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Raman laser pulses are used to induce coherent tunnelling between neighbouring sites of a vertical
1D optical lattice. Such tunneling occurs when the detuning of a probe laser from the atomic
transition frequency matches multiples of the Bloch frequency, allowing for a spectroscopic control of
the coupling between Wannier Stark (WS) states. In particular, we prepare coherent superpositions
of WS states of adjacent sites, and investigate the coherence time of these superpositions by realizing
a spatial interferometer. This scheme provides a powerful tool for coherent manipulation of external
degrees of freedom of cold atoms, which is a key issue for quantum information processing.
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Trapping and manipulating cold neutral atoms in an
optical lattice offers high controllability and robust quan-
tum coherence properties, which makes it an attractive
system for many applications such as quantum simulation
of solid state systems [1], metrology [2, 3], and quantum
information processing (QIP) [4]. One key issue in this
context is the possibility to coherently control the atoms
internal and external degrees of freedom. Combined with
the possibility to address single sites [5], this allows for
the realization of quantum logic operations [6].

Atom transport control in an optical lattice has been
previously reported using microwave fields [7], frequency,
phase and amplitude modulation techniques [8–10], or
an adiabatic change of the trapping potential [11, 12]. In
this work, we demonstrate coherent laser induced tunnel-
ing of cold atoms between neighboring sites of an optical
lattice. In contrast with most previous approaches, our
technique doesn’t require any modification of the trap-
ping potential. It allows an unprecedent control of the
atom’s external degrees of freedom (displacing the atoms
by 1 to 9 lattice periods in this work) in a system showing
good coherence properties (up to 1 s).

Our system consists in laser-cooled 87Rb atoms in the
first band of a vertical one-dimensional optical lattice.
Due to earth gravity, the ground energy levels of the lat-
tice are shifted out of resonance. For a sufficiently large
lattice depth Ul, tunneling is highly reduced, leading to a
ladder of localized Wannier-Stark (WS) eigenstates sepa-
rated by the Bloch frequency νB = magλl/2h. Here, ma

is the atomic mass, g is the gravity acceleration, λl/2 is
the distance between two adjacent lattice sites, and h is
the Planck constant. The WS states |Wm〉 are indexed
by the discrete quantum number m characterizing the
well containing the center of the wave function 〈x |Wm〉.

We use counterpropagating Raman beams to drive co-
herent transitions between the ground and excited hy-
perfine levels |g〉 =

∣

∣52S1/2, F = 1,mF = 0
〉

and |e〉 =
∣

∣52S1/2, F = 2,mF = 0
〉

. Such a transition implies a
momentum transfer of keff = k1 + k2 ≈ 4π/(780
nm) that couples the WS states either in the same
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FIG. 1: Atoms in the first band of the lattice form a Wannier-
Stark ladder of eigenstates. The Raman probe laser couples
the ground to the excited hyperfine level in the different WS
states separated by the Bloch frenquency.

well or in neighboring wells, with a coupling strength
proportional to 〈Wm| eikeffx |Wm±∆m〉. Fourier-limited
widths of the resonances over excitation times larger
than the Bloch period allows resolved intersite transi-
tions |g,m〉 → |e,m±∆m〉, at Raman frequencies :

νR = νHFS ±∆m× νB

where νHFS is the hyperfine splitting and ∆m is the num-
ber of lattice wells separating the two coupled WS states.
The energy spectrum of our system is schematically illus-
trated in Fig. 1.
Coupling between neighboring wells can be efficiently

tuned using the lattice depth when kl is close to keff ,
where kl is the optical lattice wave vector [13]. We there-
fore use a mixed trap configuration with a blue detuned
lattice generated by a single mode frequency doubled
Nd:YVO4 laser (λl = 532 nm, beam waist 600 µm) that
provides only vertical longitudinal confinement, super-
posed with a red detuned (λ = 1064 nm, beam waist
200 µm ) Yb fiber laser providing transverse confine-
ment (see Fig. 2). To load this dipole trap, we first
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FIG. 2: Experimental setup for the optical trapping and Ra-
man intersite transitions. The different beams are superposed
using dichroic mirrors. The Raman beams are also superposed
and one of them is retro-reflected to allow counterpropagating
transitions.

accumulate up to 107 atoms in a 3D-Magneto-Optical
trap (MOT) fed by a 2D-MOT. The cloud is then cooled
down to 2 µK by a far detuned molasses, at the end
of which we switch off the lasers to let the untrapped
atoms fall. At our low lattice depth (Ul ≃ 4ER (where
ER = (h̄kl)

2/(2ma) is the lattice recoil energy), only
the first band has a non-negligible lifetime and is popu-
lated with about 105 atoms vertically distributed along
104 sites (the second band is centered at 5ER already
above the lattice depth). The atoms accumulated in all
the Zeeman sublevels of

∣

∣52S1/2, F = 2
〉

are depumped

to
∣

∣52S1/2, F = 1
〉

and then optically pumped (95% ef-

ficiency) on the
∣

∣52S1/2, F = 1
〉

→
∣

∣52P3/2, F = 0
〉

tran-

sition to the
∣

∣52S1/2, F = 1,mF = 0
〉

Zeeman sublevel,
which is sensitive to stray magnetic fields only to second
order. The remaining 5% unpolarized atoms can easily
be removed from the trap with a pushing beam. Our
fluorescence detection scheme, based on a time of flight
measurement similar to the one used in atomic clocks and
inertial sensors, allows us to measure the atomic popula-
tions in the two hyperfine states after releasing the atoms
from the trap [14]. The Raman transitions are driven by
two counterpropagating beams at 780 nm circularly po-
larized, detuned from the atomic transition by about 3
GHz, and aligned along the direction of the optical trap
beams. The beams are collimated with a 1/e2 radius of
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FIG. 3: Raman spectra for two different lattice depths, show-
ing evidence of transitions between up to 9 neighboring lat-
tice sites, each having a different Rabi frequency according to
equation 1. The excitation time is 10 ms, which is smaller
than the duration of a π pulse for each transition. The peaks
are separated by the Bloch frequency of our system νB ≈ 569
Hz.

1 cm, ensuring a good intensity homogeneity along the
transverse size of the trap (about 200 µm radius).
Fig. 3 shows two typical Raman spectra of the tran-

sition probability as a function of the Raman frequency
νR, taken for two different lattice depths. Transitions
between the two hyperfine levels at Raman frequencies
equal to the hyperfine splitting plus or minus an inte-
ger number ∆m of Bloch frequencies (νB ≈ 569 Hz in
our system) are the signature that the atoms actually
tunneled across ∆m lattice sites. For those scans, the
intensities in the Raman laser beams were 0.25 and 0.54
mW/cm2. The resulting Rabi frequencies Ω∆m, different
for each transition, are always smaller than the Bloch
frequency, so that each peak is well resolved. The ratio
between the Raman intensities was chosen to cancel the
differential light shift of the hyperfine transition induced
by them [15]. The Rabi frequency for each transition ∆m
is written [16]:

Ω∆m = ΩUl=0 〈Wm| e−ikeffx |Wm±∆m〉 (1)

where ΩUl=0 is the Rabi frequency in free space. Due
to the translational symmetry of the WS states, Ω∆m

doesn’t depend on the initial well index m but only on
the absolute value of ∆m [16]. It also depends on the lat-
tice wavelength λl and depth Ul, which is an important
feature of this experiment, as it induces a spatial inhomo-
geneity on the Rabi frequency seen by the trapped atoms
via the transverse inhomogeneity of the lattice depth in
the trap. The damping induced on the Rabi oscillations
by this inhomogeneity is the main limitation on the trans-
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FIG. 4: Calculation of the normalized Rabi frequencies for
∆m = ±1, ∆m = ±2 and ∆m = ±3 transitions, as a function
of the lattice depth. Inset : Experimental Rabi oscillations
on the transition ∆m = −3, for Ul = 4ER and Ul = 3ER.

fer efficiency of the Raman transitions.

We calculated Ω∆m for the parameters of our system,
as a function of Ul and for various values of ∆m. The
result is shown in Fig. 4 for ∆m = ±1, ∆m = ±2 and
∆m = ±3. To limit the lattice depth inhomogeneity due
to the transverse extension of the atomic cloud, the 1/e2

waist of the beam providing transverse confinement is
smaller than the one of the lattice beam. Moreover, we
can choose to tune the lattice depth at a value where,
for a transition of interest, the variation of the coupling
with lattice depth ∆Ω(Ul)/∆Ul is small, as illustrated
by the inset of Fig. 4. On this graph, we compare the
shape of Rabi oscillations at resonance for the ∆m = −3
transition and for two different lattice depths. Besides a
difference in the period of the Rabi oscillations, we ob-
serve that the best contrast is obtained for Ul ≃ 4ER,
where the coupling inhomogeneity is lower, allowing us
to reach a transfer efficiency of about 80 %. The lattice
depth is estimated by measuring the Rabi frequencies for
different transitions and comparing them to the calcula-
tion.

We investigated the question of the coherence time of
the trapped states. As a diagnosis tool, we performed
Ramsey spectroscopy on the |g,m〉 → |e,m+ 3〉 transi-
tion. As there is no initial atomic coherence from one
site to it’s neighbors, the atoms distributed in many lat-
tice sites can be treated as independent interferometers.
The phase is read out by the measurement of the internal
atomic state population. Our interferometer consists in
two Raman π/2 pulses of frequency νR scanned close to
νHFS+3νB, separated by a time interval T . The intensity
of the Raman lasers was chosen for the Rabi frequency
Ω∆m=3/2π to be much smaller than νB , in order to en-
sure a good separation with neighboring transitions. The
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FIG. 5: Contrast of the interferometer versus Ramsey inter-
rogation time T . Open circles (resp. black squares) display
the contrast without (resp. with) the light shift compensation
beam.

duration of the π/2 pulses is then τπ/2 = 5.5 ms. Fig.
5 shows as open circles the evolution of the contrast as
we increase the interrogation time T . The contrast at
short T is about 65%, which is coherent with the 80%
efficiency of each of the two Raman π/2 pulses. When
increasing T , the contrast decreases rapidly, which is due
to the transverse inhomogeneity of the differential light
shift induced on the hyperfine transition by the Gaussian
profile of the IR laser used for transverse trapping [17].
This position dependent frequency shift induces an in-
homogeneous broadening along the transverse direction,
which is the main effect limiting the coherence lifetime
in the lattice trap.

Many schemes have been proposed and demonstrated
to cancel this source of inhomogeneous dephasing in an
optical trap [18–20]. One particularly efficient method in
our case is to add a low power laser beam, mode matched
with the transverse trapping beam, and whose frequency
is tuned between the two hypefine levels, as reported in
[21]. This beam compensates the differential ligthshift in-
duced by the transverse trapping light with a laser power
of only a few tens of nW, so that decoherence due to pho-
ton scattering is negligible at the experiment’s time scale.
In practice, we use as a compensating beam a fraction of
one of the two Raman beams, with an additional de-
tuning of 80 MHz in order to prevent undesired Raman
transitions. This beam is superposed with the IR laser
(see Fig. 2), and its size, position and power are adjusted
to optimize the contrast of the interferometer for long in-
terrogation times of several hundreds of milliseconds, for
which otherwise the contrast is zero. In our case, for
an IR power of about 2 W, the differential light shift is
compensated with a power of 12 nW. Fig. 5 displays as
black squares the evolution of the contrast vs T with the
compensating beam, and clearly shows the improvement
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of the lifetime of the coherence.
Finally, as a preliminary investigation, we evaluated

the frequency sensitivity of the interferometer. This is
motivated by the possibility to use this trapped atomic
spatial interferometer for metrology applications such as
gravimetry or short range forces measurement [22]. We
locked the Raman lasers frequency difference to the cen-
ter fringe of the interferometer, with a computer con-
trolled servo integrator. Performing the measurement al-
ternatively on the left and right transitions (∆m = ±3)
and calculating the difference of the measured frequencies
allows us to measure 6νB while cancelling the frequency
shifts of the hyperfine clock frequency, due to, for ex-
ample, the quadratic zeeman effect and the differential
lightshifts induced by the trapping lasers. For an interro-
gation time of T = 400 ms and a cycle time of Tc = 1.4 s,
the Allan standard deviation of the frequency difference
decreases as 0.1 Hz.τ−1/2 with τ the integration time in
seconds. This corresponds to a statistical uncertainty on
the measurement of the Bloch frequency of 6 × 10−5 in
relative value after 1 s integration.
Our Wannier-Stark interferometer shows great poten-

tial for metrology applications. As an example, we
plan to perform it close to the reflecting surface of the
lattice, which would allow the measurement of short
range forces (Casimir-Polder, short range modifications
of gravity)[13]. The statistical uncertainty in the mea-
surement of the Casimir-Polder potential, assuming the
performance demonstrated here, would reach 1% for a
distance of 5 µm and a measurement time of 1000 s.
The technique for controlled and coherent transport

of atoms demonstrated in this work is unique in terms
of versatility. The high resolution reachable by the Ra-
man transitions (up to 1 Hz) suggests the possibility of
selectively addressing one single lattice site, using for ex-
ample the lightshift induced by a focused laser to lift the
degeneracy between the transitions. Although demon-
strated here for a thermal cloud, this technique is per-
fectly suitable for degenerate quantum gases. Besides,
it also works with one photon transitions, as recently
highlighted in [23]. All these features make this tool a
potential candidate for the realization of quantum logic
operations.
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