
HAL Id: hal-00568866
https://hal.science/hal-00568866

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Verification for Component-based
Systems and Application

Marius Bozga, Saddek Bensalem, Thanh-Hung Nguyen, Joseph Sifakis

To cite this version:
Marius Bozga, Saddek Bensalem, Thanh-Hung Nguyen, Joseph Sifakis. Compositional Verification
for Component-based Systems and Application. IET Software, 2010, 4 (3), pp.181-193. �10.1049/iet-
sen.2009.0011�. �hal-00568866�

https://hal.science/hal-00568866
https://hal.archives-ouvertes.fr

Compositional Verification for Component-based Systems

and Application∗

Saddek Bensalem Marius Bozga Thanh-Hung Nguyen Joseph Sifakis

Verimag Laboratory, Université Joseph Fourier Grenoble, CNRS.

November 7, 2009

Abstract

We present a compositional method for the verification of component-based systems de-

scribed in a subset of the BIP language encompassing multi-party interaction without data

transfer. The method is based on the use of two kinds of invariants. Component invariants

are over-approximations of components’ reachability sets. Interaction invariants are global

constraints on the states of components involved in interactions. The method has been im-

plemented in the D-Finder tool and has been applied for checking deadlock-freedom. The

experimental results on non-trivial examples show that our method allow either to prove

deadlock-freedom or to identify very few deadlock configurations that can be analyzed by

using state space exploration.

1 Introduction

Compositional verification techniques are used to cope with state explosion in concurrent systems.

The idea is to apply divide-and-conquer approaches to infer global properties of complex systems

from properties of their components. Separate verification of components limits state explosion.

Nonetheless, components mutually interact in a system and their behavior and properties are

inter-related. This is a major difficulty in designing compositional techniques. As explained in [1],

compositional rules are in general of the form
∗This work has been partially supported by EU 7th Framework Programme IST STREP 215543 COMponent-

Based Embedded Systems design Techniques COMBEST

1

B1 < Φ1 >, B2 < Φ2 >, C(Φ1,Φ2,Φ)

B1‖B2 < Φ >

(1)

That is, if two components with behaviors B1, B2 satisfy local properties Φ1, Φ2 respectively,

and C(Φ1,Φ2,Φ) is some condition taking into account the semantics of parallel composition

operation and relating the local properties with the global property, then the system B1‖B2

resulting from the composition of B1 and B2 will satisfy a global property Φ.

We present here a different approach for compositional verification of invariants based on the

following rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧Ψ ⇒ Φ

‖γ{Bi}i < Φ >

(2)

This rule allows to prove invariance of Φ for systems obtained by using a n-ary parallel com-

position operation parameterized by a set of interactions γ. It uses global invariants which are

the conjunction of local invariants of components Φi and an interaction invariant Ψ. The lat-

ter expresses constraints on the global state space induced by interactions between components.

Interaction invariants are computed automatically from abstractions of the system to be verified.

The paper provides a method derived from the rule (2) for automated verification of component-

based systems described in a subset of the BIP (Behavior-Interaction-Priority) language [2]. In

BIP, atomic components are automata extended with data and functions written in C. Moreover,

parallel composition is parameterized by n-ary interactions extended with data transfer and by

priority rules. Here, we restrict ourselves to BIP systems where interactions are pure synchro-

nizations, that is, without data transfer between atomic components. Also, we do not consider

priority rules. The main results are the following:

• We provide heuristics for computing sequences of increasingly stronger component invariants.

Component invariants are over-approximations of the set of the reachable states and are

generated by simple forward static analysis. When proving invariance of a property fails,

it is possible to find stronger global invariants by computing stronger component invariants

and consequently, stronger interaction invariants, as shown below.

• We provide heuristics for computing interaction invariants. Interaction invariants are com-

puted automatically from abstractions of the system. These abstractions are the composi-

2

tion, according to interactions, of finite state abstractions Bα
i of the components Bi with

respect to their invariants Φi. They can be represented as a Petri net whose transitions

correspond to interactions between components. Interaction invariants correspond to traps

[3] of the Petri net and are computed symbolically as solutions of a set of boolean equations.

• We present an implementation and application of the method in the D-Finder tool for ver-

ification of deadlock-freedom. D-Finder takes as input BIP programs and progressively

eliminates potential deadlocks by generating increasingly stronger invariants. For this, it

cooperates tightly with three tools: Omega [4] for quantifier elimination occuring in com-

putation of finite state-abstractions, CUDDs [5] for symbolic computation of interaction

invariants and Yices [6] for checking satisfiability of predicates. It is also connected to the

state space exploration tool of the BIP platform, for finer analysis when the heuristic fails

to prove deadlock-freedom. We provide non trivial examples showing the capabilities of

D-Finder as well as the efficiency of the method.

Related work

There are mainly two approaches for verifying compositionally invariance properties of infinite-

state systems, respectively, assume-guarantee and deductive approaches.

The assume-guarantee approach relies on the asymmetric decomposition of properties into two

parts. One is an assumption about the global behavior of the environment of the component; the

other is a property guaranteed by the component when the assumption about its environment

holds. This approach has been extensively studied (see for example [7, 8, 9, 10, 11, 12, 13, 14]),

however, many issues make the application of assume-guarantee rules difficult. These are discussed

in detail in a recent paper [15] which provides an evaluation of automated assume-guarantee tech-

niques. The main difficulties are finding decompositions into sub-systems and choosing adequate

assumptions for a particular decomposition.

Our method differs from assume-guarantee methods in that it avoids combinatorial explosion

of the decomposition and is directly applicable to systems with multiparty (not only binary)

interactions. Furthermore, it needs only guarantees for components. It replaces the search for

adequate assumptions for each component by the use of interaction invariants. These can be

computed automatically from given component invariants (guarantees). Interaction invariants

correspond to a “cooperation test” in the terminology of [16] as they allow to eliminate product

states which are not feasible by the semantics of parallel composition.

3

Deductive methods for proving invariance properties of transition systems are based on a proof

rule which can be formulated as follows. To prove that some given predicate Φ is an invariant of

a given program S i.e., that every reachable state of S satisfies Φ, it is necessary and sufficient

to find an auxiliary predicate Φaux with the following properties: 1) Φaux is stronger than Φ, 2)

Φaux is preserved by every transition of S i.e., for every states s and s′, if s satisfies Φaux and s′

is reachable from s by a transition, then s′ also satisfies Φaux, and 3) Φaux is satisfied by every

initial state of S.

As shown e.g., in [17], this rule is sound and (relatively) complete for proving invariance prop-

erties of transition systems. It is very important to understand that the completeness result/proof

of this rule does not give a clue of how to find the auxiliary predicate. Indeed, choosing the set

of reachable states Reach(S) as auxiliary predicate reduces the original problem to the checking

of the first premise. Moreover, if S is a finite-state system the predicates can be expressed in

propositional logic and checking the premises can be done algorithmically. However, in general,

one needs an assertion language which is at least as expressive as integer arithmetic to express

predicates, which makes checking the premises of the rule undecidable. Even worse, there are

systems for which Reach(S) is expressible using closed formula over integers yet computing such

a representation cannot be done effectively.

The deductive rule provides only a partial answer to the verification of invariance properties.

It leaves open (i) how to find the auxiliary predicate Φaux and (ii) how to prove that Φaux is

preserved by every transition of S and satisfied by the initial states. Problem (ii) is related to

the problem of proving tautologies of the underlying assertion language. We argue that our rule

(2) can be easily seen as an instance of the proof rule of the deductive approach. But in our case

we describe techniques for dealing with problem (i) as well i.e., how to automatically generate

auxiliary predicates.

Organization of the paper

The paper is organized as follows. Section 2 introduces the basic definitions about BIP and

invariants. The method for computing component invariants and the corresponding interaction

invariants is presented in Section 3. Section 4 presents the application of the method for checking

deadlock-freedom including a description of D-Finder and experimental results. Section 5 presents

concluding remarks and future work.

Throughout the paper, we use the Temperature Control System from [18] as a running example

4

to illustrate all the new introduced concepts and the verification method.

Example 1 (Temperature Control System) [18] This system controls the coolant tempera-

ture in a reactor tank by moving two independent control rods. The goal is to maintain the coolant

between the temperatures θm and θM . When the temperature reaches its maximum value θM , the

tank must be refrigerated with one of the rods. The temperature rises at a rate vr and decreases at

rate vd. A rod can be moved again only if T time units have elapsed since the end of its previous

movement. If the temperature of the coolant cannot decrease because there is no available rod, a

complete shutdown is required.

2 Models, Invariants and their Properties

In this section, we present the basic model for the BIP framework as well as the notion of invariant.

2.1 Basic model for BIP

The BIP component framework [2] is based on a 3-tier architecture, the layers being behavior,

interaction and priority, where:

1. Behavior describes the dynamic behavior of atomic components. It consists of a set of

extended transition systems. Each transition has a port, a guard and a function. Guards are

conditions depending on local state. Ports characterize the component’s ability to interact

with a given environment.

2. Interactions describe architectural constraints on behavior. They define joint state changes

of composed components used to coordinate their execution.

3. Priorities provide a mechanism for restricting the global behavior of the layers underneath by

filtering amongst possible interactions. They help reducing non-determinism in the execution

of the interactions between the components. They are useful for enforcing state invariant

properties and/or scheduling policies.

BIP provides mechanisms for composition of behavior using interaction and priority glues. This

framework has been implemented in a language and a toolset. The BIP language leverages on C

style variables and data type declarations, expressions and statements, and provides additional

syntactic constructs for defining component behavior, specifying the interactions and the priorities.

5

The BIP toolset includes an editor and a compiler for generating from BIP programs C++ code

executable on a dedicated middleware.

We provide hereafter a formalization of atomic components in BIP and their composition by

using interactions. Priorities are not considered.

Definition 1 (Atomic Component) An atomic component is a transition system extended with

data B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T), where:

• (L,P, T) is a transition system, that is

– L = {l1, l2, . . . , lk} is a set of control locations,

– P is a set of ports,

– T ⊆ L× P × L is a set of transitions,

• X = {x1, . . . , xn} is a set of variables and for each τ ∈ T respectively, gτ is a guard, a

predicate on X, and fτ (X, X ′) is an update relation, a predicate on X (current) and X ′

(next) state variables.

Example 2 We provide in Figure 1 a discretized model of the Temperature Control System in

BIP, decomposed into three atomic components: a Controller and two components Rod1, Rod2

modeling the rods. We take θm = 100◦, θM = 1000◦, T = 3600 seconds. Furthermore, we assume

that vr = 1◦/s and vd = 2◦/s. The Controller has two control locations {l5, l6}, a variable θ, three

ports {tick, cool, heat} and four transitions: 2 loop transitions labeled by tick which increase or

decrease the temperature as time progresses and 2 transitions triggering moves of the rods. The

components Rod1 and Rod2 are identical, up to the renaming of states and ports. Each one has

two control locations and four transitions: two loop transitions labeled by tick and two transitions

synchronized with transitions of the Controller.

The following definition provides the operational semantics of atomic behavior in terms of

plain labeled transition systems (LTS). States of LTS correspond to configurations, that are pairs

of control locations and valuations on variables. Transitions of LTS are obtained from transitions

of the atomic behavior according to the guards and update relations specified on them.

Definition 2 (Semantics of extended transition system) The semantics of B=(L,P , T , X,

{gτ}τ∈T , {fτ}τ∈T), is a transition system (Q,P, T0) such that

• Q = L×X where X denotes the set of valuations of variables X.

6

• T0 is the set including transitions ((l,x), p, (l′,x′)) such that gτ (x) ∧ fτ (x,x′) for some τ =

(l, p, l′) ∈ T . As usual, if ((l,x), p, (l′,x′)) ∈ T0 we write (l,x)
p→ (l′,x′).

Let us introduce few useful notations. Given a transition τ = (l, p, l′) ∈ T , l and l′ are

respectively, the source and the target location denoted respectively by •τ and τ•. For a location

l, we use the predicate at l which is true iff the system is at location l. A state predicate Φ

is a boolean expression involving location predicates and predicates on X. Any state predicate

can be put in the form
∨

l∈L at l ∧ ϕl. Notice that predicates on locations are disjoint and their

disjunction is true.

We define below parallel composition for components parameterized by a set of interactions.

For the sake of clarity, we consider only pure synchronizations, that is flat interactions without

data transfer between components.

Definition 3 (Interactions) Given a set of components B1, B2, . . . , Bn, where Bi = (Li,Pi, Ti,

Xi, {gτ}τ∈Ti
, {fτ}τ∈Ti

), an interaction a is a set of ports, subset of
⋃n

i=1 Pi, such that ∀i = 1, . . . , n

|a ∩ Pi| ≤ 1.

The BIP framework allows to define rich interaction models by using hierarchical interactions

extended with data transfer as presented in [19, 20]. In this work, we restrict to pure synchroniza-

tions. The absence of hierarchy is not a real limitation, as long as hierarchical interaction models

can be statically transformed into equivalent flat interaction models with a potentially increased

number of interactions [21]. Nevertheless, the absence of data transfer between components is

a severe limitation in practice, but fortunately, it allows easier decomposition and compositional

reasoning on the system, as shown later in section 3.

Definition 4 (Parallel Composition) Given n components Bi=(Li,Pi,Ti, Xi, {gτ}τ∈Ti
,{fτ}τ∈Ti

)

and a set of interactions γ, we define B = γ(B1, . . . , Bn) as the component (L,γ, T , X, {gτ}τ∈T ,

{fτ}τ∈T), where:

• (L, γ, T) is the transition system such that

– L = L1 × L2 × . . .× Ln is the set of control locations,

– T ⊆ L×γ×L contains transitions τ = ((l1, . . . , ln), a, (l′1, . . . , l
′
n)) obtained by synchro-

nization of sets of transitions {τi = (li, pi, l
′
i) ∈ Ti}i∈I such that {pi}i∈I = a ∈ γ and

l′j = lj if j 6∈ I, for arbitrary I ⊆ {1, ..., n}

7

• X =
⋃n

i=1 Xi and for a transition τ resulting from the synchronization of a set of transitions

{τi}i∈I , the associated guard and function are respectively gτ =
∧

i∈I gτi and fτ =
∧

i∈I fτi ∧∧
i 6∈I(X

′
i = Xi).

Finally, we consider systems defined as parallel composition of components together with an

initial condition.

Definition 5 (System) A system S is a pair 〈B, Init〉 where B is a component and Init is a

state predicate characterizing the initial states of B.

Example 3 The three atomic components Controller, Rod1 and Rod2 are composed by using the

following set of interactions, indicated by connectors in Figure 1 : {tick, tick1, tick2}, {cool, cool1},

{cool, cool2}, {heat, rest1}, {heat, rest2}. In this model, complete shutdown corresponds to a dead-

lock. Throughout the paper we verify deadlock-freedom of this example by taking Init = at l5∧(θ =

100) ∧ at l1 ∧ (t1 = 3600) ∧ at l3 ∧ (t2 = 3600).

2.2 Invariants and Their Properties

For a component B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T), we recall here the definition of the post pred-

icate transformer allowing to compute successors of global states represented symbolically by state

predicates. Given a state predicate Φ =
∨

l∈L at l∧ϕl, we define post(Φ) =
∨

l∈L(
∨

τ=(l,p,l′) at l′∧

postτ (ϕl)) where postτ (ϕ)(X) = ∃X ′.gτ (X ′) ∧ fτ (X ′, X) ∧ ϕ(X ′). Equivalently, we have that

post(Φ) =
∨

l∈L at l ∧ (
∨

τ=(l′,p,l) postτ (ϕl′)). That is post(Φ) can be computed by forward prop-

agation of the assertions associated with control locations in Φ.

We define in a similar way, the preτ predicate transformer for a transition τ , preτ (ϕ)(X) =

∃X ′.gτ (X) ∧ fτ (X, X ′) ∧ ϕ(X ′).

Definition 6 (Invariants) Given a system 〈B, Init〉 a state predicate Φ is

• an inductive invariant iff (Init ∨ post(Φ)) ⇒ Φ.

• an invariant iff there exists an inductive invariant Φaux such that Φaux ⇒ Φ.

Example 4 For the Temperature Control System of Figure 1, the predicate Φ1 = (at l1 ∧ t1 ≥

0)∨ (at l2 ∧ t1 ≥ 3600) is an inductive invariant of the Rod1 component given the initial condition

Init1 = at l1 ∧ t1 = 3600. Also, the predicate Φ3 = (at l5 ∧ 100 ≤ θ ≤ 1000) ∨ (at l6 ∧ 100 ≤

θ ≤ 1000) is an non-inductive invariant of the Controller component, given the initial condition

8

Init3 = at l5 ∧ θ = 100. An auxiliary inductive invariant that implies Φ3 is Φaux
3 = (at l5 ∧ 100 ≤

θ ≤ 1000) ∨ (at l6 ∧ 100 ≤ θ ≤ 1000 ∧ (θ is even)).

Notice that invariants are over-approximations of the set of the reachable states from Init. We

extensively use the following well-known results about invariants.

Proposition 1 Let Φ1,Φ2 be two invariants of a component B. Then Φ1 ∧ Φ2, Φ1 ∨ Φ2 are

invariants of B.

3 The method

We consider a system γ(B1, . . . , Bn) obtained by composing a set of atomic components B1, ..., Bn

by using a set of interactions γ. To prove a global invariant Φ for γ(B1, . . . , Bn), we recall the rule

presented in the introduction:

{Bi < Φi >}n
i , Ψ ∈ II(γ(B1, . . . , Bn), {Φi}n

i), (
∧n

i Φi) ∧Ψ ⇒ Φ

γ(B1, . . . , Bn) < Φ >

where Bi < Φi > means that Φi is an invariant of component Bi and Ψ belongs to the set

II of interaction invariants of γ(B1, . . . , Bn) computed automatically from Φi and γ(B1, . . . , Bn).

The rule is illustrated on Figure 2 for a system with two components, invariants Φ1 and Φ2 and

interaction invariant Ψ.

We provide below methods for computing component invariants by static analysis. We also

provide a general method for computing interaction invariants for γ(B1, . . . , Bn), given a set of

component invariants Φi.

3.1 Computing Component Invariants

For the application of rule (2) we need to compute component invariants Φi. We can take Φi =

Reach(Bi), the set of reachable state of Bi, or any upper approximation Φi such that Reach(Bi) ⇒

Φi.

We present below a lightweight method for the computation of sequences of increasingly

stronger inductive invariants for atomic components. The method is implemented in the D-Finder

tool.

9

Proposition 2 Given a system S = 〈B, Init〉, the following iteration defines a sequence of in-

creasingly stronger inductive invariants:

Φ0 = true Φi+1 = Init ∨ post(Φi)

Proof. By induction. Φ0 is an inductive invariant. If Φi is an inductive invariant then Init ∨

post(Φi) ⇒ Φi. As post is monotonic and distributes over disjunction, post(Φi+1) = post(Init ∨

post(Φi)) ⇒ post(Φi) ⇒ Φi+1. Moreover, Init ⇒ Φi+1. So Φi+1 is an inductive invariant. 2

We use different strategies for producing such invariants. We usually iterate until we find

deadlock-free invariants. Their use guarantees that global deadlocks are exclusively due to syn-

chronization.

A key issue is efficient computation of such component invariants as the precise computation

of post requires quantifier elimination. An alternative to quantifier elimination is to compute over-

approximations of post based on syntactic analysis of the predicates. In this case, the obtained

invariants may not be inductive.

We provide a brief description of a syntactic technique used for approximating postτ for a fixed

transition τ . A more detailed presentation, as well as other techniques for generating component

invariants are given in [22].

Consider a transition τ = (l, p, l′) of B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T). Assume that its

guard is of the form gτ (Y) and the associated update function fτ is of the form Z ′
1 = eτ (U)∧Z ′

2 =

Z2 where Y, Z1, Z2, U ⊆ X and {Z1, Z2} is a partition of X.

For an arbitrary predicate ϕ find a decomposition ϕ = ϕ1(Y1) ∧ ϕ2(Y2) such that Y2 ∩ Z1 = ∅

i.e., which has a conjunct not affected by the update function fτ . We apply the following rule to

compute over-approximations postaτ (ϕ) of postτ (ϕ):

postaτ (ϕ) = ϕ2(Y2) ∧

 gτ (Y) if Z1 ∩ Y = ∅

true otherwise

 ∧

 Z1 = eτ (U) if Z1 ∩ U = ∅

true otherwise

Proposition 3 If τ and ϕ are respectively a transition and a state predicate as above, then

postτ (ϕ) ⇒ postaτ (ϕ).

10

Proof. We can over-approximate successively postτ (ϕ) as follows:

postτ (ϕ)(X ′) = ∃X. (ϕ(X) ∧ gτ (X) ∧ fτ (X, X ′))

= ∃Z1, Z2. (ϕ1(Y1) ∧ ϕ2(Y2) ∧ gτ (Y) ∧ Z ′
1 = eτ (U) ∧ Z ′

2 = Z2)

⇒ ∃Z2. (ϕ2(Y2) ∧ Z ′
2 = Z2)

∧
∃Z1, Z2. (gτ (Y) ∧ Z ′

1 = eτ (U) ∧ Z ′
2 = Z2)

= ϕ2(Y ′
2)

∧
∃Z1, Z2. (gτ (Y) ∧ Z ′

1 = eτ (U) ∧ Z ′
2 = Z2)

⇒ ϕ2(Y ′
2)

∧ gτ (Y ′) if Z1 ∩ Y = ∅

true otherwise

∧ Z ′

1 = eτ (U ′) if Z1 ∩ U = ∅

true otherwise

= postaτ (ϕ)(X ′)

2

Example 5 For the Temperature Control System of Figure 1, the predicates Φ1 = (at l1 ∧ t1 ≥

0) ∨ (at l2 ∧ t1 ≥ 3600), Φ2 = (at l3 ∧ t2 ≥ 0) ∨ (at l4 ∧ t2 ≥ 3600) and Φ3 = (at l5 ∧ 100 ≤ θ ≤

1000) ∨ (at l6 ∧ 100 ≤ θ ≤ 1000) are respectively invariants of the atomic components Rod1, Rod2

and Controller.

3.2 Computing Interaction Invariants

For the sake of clarity, we first show how to compute interaction invariants for a system γ(B1, . . . , Bn)

without variables, that is, where the atomic components Bi are finite transition systems. Then,

we show how to deal with infinite state systems.

3.2.1 For finite state systems

Definition 7 (Forward Interaction Sets) Given a system γ(B1, . . . , Bn) where Bi = (Li, Pi, Ti)

are transition systems, we define for a set of locations L ⊆
⋃n

i=1 Li its forward interaction set

L• =
⋃

l∈L l• where l• =
{
{τi}i∈I | ∀i.τi ∈ Ti ∧ ∃i.•τi = l ∧ {port(τi)}i∈I ∈ γ

}
.

That is, l• consists of sets of component transitions involved in some interaction of γ in which

a transition τi issued from l can participate (see Figure 3). We define in a similar manner, for a set

of locations its backward interaction set •L =
⋃

l∈L
•l where •l =

{
{τi}i∈I | ∀i.τi ∈ Ti ∧ ∃i.τ•i =

l ∧ {port(τi)}i∈I ∈ γ
}
. The elements of •l and l• can be also viewed as transitions of a Petri net,

which correspond to interactions of γ. As for Petri nets, we define the notion of trap.

11

Definition 8 (Traps) Given a parallel composition γ(B1, . . . , Bn) where Bi = (Li, Pi, Ti), a trap

is a set L of locations L ⊆
⋃n

i=1 Li such that L• ⊆ •L.

The following proposition expresses a characteristic property of traps: if the initial state of

γ(B1, . . . , Bn) has some control location belonging to a trap then all its successor states have some

control location belonging to the trap.

Proposition 4 Given a system S = 〈γ(B1, . . . , Bn), Init〉, if the set of locations L ⊆
⋃n

i=1 Li is

a trap containing an initial state of some component then
∨

l∈L at l is an invariant of S.

Proof. The behavior B obtained by a composition of atomic components without data is equally

represented by a 1-safe Petri net where places correspond to control states of
⋃n

i=1 Li and tran-

sitions correspond to interactions of γ. Moreover, the traps previously introduced correspond

precisely to traps in this Petri net. Now, concerning traps in Petri nets, the following invariance

property holds: if a trap is initially marked, it remains marked through all computation of the

net (see [3] for details). This property is simply lifted to BIP in order to obtain synchronization

invariants.2

The following result given in [23] characterizes traps as solution of a system of implications.

Proposition 5 Let γ(B1, ..., Bn) and a boolean valuation v :
⋃n

i=1 Li → B fixed. If v satisfies the

following set of the implications:

v(l) ⇒
∧

{τi}i∈I ∈ l•

 ∨
l′ ∈ {τ•i }i∈I

v(l′)

 for l ∈
n⋃

i=1

Li

then the set {l ∈
⋃n

i=1 Li | v(l) = true} is a trap.

This characterization allows us to compute the set of traps using different approaches. We

experiment two of them. The first approach uses the SAT-solver Yices [6] to progressively obtain

minimal solutions of the above system. Nevertheless, as shown in [24, 25], computing the set of

minimal traps is a NP-complete problem and in practice, an iterative trap extraction process may

be long and non-exhaustive. The second approach uses symbolic BDD-based representation [5]

to obtain the set of all traps at once, as solution of the boolean system of implications above.

This method has the advantage of computing all the traps, however, it suffers from the potential

explosion of its symbolic BDD representation, which is very difficult to predict and control in

practice.

12

Example 6 For the abstraction of the Temperature Control System given in Figure 4 the following

set of implications characterizes the set of traps:

φ11 ⇒ (φ12 ∨ φ42 ∨ φ52)∧

(φ12 ∨ φ42 ∨ φ62)∧

(φ12 ∨ φ32 ∨ φ52)∧

(φ12 ∨ φ32 ∨ φ62)∧

(φ12 ∨ φ41 ∨ φ52)∧

(φ12 ∨ φ41 ∨ φ62)

φ12 ⇒ (φ61 ∨ φ21)

φ21 ⇒ (φ51 ∨ φ11)

φ22 ⇒ (φ51 ∨ φ11)

φ31 ⇒ (φ22 ∨ φ32 ∨ φ52)∧

(φ22 ∨ φ32 ∨ φ62)∧

(φ12 ∨ φ32 ∨ φ52)∧

(φ12 ∨ φ32 ∨ φ62)∧

(φ21 ∨ φ32 ∨ φ52)∧

(φ21 ∨ φ32 ∨ φ62)

φ32 ⇒ (φ61 ∨ φ41)

φ41 ⇒ (φ51 ∨ φ31)

φ42 ⇒ (φ51 ∨ φ31)

φ51 ⇒ (φ22 ∨ φ42 ∨ φ52)∧

(φ22 ∨ φ32 ∨ φ52)∧

(φ12 ∨ φ42 ∨ φ52)∧

(φ12 ∨ φ32 ∨ φ52)∧

(φ22 ∨ φ41 ∨ φ52)∧

(φ21 ∨ φ42 ∨ φ52)∧

(φ21 ∨ φ41 ∨ φ52)∧

(φ21 ∨ φ32 ∨ φ52)∧

(φ12 ∨ φ41 ∨ φ52)

φ52 ⇒ (φ61 ∨ φ21)∧

(φ61 ∨ φ41)

φ61 ⇒ (φ22 ∨ φ42 ∨ φ62)∧

(φ22 ∨ φ32 ∨ φ62)∧

(φ12 ∨ φ42 ∨ φ62)∧

(φ12 ∨ φ32 ∨ φ62)∧

(φ22 ∨ φ41 ∨ φ62)∧

(φ21 ∨ φ42 ∨ φ62)∧

(φ21 ∨ φ41 ∨ φ62)∧

(φ21 ∨ φ32 ∨ φ62)∧

(φ12 ∨ φ41 ∨ φ62)

φ62 ⇒ (φ51 ∨ φ11)∧

(φ51 ∨ φ31)

The set of minimal traps for the example given in Figure 4 are:

L1 = {φ21, φ41, φ51, φ52}, L2 = {φ11, φ12, φ21, φ31, φ32, φ41}, L3 = {φ32, φ41, φ42, φ51},

L4 = {φ11, φ12, φ31, φ32, φ61, φ62} and L5 = {φ12, φ21, φ22, φ51}.

Traps define a particularly interesting category of structural invariants for Petri nets. They

have been extensively studied in the literature. Used jointly with locks (or siphons) they allow

to establish (statically) properties such as liveness and deadlock-freedom for some classes of Petri

nets [26, 27].

3.2.2 For infinite state systems

We have shown how to compute interaction invariants from traps relating control locations of

finite state components. To compute interaction invariants for infinite state systems, we first

compute compositionally a finite state abstraction of the composite system. Interaction invariants

are concretizations of the traps of the abstract system.

Consider a system S = 〈γ(B1, . . . , Bn), Init〉 and a set of component invariants Φ1 . . .Φn

associated with the atomic components. We show below, for each component Bi and its associated

13

invariant Φi, how to define a finite state abstraction αi and to compute an abstract transition

system Bαi
i .

Definition 9 (Abstraction Function) Let Φ be an invariant of a system 〈B, Init〉 written in

disjunctive form Φ =
∨

l∈L at l ∧ (
∨

m∈Ml
ϕlm) such that the atomic predicates at l ∧ ϕlm are

disjoint. Given Φ, an abstraction function α is an injective function associating with each atomic

predicate at l ∧ ϕlm a symbol φ = α(at l ∧ ϕlm) called abstract state. We denote by Φα the set of

the abstract states.

Definition 10 (Abstract System) Given a system S = 〈B, Init〉, an invariant Φ and an asso-

ciated abstraction function α, we define the abstract system Sα = 〈Bα, Initα〉 where

• Bα = (Φα, P,) is a transition system with such that for any pair of abstract states

φ = α(at l∧ϕ) and φ′ = α(at l′∧ϕ′) we have φ
p
 φ′ iff ∃τ = (l, p, l′) ∈ T and ϕ∧preτ (ϕ′) 6=

false,

• Initα =
∨

φ∈Φα
0

at φ where Φα
0 = {φ ∈ Φα | α−1(φ) ∧ Init 6= false} is the set of the initial

abstract states.

We apply the method presented in [28] and implemented in the InVeSt tool [29] in order

to compute an abstract transition system Bα for a component B. The method proceeds by

elimination, starting from the universal relation on abstract states. We eliminate pairs of abstract

states in a conservative way. To check whether φ
p
 φ′, where φ = α(at l∧ϕ) and φ′ = α(at l′∧ϕ′),

can be eliminated, we check that for all concrete transitions τ = (l, p, l′) we have ϕ ∧ preτ (ϕ′) =

false.

Example 7 The table below provides the abstract states constructed from the components invari-

ants Φ1,Φ2,Φ3 of respectively Rod1, Rod2, Controller given in example 5.

φ11 = at l1 ∧ t1 = 0 φ51 = at l5 ∧ θ = 100 φ31 = at l3 ∧ t2 = 0

φ12 = at l1 ∧ t1 ≥ 1 φ52 = at l5 ∧ 101 ≤ θ ≤ 1000 φ32 = at l3 ∧ t2 ≥ 1

φ21 = at l2 ∧ t1 ≥ 3600 φ61 = at l6 ∧ θ = 1000 φ41 = at l4 ∧ t2 ≥ 3600

φ22 = at l2 ∧ t1 < 3600 φ62 = at l6 ∧ 100 ≤ θ ≤ 998 φ42 = at l4 ∧ t2 < 3600

Figure 4 presents the computed abstraction of the Temperature Control System with respect to the

considered invariants.2

14

By combining well-known results about abstractions, we compute interaction invariants of 〈γ(B1, ..., Bn),

Init〉 from interaction invariants of 〈γ(Bα
1 , . . . , Bα

n), Initα〉.

The following proposition says that γ(Bα1
1 , . . . , Bαn

n) is an abstraction of B = γ(B1, ..., Bn)

Proposition 6 If Bαi
i is an abstraction of Bi with respect to an invariant Φi and its abstraction

function αi for i = 1, ..., n , then Bα = γ(Bα1
1 , . . . , Bαn

n) is an abstraction of B = γ(B1, ..., Bn)

with respect to
∧n

i=1 Φi and an abstraction function α obtained as the composition of the αi.

The following proposition says that invariants of the abstract system are also invariants of the

concrete system.

Proposition 7 If Bα is an abstraction of B with respect to an invariant Φ and α its abstraction

function, then Bα simulates B. Moreover, if Φα is an invariant of 〈Bα, Initα〉 then α−1(Φα) is

an invariant of 〈B, Init〉.

Proof. We show that the relation (l,x)Rφ is a simulation if α−1(φ) = at l ∧ ϕ and ϕ(x) for

the valuation x. If (l,x)
p→ (l′,x′) is a transition of B and (l,x)Rφ for some abstract state φ,

then we show that there exists φ′ = α(at l′ ∧ ϕ′) such that φ
p
 φ′. As Φ is an invariant of B, if

(l′,x′) is reachable then ∃ϕ′ at l′ ∧ ϕ′ ⇒ Φ such that ϕ′(x′) and φ′ = α(at l′ ∧ ϕ′). Moreover, as

ϕ(x) ∧ ϕ′(x′), we have ϕ(x) ∧ preτ (ϕ)(x) 6= false for τ = (l, p, l′) and therefore φ
p
 φ′. 2

Thus, it is possible to compute from traps which are interaction invariants of the abstract

system, interaction invariants for the concrete system B = γ(B1, ..., Bn).

3.3 Wrap up

We give a sketch of a semi-algorithm allowing to prove invariance of Φ by iterative application

of the rule (2). The semi-algorithm takes a system 〈γ(B1, . . . , Bn), Init〉 and a predicate Φ. It

iteratively computes invariants of the form X = Ψ∧ (
∧n

i=1 Φi) where Ψ is an interaction invariant

and Φi an invariant of component Bi. If X is not strong enough for proving that Φ is an invariant

(X ∧¬Φ = false) then either a new iteration with stronger Φi is started or we stop. In this case,

we cannot conclude about invariance of Φ.

Input: S = 〈γ(B1, . . . , Bn), Init〉, Φ

Initially: Φi = true for each i = 1, . . . , n

Output: True or inconclusive.

15

1. For each Bi, compute a component invariant Φ′
i; Φi := Φi ∧ Φ′

i

2. For each Bi and Φi compute the corresponding abstraction Bαi
i .

3. For γ(Bα1
1 , ..., Bαn

n), compute traps L1, L2, . . . , Lm

containing some abstract initial state.

4. For each trap Lk, compute the interaction invariant Ψk =
∨

φ∈Lk
α−1(φ);

Ψ :=
∧m

k=1 Ψk.

5. If ¬Φ ∧Ψ ∧ (
∧n

i=1 Φi) = false then Φ is an invariant else goto 1 or stop.

We can show by application of the following proposition that the iteration process gives pro-

gressively stronger invariants, in particular that for stronger component invariants we get stronger

interaction invariants.

Proposition 8 Let 〈B, Init〉 be a system and Φ, Φ′ two non empty invariants such that Φ ⇒ Φ′.

If α and α′ are the abstraction functions corresponding to Φ and Φ′ respectively, then Bα′
simulates

Bα.

For two successive component invariants Φi and Φ′
i of Bi, we have Φi ⇒ Φ′

i. From proposition 8

we deduce that B
α′

i
i simulates Bαi

i where αi and α′
i are the abstraction functions corresponding to

Φi and Φ′
i. As the simulation relation is preserved by parallel composition, we have γ(Bα′

1
1 , ..., B

α′
n

n)

simulates γ(Bα1
1 , ..., Bαn

n). It can be shown that for each trap L′ of γ(Bα′
1

1 , ..., B
α′

n
n) there exists a

trap L of γ(Bα1
1 , ..., Bαn

n) such that L ⊆ L′. From this we infer that for each interaction invariant

of γ(Bα′
1

1 , ..., B
α′

n
n) there exists a stronger interaction invariant of γ(Bα1

1 , ..., Bαn
n).

4 Application for Checking Deadlock-Freedom

We present an application of the method for checking deadlock-freedom.

Definition 11 (Deadlock States) We define the predicate DIS characterizing the set of the

states of γ(B1, . . . , Bn) from which all interactions are disabled:

DIS =
∧

a ∈ γ

¬en(a) where en(a) =
∨

port(T ′) = a

∧
τ∈T ′

en(τ)

16

port(T ′) for a set of transitions T ′ ⊆ T is the set of ports labeling these transitions. That is,

en(a) characterizes all the states from which interaction a can be executed.

Example 8 For the Temperature Control System (see Figure 1), we have:

DIS = (¬(at l5 ∧ θ < 1000))
∧

(¬(at l6 ∧ θ = 100) ∨ ¬at l2)∧
(¬(at l6 ∧ θ > 100))

∧
(¬(at l5 ∧ θ = 1000) ∨ ¬(at l3 ∧ t2 ≥ 3600))∧

(¬(at l5 ∧ θ = 1000) ∨ ¬(at l1 ∧ t1 ≥ 3600))
∧

(¬(at l6 ∧ θ = 100) ∨ ¬at l4)

The system 〈γ(B1, . . . , Bn), Init〉 is deadlock-free if the predicate ¬DIS is an invariant of

the system. To check that ¬DIS is an invariant, we need a stronger invariant Φ such that

Φ ⇒ ¬DIS or equivalently Φ ∧ DIS = false. We present below the verification heuristic for a

system 〈γ(B1, . . . , Bn), Init〉 applied by the D-Finder toolset.

Input: S = 〈γ(B1, . . . , Bn), Init〉

Output: S is deadlock-free or has a set of potential deadlocks.

1. Find Φ an invariant of S

2. Compute DIS for γ(B1, . . . , Bn).

3. If Φ ∧DIS = false then return “S is deadlock-free” else go to 4 or 6

4. Find Φ′ an invariant of S

5. Φ := Φ ∧ Φ′ go to 3

6. return the set of the solutions that satisfy Φ ∧DIS

Example 9 Φ = Φ1 ∧Φ2 ∧Φ3 is the conjunction of the deadlock-free invariants given in example

5. The predicate Φ∧DIS, where DIS is given in example 8, is satisfiable and it is the disjunction

of the following terms:

1. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l6 ∧ θ = 100)

2. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

3. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

4. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

5. (at l2 ∧ t1 ≥ 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

17

Each one of the above terms represents a family of possible deadlocks. To decrease the number of

potential deadlocks, we find a new invariant Φ′ stronger than Φ, such that Φ′ = Φ ∧ Φint, where

Φint is an invariant on the states of Rod1, Rod2 and Controller induced by the interactions:

((at l2 ∧ t1 ≥ 3600) ∨ (at l4 ∧ t2 ≥ 3600) ∨ (at l5 ∧ 100 ≤ θ ≤ 1000))∧
((at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600) ∨ (at l3 ∧ t2 ≥ 0)∨ (at l4 ∧ t2 ≥ 3600))∧
((at l3 ∧ t2 ≥ 1) ∨ (at l4) ∨ (at l5 ∧ θ = 100))∧
((at l1 ∧ t1 ≥ 0) ∨ (at l3 ∧ t2 ≥ 0) ∨ (at l6 ∧ θ = 1000) ∨ (at l6 ∨ 100 ≤ θ ≤ 998))∧
((at l1 ∧ t1 ≥ 1) ∨ (at l2) ∨ (at l5 ∧ θ = 100))

The predicate Φ′ ∧DIS is reduced to:

6. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

7. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

8. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

Finally, it can be checked by using finite state reachability analysis on an abstraction of the sys-

tem without variables, that only the first term represents feasible deadlocks, the two other being

spurious. This term characterizes deadlock configurations leading to complete shutdown.

4.1 The D-Finder Toolset

The D-Finder toolset allows deadlock verification by application of the method (Figure 5). It

takes as input a BIP model and computes component invariants Φi by using Proposition 2. This

step may require quantifier elimination by using Omega. Then, it checks for deadlock-freedom

of component invariants by using Yices. From the generated component invariants, it computes

an abstraction of the BIP model and the corresponding interaction invariants Ψ. Then, it checks

satisfiability of the conjunction Ψ∧
∧

i=1 Φi ∧DIS. If the conjunction is unsatisfiable, then there

is no deadlock else either it generates stronger component and interaction invariants or it tries to

confirm the detected deadlocks by using reachability analysis techniques.

4.2 Experimental results

We provide experimental results for five examples. The first example is the Temperature Control

System extensively presented in the paper. The second example is Utopar, a case study of the Eu-

18

ropean Integrated project SPEEDS (http://www.speeds.eu.com/) about an automated transporta-

tion system. A succinct description of Utopar can be found at http://www.combest.eu/home/?link=Application2.

The system is the composition of three types of components: autonomous vehicles, called U-cars,

a centralized Automatic Control System and Calling Units. The latter two types have (almost

exclusively) discrete behavior. U-cars are equipped with a local controller, responsible for han-

dling the U-cars sensors and performing various routing and driving computations depending on

users’ requests. We analyzed a simplified version of Utopar by abstracting from data exchanged

between components as well as from continuous dynamics of the cars. In this version, each U-Car

is modeled by a component having 7 control locations and 6 integer variables. The Automatic

Control System has 3 control locations and 2 integer variables. The Calling Units have 2 control

locations and no variables.

Finally, the last three examples are classic finite-state benchmarks for compositional verification

methods: dining philosophers, readers-writers and gas station [15]. We consider them in order to

evaluate how the method scales up for components without data.

Table 1 provides an overview of the experimental results obtained for the examples. For the

columns: n is the number of BIP components in the example, q is the total number of control

locations, xb (resp. xi) is the total number of boolean (resp. integer) variables, D provides, when

possible, the estimated number of deadlock configurations in DIS, Dc (resp. Dci) is the number

of deadlock configurations remaining in DIS ∧
∧

i Φi (resp. DIS ∧
∧

i Φi ∧ Ψ) and t is the total

time for computing invariants and checking for satisfiability of DIS ∧
∧

i Φi ∧Ψ. Detailed results

are available at http://www-verimag.imag.fr/˜ thnguyen/tool.

example n q xb xi D Dc Dci t
Temperature Control System (2 rods) 3 6 0 3 8 5 3 3s
Temperature Control System (4 rods) 5 10 0 5 32 17 15 6s
Utopar System (40 U-Cars, 256 Calling Units) 297 795 40 242 - - 0 3m46s
Utopar System (60 U-Cars, 625 Calling Units) 686 1673 60 362 - - 0 25m29s
Readers-Writer (7000 readers) 7002 14006 0 1 - - 0 17m27s
Readers-Writer (10000 readers) 10002 20006 0 1 - - 0 36m10s
Gas station (100 pumps - 1000 customers) 1101 4302 0 0 - - 0 9m14s
Philosophers (2000 Philos) 4000 10000 0 0 - - 3 32m14s
Philosophers (3001 Philos) 6001 15005 0 0 - - 1 54m34s

Table 1: Experimental results

We also compared D-Finder to some well-known monolithic verification tools such as NuSMV

and Spin. We ran the benchmarks on a Linux machine Intel Pentium 4 3.0 GHz and 1G Ram.

In [15], Cobleigh et al. show for a set of finite-state benchmarks that only for 30% of the

19

considered benchmarks assume-guarantee tools outperform model-checking tools. On the contrary,

for all the case studies that we have verified by using D-Finder and monolithic model checkers,

D-Finder outperforms these tools, in particular for large systems. Of course this comparison is not

completely balanced because D-Finder uses heuristics and is tuned for checking deadlock-freedom.

The first comparison between NuSMV, Spin and D-Finder is on Dining Philosophers example.

We increase the number of philosophers and compare the verification time between these three

tools (Figure 6). Spin runs out of memory at the size 17 (philosophers); NuSMV runs out of

memory at the size 150 while D-Finder can go much further until the size 3000.

The second comparison between NuSMV and D-Finder is on Gas Station example. We consider

a system with 3 pumps and increase the number of customers. The comparison of verification time

is in Figure 7. NuSMV runs out of memory at the size 180 (customers) while D-Finder can go

much further until the size 3000.

5 Conclusion

The paper presents a compositional method for invariant verification of component-based systems.

In contrast to assume-guarantee methods based on assumptions, we use interaction invariants

to characterize contexts of individual components. These can be computed automatically from

component invariants which play the role of guarantees for individual components.

There are two key issues in the application of the method. The first is the choice of component

invariants depending on the property to be proved. The second is the computation of the corre-

sponding interaction invariants. Here there is a risk of explosion, if exhaustiveness of solutions is

necessary in the analysis process. However, this issue can be solved by using symbolic computation

using BDDs.

The implementation and application of the method for proving deadlock-freedom of component-

based systems is promising. We use a class of component invariants which capture well-enough

guarantees for component deadlock-freedom. Their computation does not involve fixpoints and

avoids state space exploration. D-Finder applies an iterative process for computing progressively

stronger invariants. Best precision is achieved when component reachability sets are used as

component invariants. This is feasible for finite state components. There are no restrictions on

the type of data as long as we stay within theories for which there exist efficient decision procedures.

The obtained experimental results for non trivial case studies are really convincing. The

method can be adapted to interactions with data transfer. Data transfer with finite domains,

20

can be encoded by creating individual interactions for each configuration of transferred data.

Otherwise, the notion of component invariant and subsequently the notion of interaction invariant

can be extended to take into account transferred data. Finally, an interesting work direction is

extending D-Finder to prove properties other than deadlock-fredom.

References

[1] Kupferman, O., Vardi, M.Y.: Modular model checking. In: Compositionality: The Significant

Difference. International Symposium, COMPOS’97, Bad Malente, Germany. Volume 1536 of

LNCS., Springer-Verlag (1998) 381–401

[2] Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in bip. In:

Proceedings of SEFM’06, Pune, India, IEEE Computer Society Press (2006) 3–12

[3] Peterson, J.: Petri Net theory and the modelling of systems. Englewood-Cliffs: Prentice Hall

(1981)

[4] Team, O.: The omega library. Version 1.1.0 (November 1996)

[5] Somenzi, F.: CUDD Decision Diagram Package. Colorado University

[6] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Proceedings of

CAV’06, Seattle, WA, USA. Volume 4144 of LNCS. (2006) 81–94

[7] Alur, R., Henzinger, T.: Reactive modules. In: Proceedings of the 11th Annual Symposium

on LICS, IEEE Computer Society (1996) 207–208

[8] Abadi, M., Lamport, L.: Conjoining specification. ACM Transactions on Programming

Languages and Systems 17(3) (1995) 507–534

[9] Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proceedings of the

4th Annual Symposium on LICS, IEEE Computer Society Press (1989) 353–362

[10] Chandy, K., J.Misra: Parallel program design: a foundation. Addison-Wesley Publishing

Company (1988)

[11] Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Transactions on

Programming Languages and Systems 16(3) (1994) 843–871

21

[12] McMillan, K.L.: A compositional rule for hardware design refinement. In: Proceedings of

CAV’97, Haifa, Israel. Volume 1254 of LNCS., Springer-Verlag (1997) 24–35

[13] Pnueli, A.: In transition from global to modular temporal reasoning about programs. In:

Logics and models of concurrent systems. Springer-Verlag, Inc., New York, USA (1985)

123–144

[14] Stark, E.W.: A proof technique for rely/guarantee properties. In: Proceedings of FSTTCS’85.

Volume 206 of LNCS., Springer-Verlag (1985) 369–391

[15] Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evaluation

of automated assume-guarantee reasoning. ACM Transactions on Software Engineering and

Methodology 17(2) (2008)

[16] Apt, K.R., Francez, N., de Roever, W.P.: A proof system for communicating sequential

processes. ACM Trans. Program. Lang. Syst. 2(3) (1980) 359–385

[17] Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer-Verlag

(1995)

[18] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero,

A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. TCS 138(1) (1995)

3–34

[19] Bliudze, S., Sifakis, J.: The Algebra of Connectors — Structuring Interaction in BIP. In:

Proceeding of the EMSOFT’07, Salzburg, Austria, ACM SigBED (October 2007) 11–20

[20] Basu, A.: Component-based Modeling of Heterogeneous Real-Time Systems in BIP. PhD

thesis, Université Joseph Fourier (December 2008)

[21] Bozga, M., Jaber, M., Sifakis, J.: Source-to-Source Architecture Transformation for Perfor-

mance Optimization in BIP. In: Proceedings of SIES’09 - IEEE Symposium on Industrial

Embedded Systems - Lausanne, Switzerland. (July 2009)

[22] Bensalem, S., Lakhnech, Y.: Automatic generation of invariants. FMSD 15(1) (July 1999)

75–92

[23] Sifakis, J.: Structural properties of petri nets. In: Proceedings of MFCS’78, Zakopane,

Poland. Volume 64 of LNCS. (1978) 474–483

22

[24] Yamauchi, M., Watanabe, T.: Time complexity analysis of the minimal siphon extraction

problem of petri nets. IEICE Transactions on Communications/Electronics/Information and

Systems (1999)

[25] Tanimoto, S., Yamauchi, M., Watanabe, T.: Finding minimal siphons in general petri nets.

IEICE Trans. on Fundamentals in Electronics, Communications and Computer Science E79-

A(11) (1996) 1817–1824

[26] Comoner, F.: Deadlocks in petri nets. Technical Report CA-7206-2311, Massachusetts Com-

puter Associates, Wakefield, Mass. (June 1972)

[27] Barkaoui, K., Minoux, M.: A polynomial-time graph algorithm to decide liveness of some

basic classes of bounded petri nets. In Jensen, K., ed.: Application and Theory of Petri Nets

1992, 13th International Conference, Sheffield, UK, June 22-26, 1992, Proceedings. Volume

616 of LNCS., Springer (1992) 62–75

[28] Bensalem, S., Lakhnech, Y., Owre, S.: Computing abstractions of infinite state systems

automatically and compositionally. In: Proceedings of CAV’98, Vancouver, BC, Canada.

Volume 1427 of LNCS. 319–331

[29] Bensalem, S., Lakhnech, Y., Owre, S.: Invest: A tool for the verification of invariants. In:

Proceedings of CAV’98, Vancouver, BC, Canada. Volume 1427 of LNCS. 505–510

23

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1

t1 := 0

rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2

t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1
Controller Rod2

Figure 1: Temperature Control System Example.

ψ

φ2

φ1

Figure 2: Illustration of the method.

l

.
τ1 τk

l′1

l1 lk

l′k

τi

{τ1 . . . τi . . . τk} ∈ l.

{p1 . . . pi . . . pk} ∈ γ

p1

l′

pi pk

Figure 3: Forward interaction sets.

24

rest2 cool2heatcoolcool1rest1

tick1

cool1
rest1

rest1

tick1 tick tick2

tick

tick

cool

tick2

cool2
rest2

rest2

tick2tick

ticktick1 tick2

heat

φ12

φ21φ22

φ51 φ52

φ62 φ61

φ31 φ32

φ41

φ11

φ42

Roda
1 Controllera Roda

2

tick2tick1 tick1

Figure 4: Abstraction of the Temperature Control System.

generation

Satisfiability

Abstraction and

simulationconfirmation

DIS
generation

BIPDeadlock

Local

verification
deadlock-free

Φi

Ψ

V
Φi

Ψ generation
Cudd

Omega

Yices
V

Φi ∧ Ψ ∧ DIS

DIS

6= false-give up6= false-strengthen
false

BIP model

Deadlock-free Deadlocks

Figure 5: D-Finder Tool Architecture.

25

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

V
er

ifi
ca

tio
n

tim
e

(s
ec

on
ds

)

Number of philosophers

dfinder
nusmv

spin

Figure 6: Comparison with NuSMV on Dining Philosophers

 0

 50

 100

 150

 200

 250

 300

 350

 100 150 200 250 300 350 400 450 500

V
er

ifi
ca

tio
n

tim
e

(s
ec

on
ds

)

Number of customers

dfinder
nusmv

Figure 7: Comparison with NuSMV on Gas Station

26

