)
, ∀i ∈ I0 (24)

Then V (X) is continuous along all bounds of the parti-
tioned state space.

The problem is now to compute matrices L̄i, i ∈ I. An
efficient approach to compute theses matrices is presented
in (Johansson et al. [2000]).
According to Figure 5, the partitioned state space for a
junction contains 7 bounds. Depending of the junction
characteristics, some of these bounds may not cet crossed.
Ensuring the continuity at each bounds may be conserva-
tive and may increase the problem size.
First, we consider a junction with no on/off-ramps, the
system can only cross 2 bounds (ΨFi ∩ΨFCi and ΨFCi ∩
ΨCi). A typical trajectory of the system in this case (τFC)
is represented in Figure 5. We start by computing L̄1ΨFi
and L̄1ΨFCi (for junction i) such that

L̄1ΨFi

(
ρi−1

ρi
1

)
= L̄1ΨFCi ,∀

(
ρi−1

ρi

)
∈ ΨFi ∩ΨFCi (25)

This condition will ensure continuity of the Lyapunov
function at the bound ΨFi∩ΨFCi defined by the equation:

vMi−1ρi−1 + wmiρi = wmiρJi (26)
(see Figure 5). As demonstrated in (Johansson and
Rantzer [1998]) the constraint matrices can be computed
as

L̄1ΨFi =
(

0 0
0 I2

)
εΨFi(υεΨFi)

−1

(
C 0
0 1

)
,

L̄1ΨFCi =
(

0 0
0 I2

)
εΨFCi(υεΨFCi)

−1

(
C 0
0 1

)
,

with

υ =

(
0 wmiρJi

wMi
vMi−1

vmi−1

ρJi

1 1 1

)
C = (vMi−1 wmi)

εΨFi =

(1 0
0 1
0 0

)
, εΨFCi =

(0 0
1 0
0 1

)
Using the same procedure, we are able to compute L̄2ΨFCi
and L̄2ΨCi such that

L̄2ΨFCi

(
ρi−1

ρi
1

)
= L̄2ΨCi ,∀

(
ρi−1

ρi

)
∈ ΨFCi ∩ΨCi.(27)

This condition will ensure continuity of the Lyapunov
function at the bound ΨFCi∩ΨCi defined by the equation:

vmi−1ρi−1 + wMi
ρi = wMi

ρJi (28)
Then, taking:

L̄ΨFi =
(
L̄1ΨFi

L̄2ΨFCi

)
(29)

L̄ΨFCi =
(
L̄1ΨFCi

L̄2ΨFCi

)
(30)

L̄ΨCi =
(
L̄1ΨFCi

L̄2ΨCi

)
(31)

(23) holds at all bounds crossed by the system trajectories
τFC .
For a junction containing an on-ramp, the continuity of
the Lyapunov function has to be ensured at 3 bounds
(ΨFi∩ΨFDi,ΨFDi∩ΨDCi,ΨDCi∩ΨCi). Using the previous
procedure, we can calculate L̄ΨFi ,L̄ΨFDi ,L̄ΨDCi and L̄ΨCi
that ensure the continuity of the Lyapunov function.
The constraint matrices for a system with several junctions
can be computed as follows:

L̄ΨFi∩ΨCi+1 =


L̄ΨFi

0
...
0

0
...
0
L̄ΨCi+1


(32)

5.3 LMI Formulation

Proposition 2. if ∃ T > 0 and en > 0, Un, n ∈ Ω such that:
(33) holds for all Ψi ∈ I0, n ∈ κ(Ψi),
(34) holds for all Ψi ∈ I1, n ∈ κ(Ψi),
The LMI’s (33) and (34) are defined at the top of next
page.
Then:

• The extended system (20) is stable under state feed-
back u(k) = −

∑
µn(X(k))KnX(k),Kn = UnT ,

• The H∞ norm of the transfert function between w(k)
and Z(k) is bounded by γ

Proof We write the proof for (33) i.e. for Ψi ∈ I0, k ∈
κ(Ψi). We write the following H∞ attenuation criteria:

X(k + 1)TPΨiX(k + 1)−X(k)TPiX(k)
+Z(k)TZ(k)− γ2w(k)Tw(k) < 0

(35)

Taking Aan −BanKn = Γn, (35) is equivalent to(
Π1

11 Π1
21

∗ ETanL
T
i TLiEan − γ2I

)
< 0 (36)

Π1
11 = (Γn + Fan .∆(k).Ga)TLTi TLi(Γn + Fan .∆(k).Ga)

−LTi TLi + CTnCn

Π1
21 = (Γn + Fan .∆(k).Ga)TLTi TLiEan




−T−1LT

i − LiT
−1 + T−1 0 T−1AT

an
LT

i − UT
n B

T
an
LT

i T−1CT
n T−1GT

a

∗ −γ2I ET
an
LT

i 0 0

∗ ∗ −T−1 + εnLiFanF
T
an
LT

k 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εnI

 < 0 (33)


−T−1L̄T

i − L̄iT
−1 + T−1 0 T−1ĀT

an
L̄T

i − UT
n B̄

T
an
L̄T

i T−1C̄T
n T−1ḠT

a

∗ −γ2I ĒT
an
L̄T

i 0 0

∗ ∗ −T−1 + εnL̄iF̄an F̄
T
an
L̄T

i 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εnI

 < 0 (34)

Applying Schur complement, we obtain the following in-
equality:−LTi TLi + CTnCn 0 (Γi + Fak .∆(k).Ga)TLTi

∗ −γ2I ETanL
T
i

∗ ∗ −T−1

 < 0

(37)
Using majoration lemma, (37) holds if ∃εn > 0 such that:−LT

i TLi + CT
nCn

+ε−1
n GT

aGa
0 ΓT

nL
T
i

∗ −γ2I ET
anL

T
i

∗ ∗ −T−1 + εnLiFanF
T
an
LT

i

 < 0 (38)

Multiplying on both side by

T−1 0
I

0 I

 and applying

twice Schur complement, the following inequality is ob-
tained:

−T−1LT
i TLiT

−1 0 T−1ΓT
nL

T
i T−1CT

n T−1GT
a

∗ −γ2I ET
an
LT

i 0 0

∗ ∗ Π2
33 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εnI

 < 0(39)

Π2
33 =−T−1 + εnLiFanF

T
anL

T
i

Since −T−1LTi TLiT
−1 ≤ −T−1LTi − LiT−1 + T−1. Then

(39) is implied by
−T−1LT

i − LiT
−1 + T−1 0 T−1ΓT

nL
T
i T−1CT

n T−1GT
a

∗ −γ2I ET
anL

T
i 0 0

∗ ∗ Π2
33 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −εnI

 < 0

Taking Un = KnT
−1, LMI (33) is obtained. Then using

Theorem 1 in (Johansson et al. [1999]), the proof is
completed. The proof is similar for (34).

6. SIMULATION RESULTS

For simulation, we take the on-ramp neighborhood de-
picted in Figure 4. We choose the following cell parameters
(cells are homogenous):

• Cell length l = 0.3km
• Free flow speed v = 80km/h± 5%
• Backward congestion speed v = 35km/h± 15%
• Maximum flow φM = 7000km/h± 8%

These parameters values and uncertainties ranges are cho-
sen according to experimental data.

Fig. 9. Switching PI controller

In the scenario we have chosen, the system has to track a
congestion front which propagates backward then forward.
The system goes from case 1 to case 5 via all the interme-
diate cases, after that it goes back to case 1. In Figure 9
the controller is chosen according to the nominal switching
rule. We can see that the system is following the congestion
front despite parametric uncertainties and disturbance.
But we can notice that the on-ramp flow is not continuous
at switching instant. Moreover some chattering problem
appear when system switches from case 3 to case 2 and
from case 3 to case 4.
In Figure 10 the controller is calculated as a convex

combination. Figure 10(b) represent the obtain convex
combination, the dashed lines represent the case calculated
with extremum values of the uncertainties (equation (7).
We can see that the system still follows the congestion
front despite parametric uncertainties and disturbance.
Moreover, the continuity of the on-ramp flow is ensured,
and there’s no switching issues.

7. CONCLUSIONS

In this paper, we have studied a switching system that
contains uncertainties in the switching rule. We apply a
convex combination of different controllers on the uncer-
tain subspaces. This choice is motivated by a statistical
analysis of experimental data. The set of controllers is cal-
culated by LMI resolution. The simulation results show the
efficiency of the proposed approach. The LMI condition



Fig. 10. Smooth Switching PI controller

may be conservative. As a future work, we can consider
the relaxation of the LMI condition.
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