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Aurore Back and Eric Sonnendrücker
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Abstract

We construct a new set of discrete differential forms based on B-splines of arbitrary degree as
well as an associated Hodge operator. The theory is first developed in 1D and then extended to
multi-dimension using tensor products. We link our discrete differential forms with the theory
of chains and cochains. The spline discrete differential forms are then applied to the numerical
solution of Maxwell’s equations.
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1 Introduction

The equations of physics are mathematical models consisting of geometric objects and relationships
between them. There are many methods to discretize equations, but few maintain the physical na-
ture of objects that constitute them. To respect the geometrical nature of physics, it is necessary to
change the point of view and use differential geometry, also for the numerical study. In differential
geometry and tensor calculus, differential forms are an approach to multivariable calculus that is
independent of coordinates. The operators such as divergence, curl or gradient are replaced by the
exterior derivative d. The exterior derivative acts on a k-form to produce a (k+1)-form. So the
fundamental theorem of calculus, the divergence theorem, Green’s theorem, and Stokes’ theorem
are also well defined in differential geometry and we also have the de Rham cohomology. The first
who used this point of view to discretize equations is Alain Bossavit [4]. He uses Whitney elements
[5] to discretize differential forms and hence, discretize Maxwell equations in the language of differ-
ential geometry. Since then, there have been several articles on the subject because there are many
problems such as the discretization of Hodge star operator [2, 3, 12] (an important notion which
contains all the metric of our domain), and the interpolation of differential forms [1, 4, 5, 6]. Until
now, the basis functions used for interpolation have been Whitney forms. In this paper we propose
to define a new class of discrete differential forms using B-splines. This new approach proves to
have many advantages. It allows to define high order approximation and higher degree B-splines
are computed by recurrence with de Boor algorithm [8] so its easy and efficient to implement them;
discrete differential forms verify the same properties as ”continuous” differential forms especially
they preserve the de Rham diagram. Moreover, it appears that in the Finite Element context our
B-spline discrete differential forms are naturally related to the B-spline finite elements appearing

∗The authors are also affiliated to INRIA-Nancy-Grand Est, CALVI project-team
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in isogeometric analysis [7, 14].

In the sequel, we recall the construction of B-splines and their properties (for this part the reader
is refered to the book of de Boor [8]) then we explain how to construct discrete differential forms
based on B-splines for uniform and non uniform meshes and for periodic and perfect conductors
boundary conditions. Our objects are constructed in detail in the 1D case and are extended to
the 3D case by tensor product using the 1D forms. We also adapt the technique of T. Tarhasaari,
L. Kettunen and A. Bossavit [3] for discretizing the Hodge star operator to the case of B-splines.
Then, in fourth part, we show the link between the p-cochains or differential p-forms and p-chains
but with a discrete point of view. It is the discrete version of integration of p-forms. This part
proves the coherence of discrete differential forms based on B-splines because we obtain the same
link that we can find in the continuous case and we show that the discrete de Rham diagram is also
preserved. Finally, we apply this theory to the Maxwell equations and we test it on uniform meshes
with periodic conditions and on non uniform meshes with perfect conductors boundary conditions.
Moreover, since this point of view provides a geometric formulation of Lagrangian equations, this
means no reference coordinate system and so the construction of approximation schemes remains
valid in case of continuous deformation, so we apply a change of variables on non uniform mesh
with perfect conductors boundary conditions.

2 A short overview of B-splines

B-splines on a non uniform set of knots x0 < x1 < · · · < xN−1 < xN can be defined recursively.
Some kind of boundary conditions need also be defined. In particular natural boundary conditions
(vanishing second derivative), Hermite boundary condition (given derivative), or periodic boundary
conditions can be used. Let us denote by Bα

i the B-spline of degree α with support in the interval
[xi, xi+α+1]. Then Bα

i is defined recursively by

B0
i (x) =

∣

∣

∣

∣

1 if xi ≤ x < xi+1

0 else,

and for α ≥ 1

Bα
i (x) =

x − xi

xi+α − xi
Bα−1

i (x) +
xi+α+1 − x

xi+α+1 − xi+1
Bα−1

i+1 (x). (1)

The B-splines verify the following properties:

1. The B-spline Bα
i is a polynomial of degree α between two consecutive knots,

2. The B-spline Bα
i is of class Cα−1,

3. Partition of unity: for any point x, we have
∑

i

Bα
i (x) = 1.

We shall also need the recursion formula for the derivatives:

Bα
i
′(x) = α

(

Bα−1
i (x)

xi+α − xi
−

Bα−1
i+1 (x)

xi+α+1 − xi+1

)

. (2)

For details, the reader is refered to the book of de Boor [8]
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3 Construction of discrete differential forms based on B-splines

3.1 The 1D case

3.1.1 Uniform periodic mesh

The primal 1D mesh of our periodic domain will be x0 < x1 < · · · < xN−1 < xN and the dual
mesh will consist of the points xi+1/2 = 1

2(xi + xi+1). We shall assume xN − x0 periodicity, so that
all functions will be equal at x0 and xN . Then xN will not be part of the primal mesh and both
meshes will have N points.

In the 1D case, we need to define discrete 0-forms and 1-forms on both meshes that will be
constructed using basis functions denoted respectively by w0,α

i and w1,α
i , for the primal mesh, and

w̃0,α
i+1/2 and w̃1,α

i+1/2 for the dual mesh. Those will be defined using the B-splines of degree α, Bα
i .

Let us start with the discrete 0-form on the primal mesh. We define the basis functions
w0,α

i = Bα
i and the space of linear spline 0-forms Sα

0 will be the vector space generated by these
basis functions. Any function C0 ∈ Sα

0 writes

C0(x) =
N−1
∑

j=0

c0
jB

α
j (x),

with the c0
j defined by the interpolation conditions C0(xi) =

∑N−1
j=0 c0

jB
α
j (xi) for 0 ≤ i ≤ N−1 which

is a linear system that can be written in matrix form M0
αc0 = C

0, with C
0 = (C0(x0), . . . , C

0(xN−1))
T ,

c0 = (c0
0, . . . , c

0
N−1)

T and M0
α the square matrix whose components are m0

ij = Bα
j (xi) for i =

0 . . . N − 1 and j = −α + 2 . . . N − α + 2 with Bα
j = Bα

N+j when j < 0.

Lemma 3.1 On uniform set of nodes, we have

• for all odd α, the matrix (M0
α,ij)0≤i,j≤N−1 is non singular.

• for all even α and number of mesh points N an odd number, the matrix (M0
α,ij)0≤i,j≤N−1 is

non singular.

Proof. We denote Bα
i,j = Bα

i (xj) = M0
α,ij . We can easily show by induction, with help of the

formula (1), that Bα
i,j = 0 for j /∈ {i + 1, . . . , i + α}, Bα

i,i+1 = Bα
i,i+α = 1 and Bα

i+1,j = Bα
i,j−1. So

the formula (1) becomes:

Bα
i,j =

j − i

α
Bα−1

i,j +
i + α + 1 − j

α
Bα−1

i,j−1.

We notice that M0
α is a circulant matrix and since Bα

i,j = 0 for j /∈ {i + 1, . . . , i + α}, it can be
written:

M0
α =

α
∑

j=1

Bα
0,jJ

j
N , (3)

where JN =















0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0
0 . . . . . . 0 1
1 0 . . . . . . 0















with N × N its size. We can factorize (3) by JN
α! and we

obtain:

M0
α =

JN

α!

α
∑

j=1

(

j(α − 1)!Bα−1
0,j + (α + 1 − j)(α − 1)!Bα−1

0,j−1

)

J j−1
N ,

=
JN

α!
Eα−1(JN ),
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where Eα−1(X) =
∑α

j=1

(

j(α − 1)!Bα−1
0,j + (α + 1 − j)(α − 1)!Bα−1

0,j−1

)

Xj−1 are Eulerian polyno-

mials. Their coefficients are positive and symmetric (symmetric means that if P (X) = an Xn +
. . . + a0, an−k = ak). Moreover, the eigenvalues of JN are the Nth roots of unity: {ω0, ω1, . . . }
with ω = exp(2iπ

N ). So, the eigenvalues of M0
α are {ω0Eα−1(ω0), ω1Eα−1(ω1), . . . }. Since the de-

terminant is the product of eigenvalues, if an Eulerian polynomial has a root which is a root of
unity, M0

α is singular. But we know [13] that Eulerian polynomials have real, negative and distinct
roots. So, if −1 is the root of Eulerian polynomials, M0

α is singular. We can observe that if α is an
odd number, Eα−1(X) is a polynomial with even degree and positive, symmetric coefficients. So
Eα−1(−1) 6= 0 if α is an odd number that implies M0

α is non singular. If α is an even number we
have Eα−1(−1) = 0 and so −1 must not be a root of JN . However, exp(2ikπ

N ) = −1 if and only if
N is an even number and k = N

2 . So Eα−1(−1) 6= 0 if α is an even number and N an odd number
that implies M0

α is non singular.

In order to define the 1-forms we shall need the notation

Dα
i (x) =

α

xi+α − xi
Bα−1

i (x),

for this function linked to the derivative of the B-spline Bα−1
i . We can now define the basis functions

for the discrete 1-forms by
w1,α

i (x) = Dα
i (x) dx.

The space of linear spline 1-forms Sα
1 will be the vector space generated by these basis functions.

Any 1-form C1 ∈ Sα
1 writes

C1(x) =

N−1
∑

j=0

c1
jD

α
j (x) dx,

the coefficients c1
j being defined by the relations

∫ xi+1

xi

C1(x) =

N−1
∑

j=0

c1
j

∫ xi+1

xi

Dα
j (x) dx for 0 ≤ i ≤ N − 1,

this also defines a linear system that can be written in matrix form M1
αc1 = C

1, with C
1 =

(
∫ x1

x0
C1(x), . . . ,

∫ xN

xN−1
C1(x))T , c1 = (c1

0, . . . , c
1
N−1)

T and M1
α the square matrix whose components

are m1
ij =

∫ xi+1

xi
Dα

j (x) dx.

Lemma 3.2 Under the conditions of the previous lemma, the matrix M1
α is non singular.

Proof. The basis functions w1,α
i have been chosen using the recursion formula for the spline

derivatives (2) and verify
w1,α

i (x) − w1,α
i+1(x) = Bα

i
′(x) dx.

Using this relation and the fact that Bα
i (x) vanishes for x 6∈ [xi, xi+α], it follows easily by recurrence

on the degree α that

∫ xi+ν+1

xi+ν

w1,α
i (x) =

ν
∑

k=0

Bα
i+k(xi+ν+1) −

ν−1
∑

k=0

Bα
i+k(xi+ν).

In the case of uniform meshes, we have the property Bα
i+k(xi+ν+1) = Bα

i+k+ν+1(xi). So, we deduce
that (M1

α)i,j =
∫ xi+1

xi
Dα

j (x) dx = Bα
j+1(xi+1).
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Denoting by Bα
j+1/2 the splines whose knots are based on the dual mesh, the discrete 0-forms

and 1-forms on the dual mesh are defined in the same way by

C̃0(x) =

N−1
∑

j=0

c̃0
j+1/2B

α
j+1/2(x),

with the c̃0
j+1/2 defined by the interpolation conditions C̃0(xi+1/2) =

∑N−1
j=0 c̃0

j+1/2B
α
j+1/2(xi+1/2)

for 0 ≤ i ≤ N − 1 which is a linear system that can be written in matrix form M̃0
αc̃0 = C̃

0,
with C̃

0 = (C̃0(x1/2), . . . , C̃
0(xN−1/2))

T , c̃0 = (c̃0
1/2, . . . , c̃

0
N−1/2)

T and M̃0
α the square matrix whose

components are m̃0
ij = Bα

j+1/2(xi+1/2). We have that M̃0
α meet the conditions of the first lemma

and so the square matrix is non singular.
A discrete 1-form on the dual mesh is defined by

C̃1(x) =
N−1
∑

j=0

c̃1
j+1/2D

α
j+1/2(x) dx,

the coefficients c̃1
j+1/2 being defined by the relations

∫ xi+3/2

xi+1/2

C̃1(x) =
N−1
∑

j=0

c̃1
j+1/2

∫ xi+3/2

xi+1/2

Dα
j+1/2(x) dx for 0 ≤ i ≤ N − 1,

this also defines a linear system that can be written in matrix form M̃1
αc̃1 = C̃

1, with C̃
1 =

(
∫ x3/2

x1/2
C̃1(x), . . . ,

∫ xN+1/2

xN−1/2
C̃1(x))T , c̃1 = (c̃1

1/2, . . . , c̃
1
N−1/2)

T and M̃1
α the square matrix whose com-

ponents are m̃1
ij =

∫ xi+3/2

xi+1/2
Dα

j+1/2(x) dx. For the same reason as M1, M̃1
α is non singular. Note that

due to the periodicity hypothesis
∫ xN+1/2

xN−1/2
C̃1(x) =

∫ xN

xN−1/2
C̃1(x) +

∫ x1/2

x0
C̃1(x).

The discrete Hodge operator: Having defined discrete 0-forms and 1-forms on both grids, we
can now define in a natural way the discrete Hodge operators [2, 3], mapping primal 0-forms to
dual 1-forms, primal 1-forms to dual 0-forms and the other way round.

As discrete differential forms are defined by their coefficients in the appropriate basis, the
discrete Hodge operator should map those coefficients to those on the image basis. Let us start
with the discrete Hodge mapping primal 0-forms to dual 1-forms. Given a discrete 0-form on the
primal mesh

C0(x) =

N−1
∑

j=0

c0
jB

α
j (x),

we can apply the continuous Hodge operator to it, as ⋆1 = dx, we get

⋆C0(x) =

N−1
∑

j=0

c0
jB

α
j (x) dx.

Now, as Bα
j are not splines on the dual mesh, this does not define a discrete differential form on

the dual mesh. We need an additional projection step. Denoting by πC0 the projection of ⋆C0 on
the space of discrete differential forms of the same order on the dual mesh, we can write

πC0(x) =
N−1
∑

j=0

c̃1
j+1/2D

α
j+1/2(x) dx,
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with
∫ xi+3/2

xi+1/2

⋆C0(x) =

N−1
∑

j=0

c̃1
j+1/2

∫ xi+3/2

xi+1/2

Dα
j+1/2(x) dx for 0 ≤ i ≤ N − 1.

Now defining S̃1 the matrix whose i, j coefficient is
∫ xi+3/2

xi+1/2
Bα

j (x) dx, this relation becomes in matrix

form
S̃1c0 = M̃1

αc̃1,

so that the discrete Hodge operator mapping c0 to c̃1 is

(M̃1
α)−1S̃1 with S̃1

i,j =

∫ xi+3/2

xi+1/2

Bα
j (x) dx.

In order to define the Hodge operator mapping discrete 1-forms on the primal grid to discrete
0-forms on the dual grid, we apply the continuous Hodge operator (⋆dx = 1) to a discrete 1-form
on the primal grid

⋆C1(x) =
N−1
∑

j=0

c1
jD

α
j (x).

Its projection on the space of discrete 0-forms on the dual grid is defined by the point values
⋆C1(xi+1/2). Hence in the same way as before the discrete Hodge in this case is defined by

(M̃0
α)−1S̃0 with S̃0

i,j = Dα
j (xi+1/2).

The Hodge operators mapping from the dual grid to the primal grid are naturally defined in
the same way by

(M1
α)−1S1 with S1

i,j =

∫ xi+1

xi

Bα
j+1/2(x) dx,

(M0
α)−1S0 with S0

i,j = Dα
j+1/2(xi).

Let us finally explicit the different matrices involved in the Hodge operators for the case of
uniform periodic linear and cubic splines. In the case of a uniform mesh, due to the recurrence
relation on spline derivatives we have

Dα
j (x) − Dα

j+1(x) = Bα
j+1

′(x).

Integrating between i an i + 1 and using that Bα
j (x) = Bα

0 (x − xj) yields

∫ xi+1

xi

(Dα
0 (x − xj) − Dα

0 (x − xj − ∆x)) dx = Bα
0 ((i − j)∆x) − Bα

0 ((i − j − 1)∆x).

So that
∫ xi+1

xi

Dα
j (x) dx = Bα

j+1(xi+1).

From this it follows that on a uniform grid M0
α = M1

α = M̃0
α = M̃1

α are all the usual degree α
periodic spline interpolation matrix.

For linear splines (α = 1) the matrices M0
1 = M1

1 = M̃0
1 = M̃1

1 = I are all the identity matrix.
For cubic splines (α = 3) these matrices are the circulant matrices with 2/3 on the diagonal and
1/6 on the upper and lower diagonal.
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Let us now come to the Hodge matrices. Due to their expressions the matrices are also constant
circulant matrices with S0

α = S̃0
α and S1

α = S̃1
α. In the case α = 1, Dα

i (x) = 1
∆x for xi−1 ≤ x ≤ xi

and 0 elsewhere. Hence

S0
1 = S̃0

1 =
1

∆x
I.

And a simple computation yields that S1
1 = S̃1

1 are circulant matrices with three diagonals that
read

S1
1 = S̃1

1 = ∆x circ[
1

8
,
3

4
,
1

8
],

where

circ[
1

8
,
3

4
,
1

8
] =

















1
8 0 . . . 1

8
3
4

3
4

1
8 0 . . . 1

8
1
8

3
4

1
8 0

0
. . .

. . .
. . .

...
... 0 1

8
3
4

1
8

















.

Notice that S0
1 and S̃1

1 are not exactly the inverse of each other as is the case for their con-
tinuous counterparts and the same for S1

1 and S̃0
1 , but for example S̃1

1 and (S0
1)−1 can be used as

approximations for the discrete Hogde operator.
In the case of cubic splines we have, the following circulant matrices

S0
3 = S̃0

3 =
1

∆x
circ[

1

8
,
3

4
,
1

8
],

S1
3 = S̃1

3 = ∆x circ[
1

384
,
19

96
,
115

192
,
19

96
,

1

384
].

3.1.2 Non uniform mesh with perfect conductors boundary conditions

The primal 1D mesh of our domain will be a non uniform set of knots x0 < x1 < · · · < xN−1 < xN .
With perfect conductors boundary conditions, using a degree α taller than one for our interpolation,
we have to contend a problem. We have N + α splines functions and N + 1 knots in the primal
mesh. So we must add knots for interpolation on primal mesh. As α is odd, we add the middle of
(α−1)

2 first primal cells and (α−1)
2 last primal cells. For example, if α equal 3, we must add 2 knots,

so we take the middle of [x0, x1] and [xN−1, xN ].
The primal mesh will be

{x0, · · · , xN}∪

{

(xi+1 + xi)

2
|i ∈ {0, · · · ,

(α − 1)

2
− 1}

}

∪

{

(xi−1 + xi)

2
|i ∈ {N −

(α − 1)

2
+ 1, · · · , N}

}

.

Denoting by n0 < n1 < · · · < nN+α−1 the knots of our primal mesh in increasing order. The dual
mesh will consist of the middle points of the primal mesh with the extremal points x0 and xN , i.e.
n0 = n−1/2 < n1/2 < · · · < nN+α−3/2 < nN+α−1/2 = nN+α−1. To conclude we have N +α knots for
primal meshes and N + α + 1 knots for dual meshes. With this construction, we can interpolate
primal and dual 0 and 1-forms.
Let us start with the discrete 0-form on the primal mesh. Any function C0 ∈ Sα

0 writes

C0(x) =
N−1
∑

j=−α

c0
jB

α
j (x),

with the c0
j defined by the interpolation conditions C0(ni) =

∑N−1
j=−α c0

jB
α
j (ni) for i ∈ {0, · · ·N + α − 1}

on the primal mesh which is a linear system that can be written in matrix form M0
αc0 = C

0, with

7



C
0 =

(

C0(n0), . . . , C
0(nN+α−1)

)T
, c0 =

(

c0
−α, . . . , c0

N−1

)T
and M0

α the square matrix with size N+α
whose components are m0

i,j+α = Bα
j (ni) for j = −α, · · · , N − 1 and i = 0, · · ·N + α − 1.

Lemma 3.3 The matrix M0
α is non singular.

Proof. M0
α meets the conditions of the Schoenberg-Whitney Theorem [8] and so the square matrix

is non singular.

The space of linear spline 1-forms Sα
1 will be the vector space generated by these basis functions.

Any 1-form C1 ∈ Sα
1 writes

C1(x) =

N−1
∑

j=−α+1

c1
jD

α
j (x) dx,

the coefficients c1
j being defined by the relations

∫ ni+1

ni

C1(x) =

N−1
∑

j=−α+1

c1
j

∫ ni+1

ni

Dα
j (x) dx for 0 ≤ i ≤ N + α − 2,

this also defines a linear system that can be written in matrix form M1
αc1 = C

1, with

C
1 =

(

∫ n1

n0
C1(x), . . . ,

∫ nN+α−1

nN+α−2
C1(x)

)T
, c1 =

(

c1
−α+1, . . . , c

1
N−1

)T
and M1

α the square matrix with

size N + α − 1 whose components are m1
i,j+α−3 =

∫ ni+1

ni
Dα

j (x) dx for j = −α + 1, · · · , N − 1 and
i = 0, · · ·N + α − 2.

Lemma 3.4 The matrix M1
α is non singular.

Proof. Using the relation w1,α
i (x) − w1,α

i+1(x) = Bα
i
′(x) dx and the fact that Bα

i (x) vanishes for
x 6∈ [xi, xi+α], it follows easily by recurrence on the degree α that

∫ ni+1

ni

w1,α
i (x) =

N−1
∑

k=j

Bα
k (ni+1) −

N−1
∑

k=j

Bα
k (ni) =: Aα

j (ni+1) − Aα
j (ni).

We can observe that M1
α is the principal minor (1,1) of the matrix



















1 0 · · · · · · 0

−1 1 0
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1



















M0
α



















1 0 · · · · · · 0

1 1 0
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

1 · · · · · · 1 1



















=

















Aα
−α(n0) Aα

−α+1(n0) · · · Aα
N−1(n0)

∫ n1

n0
D−α

∫ n2

n1
D−α

... M1
α

∫ nN+α−1

nN+α−2
D−α

















.

The matrix A on the left hand side is non singular because it’s the product of non singular matrices.
Since for all i, ni > x0 and the support of D−α is ]x−α, x0[, we have

∫ ni+1

ni
D−α = 0. Furthermore,

Aα
−α(n0) 6= 0 because Bi(x) > 0 and B−α(n0) 6= 0. So, 0 6= det(A) = Aα

−α(n0)det(M1
α) that implies

det(M1
α) 6= 0.

The discrete 0-forms and 1-forms on the dual mesh are defined in the same way by

C̃0(x) =
N−1
∑

j=−α−1

c̃0
j+1/2B

α
j+1/2(x),

8



with the c̃0
j+1/2 defined by the interpolation conditions

C̃0(ni−1/2) =
N−1
∑

j=−α−1

c̃0
j+1/2B

α
j+1/2(ni−1/2) for i ∈ {0, · · · , N + α}

on the dual mesh which is a linear system that can be written in matrix form M̃0
αc̃0 = C̃

0, with

C̃
0 =

(

C̃0(n−1/2), C̃
0(n1/2), · · · , C̃0(nN+α−1/2)

)T
, c̃0 =

(

c̃0
−α+3/2, . . . , c̃

0
N+3/2

)T
and M̃0

α the square

matrix with size N + α + 1 whose components are m̃0
i,j+α−1 = Bα

j+1/2(ni−1/2) and is nonsingular
with help Schoenberg-Whitney Theorem.

A discrete 1-form on the dual mesh is defined by

C̃1(x) =
N−1
∑

j=−α

c̃1
j+1/2D

α
j+1/2(x) dx,

the coefficients c̃1
j+1/2 being defined by the relations

∫ ni+1/2

ni−1/2

C̃1(x) =

N−1
∑

j=−α

c̃1
j+1/2

∫ ni+1/2

ni−1/2

Dα
j+1/2(x) dx for 0 ≤ i ≤ N + α − 1,

this also defines a linear system that can be written in matrix form M̃1
αc̃1 = C̃

1, with

C̃
1 =

(

∫ n1/2

n
−1/2

C̃1(x), · · · ,
∫ nN+α−1/2

nN+α−3/2
C̃1(x)

)T
, c̃1 =

(

c̃1
−α+3/2, . . . , c̃

1
N+3/2

)T
and M̃1

α the square ma-

trix with size N + α whose components are m̃1
i,j+α−2 =

∫ ni+1/2

ni−1/2
Dα

j+1/2(x) dx and is nonsingular

thanks to the previous lemma.

The discrete Hodge operator: Let us start with the discrete Hodge [2, 3] mapping primal
0-forms to dual 1-forms. Given a discrete 0-form on the primal mesh

C0(x) =

N−1
∑

j=−α

c0
jB

α
j (x),

and so

⋆C0(x) =

N−1
∑

j=−α

c0
jB

α
j (x) dx.

Denoting by πC0 the projection of ⋆C0 on the space of discrete differential forms of the same order
on the dual mesh, we can write

πC0(x) =

N−1
∑

j=−α

c̃1
j+1/2D

α
j+1/2(x) dx,

with
∫ ni+1/2

ni−1/2

⋆C0(x) =

N−1
∑

j=−α

c̃1
j+1/2

∫ ni+1/2

ni−1/2

Dα
j+1/2(x) dx for 0 ≤ i ≤ N + α − 1,

where n−1/2 = n0 and nN+α−1/2 = nN+α−1. Now defining S̃1 the square matrix with a size N + α
whose i, j coefficient is

∫ ni+1/2

ni−1/2
Bα

j (x) dx, this relation becomes in matrix form

S̃1c0 = M̃1
αc̃1,

9



so that the discrete Hodge operator mapping c0 to c̃1 is

(M̃1
α)−1S̃1 with S̃1

i,j =

∫ ni+1/2

ni−1/2

Bα
j (x) dx.

In order to define the Hodge operator mapping discrete 1-forms in the primal grid to discrete
0-forms on the dual grid, we apply the continuous Hodge operator to a discrete 1-form on the
primal grid

⋆C1(x) =
N−1
∑

j=−α+1

c1
jD

α
j (x).

Its projection on the space of discrete 0-forms on the dual grid is defined by the point values
⋆C1(ni−1/2) for i ∈ {0, · · · , N + α}. Hence in the same way as before the discrete Hodge in this
case is defined by

(M̃0
α)−1S̃0 with S̃0

i,j = Dα
j (ni−1/2).

We can notice that this matrix is not square because its size is (N + α + 1) × (N + α − 1).
The Hodge operators mapping from the dual grid to the primal grid are naturally defined in

the same way by

(M1
α)−1S1 with S1

i,j =

∫ ni+1

ni

Bα
j+1/2(x) dx.

This matrix is not square, its size is (N + α − 1)× (N + α + 1), but the matrix S0 is square, with
a size (N + α) × (N + α):

(M0
α)−1S0 with S0

i,j = Dα
j+1/2(ni).

3.2 The 3D case

We are now going to define the 3D discrete differential forms on a periodic cartesian grid, which
will be needed for Maxwell’s equations, by tensor product using the 1D form. This procedure can
be generalized in a natural way to any number of dimensions.

The set of 3D discrete differential forms will be defined as the span of the following basis
functions:

• The basis functions for the 0-forms are

0wα
i,j,k(x, y, z) = Bα

i (x)Bα
j (y)Bα

k (z).

• The basis functions for the 1-forms are

1wα,x
i,j,k(x, y, z) = Dα

i (x)Bα
j (y)Bα

k (z) dx,

1wα,y
i,j,k(x, y, z) = Bα

i (x)Dα
j (y)Bα

k (z) dy,

1wα,zi, j, k(x, y, z) = Bα
i (x)Bα

j (y)Dα
k (z) dz.

• The basis functions for the 2-forms are

2wα,x
i,j,k(x, y, z) = Bα

i (x)Dα
j (y)Dα

k (z) dy ∧ dz,

2wα,y
i,j,k(x, y, z) = Dα

i (x)Bα
j (y)Dα

k (z) dz ∧ dx,

2wα,z
i,j,k(x, y, z) = Dα

i (x)Dα
j (y)Bα

k (z) dx ∧ dy.

10



• The basis functions for the 3-forms are

3wα
i,j,k(x, y) = Dα

i (x)Dα
j (y)Dα

k (z) dx ∧ dy ∧ dz.

This construction will yield the same basis functions as in [7] and [14] where vector calculus is
used.

4 Link with the theory of chains and cochains

We now point out the link of our discrete differential forms with the theory of chains and cochains
[4, 6, 9, 15].

4.1 Notion of chain

Hypercubes [16, 17]: Let us denote by Ω a domain and by T its boundary. We pave Ω with
squares and we denote by m this mesh. We call 0-cubes, the nodes of our mesh, 1-cubes, the edges,
2-cubes, the squares and 3-cubes, the cubes ( 4-cubes, the tesseract, 5-cubes for the penteract, ..).
We define an orientation for all of elements of m and denote by Hα,p(m) the set of p-cubes (we
will see that in the case of a non periodic domain the number of p-cubes depends on the degree
of B-splines α). Now, we define the boundary operator ∂ that maps a p-cube to a (p − 1)-cube.
For example: let ei a vector who has for origin xi and for extremity point xi+1, so the boundary
of ei is ∂ei = xi+1 − xi. In fact, we can define the boundary operator ∂p, mapping a p-cube to
a (p − 1)-cube, by a sparse matrix containing only −1, 1 or 0 with size |Hα,p−1(m)| × |Hα,p(m)|.
These matrices are called the transpose of incidence matrices and verify ∂p ∂p+1 = 0.

Notion of Chains and discrete manifolds: A p-chain cp is a linear combination of all p-cubes
on m i.e.:

cp =
∑

hp,s∈Hα,p(m)

cp,s hp,s,

where cp,s ∈ R. We will denote the set of all p-chains as Cα,p(m). We define that a p-dimensional
manifold is discretized by a p-chain and the boundary operator acts on p-chains by linearity as:

∂cp = ∂





∑

hp,s∈Hα,p(m)

cp,s hp,s



 =
∑

hp,s∈Hα,p(m)

cp,s ∂ hp,s,

and when we collect the s-th (p − 1)-cube we obtain:

∂cp =
∑

hp−1,s∈Hα,p−1(m)

(∂pcp)s hp−1,s,

where cp = (cp,s)s is a column vector containing the coefficients of a p-chain. And so, applying
the boundary operator on a p-chain is equivalent to applying the operator ∂p on coefficients of a
p-chain. Furthermore, since all p-chains are defined by their |Hα,p(m)| coefficients cp,s, we can find
a bijection mapping Cα,p(m) to R

|Hα,p(m)|. But, before, we will define the mapping that determines
the coefficients cp,s.
A p-chain cp represents a discrete p-manifold, so for all basis functions pwα

i ∈ Wα,p(m) we can
compute the integral of pwα

i over cp. So, coefficient cp,s is defined by the relations, for all i ∈
|Hα,p(m)|:

∫

cp

pwα
i =

∑

hp,s∈Hα,p(m)

cp,s

∫

hp,s

pwα
i .
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This yields a linear system. For example, in one dimension, we must solve

• for a 0-chain
C0 = (M0

α)t c0,

where C0 = (Bα
0 (c0), . . . , B

α
|Hα,0(m)|−1(c0))

t, c0 = (c0,0, . . . , c0,|Hα,0(m)|−1)
t and M0

α is the

square matrix we constructed for discrete differential 0-forms.

• for a 1-chain
C1 = (M1

α)t c1,

where C1 = (
∫

c1
Dα

0 (x)dx, . . . ,
∫

c1
Dα

|Hα,1(m)|−1(x)dx)t, c1 = (c1,0, . . . , c1,|Hα,1(m)|−1)
t and M1

α

is the square matrix we constructed for discrete differential 1-forms.

In the same way, in two or three dimension, we can remark that we also must solve linear systems
involving tensor products of matrices (M1

α)t and (M0
α)t. More generally, for all dimensions, we

denote by M
p
α the square matrix that we use for finding the coefficients of p-chain cp i.e. for solving

the linear system Cp = (Mp
α)tcp. Now, we can define Pt

α mapping Cα,p(m) to R
|Hα,p(m)| and Rt

α

mapping R
|Hα,p(m)| to Cα,p(m) such that

Pt
α : Cα,p(m) → R

|Hα,p(m)|

cp 7→ {cp | Cp = (Mp
α)t cp}

and

Rt
α : R

|Hα,p(m)| → Cα,p(m)

cp = (cp,s)s 7→
∑

hp,s∈Hα,p(m)

cp,s hp,s.

Now we can show that we have a de Rham complex:

Cα,3(m)
∂ //

Pt
α

��

Cα,2(m)
∂ //

Pt
α

��

Cα,1(m)
∂ //

Pt
α

��

Cα,0(m)

Pt
α

��
R
|Hα,3(m)|

∂3
//

Rt
α

OO

R
|Hα,2(m)|

∂2
//

Rt
α

OO

R
|Hα,1(m)|

∂1
//

Rt
α

OO

R
|Hα,0(m)|

Rt
α

OO

with ∂2∂3 = 0 and ∂1∂2 = 0.

Lemma 4.1 This diagram is commutative.

Proof. Remember a property of B-splines Bα
j (xi+1)−Bα

j (xi) =
∫ xi+1

xi
Dj(x) dx−

∫ xi+1

xi
Dj+1(x) dx,

this becomes in matrix from (M0
α)t ∂1 = ∂1 (M1

α)t and we have also (M1
α)t ∂2 = ∂2 (M2

α)t and
(M2

α)t ∂3 = ∂3 (M3
α)t. Then, remenber also that applying the boundary operator on a p-chain its

equivalent to applying the operator ∂p on the coefficients of the p-chain. So, for a 1-chain c1,
∂ c1 =

∑

h0,s∈Hα,0(m)(∂
1c1)s h0,s and so Pt

α ∂ c1 = ((M0
α)t)−1 ∂1 c1 and ∂1 Pt

α c1 = ∂1 ((M1
α)t)−1 c1.

We can deduce that ∂1 (Pα)t c1 = Pt
α ∂ c1. Proceeding in the same way, we also obtain that

∂2 Pt
α c2 = Pt

α ∂ c2 and ∂3 Pt
α c3 = Pt

α ∂ c3.

In the dual mesh, denoting by H⋆
α,p(m) the p-cell, dual of (n− p)-cubes and C⋆

α,p(m) the set of
p-chain in the dual mesh. Similarly, we obtain a de Rham complex, also commutative:

C⋆
α,3(m) ∂ //

Pt
α

��

C⋆
α,2(m) ∂ //

Pt
α

��

C⋆
α,1(m) ∂ //

Pt
α

��

C⋆
α,0(m)

Pt
α

��
R
|Hα,0(m)|

(∂1)t

//

Rt
α

OO

R
|Hα,1(m)|

(∂2)t

//

Rt
α

OO

R
|H2,α(m)|

(∂3)t

//

Rt
α

OO

R
|Hα,3(m)|

Rt
α

OO
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4.2 Notion of cochain

Cochains: A p-cochain wp is the dual of a p-chain. That is to say wp is a linear mapping that
takes p-chains to R:

wp : Cα,p(m) → R

cp 7→ wp(cp)

We denote the set of p-cochains or p-forms by Wα,p(m). By duality, this space has a finite dimension
|Hα,p(m)|. A p-cochain wp operates on a p-chain cp and returns a linear combination of the values
of the cochain on each p-cube.

Link with differentials forms: p-cochains are discrete analogs of differential forms. So, a
discrete differential p-form, wp, is a linear mapping that takes p-chains to R. We have seen, during
the construction of discrete differential p-forms, or p-cochains, that they can be written as:

wp =
∑

p
w

α
s ∈W α,p(m)

wp,s pwα
s ,

where the coefficients wp,s are defined as the solution of the linear system:

W
p = M

p
α wp.

Now, we can define the non degenerate bilinear form:

〈 , 〉 : Wα,p(m) × Cα,p(m) → R

(wp, cp) 7−→ 〈wp, cp〉 =

∫

cp

wp.

Let cp a p-chain and wp a differential p-form, we obtain by linearity:

∫

cp

wp =
∑

hp,s∈Hα,p(m)

cp,s

∫

hp,s

wp.

So, the bilinear mapping acts on the spline coefficients and on the coefficients of p-chains as:

〈wp, cp〉 = ct
p M

p
α wp,

where cp and wp are column vectors of coefficients of the p-chain cp and the p-cochain wp respec-
tively.
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Exterior derivative, Stokes theorem and de Rham complex: The exterior derivative maps
a (p − 1)-form to p-form. For example, in the 3D case and p = 1:

dw0 = d
(

∑

wi,j,kBα
i (x)Bα

j (y)Bα
k (z)

)

=
∑

wi,j,kd
(

Bα
i (x)Bα

j (y)Bα
k (z)

)

=
∑

wi,j,k(Dα
i (x) − Dα

i+1(x))Bα
j (y)Bα

k (z) dx

+ wi,j,k(Dα
j (y) − Dα

j+1(y))Bα
i (x)Bα

k (z) dy

+ wi,j,k(Dα
k (z) − Dα

k+1(z))Bα
i (x)Bα

j (y) dz

=
∑

(wi,j,k − wi−1,j,k)Dα
i (x)Bα

j (y)Bα
k (z) dx

+ (wi,j,k − wi,j−1,k)Bα
i (x)Dα

j (y)Bα
k (z) dy

+ (wi,j,k − wi,j,k−1)Bα
i (x)Bα

j (y)Dα
k (z) dz

=
∑

(wi,j,k − wi−1,j,k) 1wα,x
i,j,k(x, y, z)

+ (wi,j,k − wi,j−1,k) 1wα,y
i,j,k(x, y, z)

+ (wi,j,k − wi,j,k−1) 1wα,z
i,j,k(x, y, z).

We remember that we have an equivalence between applying the boundary operator on a p-chain
and applying ∂p on coefficients of a p-chain for p = 1, 2, 3 respectively. Here, we have the dual
property. We can see that applying the exterior derivative on a differential p-form is equivalent to
applying the incidence matrix (∂p)t on the spline coefficients.
Now, construct a diagram. Denoting by F p(Ω) the set of differential p-forms on Ω (not discrete).
We can pass from p-form to a (p + 1)-form by exterior derivative and the sequence

F 0(Ω)
d // F 1(Ω)

d // F 2(Ω)
d // F 3(Ω) ,

is exact when Ω is star-shaped [10] and we have, in the same way, for discrete differential p-forms,

Wα,0(m)
d // Wα,1(m)

d // Wα,2(m)
d // Wα,3(m) ,

is exact when m is the mesh of a star-shaped Ω. Seeing that Wα,p(m) was constructed as a finite
dimensional subspace of F p(Ω), we can project the set of differential p-forms on W p,α(m). We
obtain the de Rham complex:

F 0 d //

proj
��

F 1 d //

proj
��

F 2 d //

proj
��

F 3

proj
��

Wα,0(m)
d //

Pα

��

Wα,1(m)
d //

Pα

��

Wα,2(m)
d //

Pα

��

Wα,3(m)

Pα

��
R
|Hα,0(m)|

(∂1)t

//

Rα

OO

R
|Hα,1(m)|

(∂2)t

//

Rα

OO

R
|Hα,2(m)|

(∂3)t

//

Rα

OO

R
|Hα,3(m)|

Rα

OO

where proj is a projection and mapping Pα and Rα are the dual mapping of Pt
α and Rt

α defined
by :

Pα : Wα,p(m) → R
|Hα,p(m)|

wp 7→ {wp|Wp = M
p
α wp}
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and

Rα : R
|Hα,p(m)| → Wα,p(m)

wp 7→
∑

p
w

α
s ∈W α,p(m)

wp,s pwα
s .

Lemma 4.2 This diagram is commutative.

Proof. First, let us show that the part involving discrete differential p-forms and spline coefficients,
a commutative diagram.
With help of a property of splines, we have seen that (M0

α)t ∂1 = ∂1 (M1
α)t, (M1

α)t ∂2 = ∂2 (M2
α)t

and (M2
α)t ∂3 = ∂3 (M3

α)t. We take the tranpose and we have (∂1)t
M

0
α = M

1
α (∂1)t, (∂2)t

M
1
α =

M
2
α (∂2)t and (∂3)t

M
2
α = M

3
α (∂3)t. Furthermore, applying the exterior derivative on a differ-

ential p-form is equivalent to applying the incidence matrix on the spline coefficients. We have
Pα dw0 = (M1

α)−1 (∂1)t w0 and (∂1)t Pα w0 = (∂1)t (M0
α)−1 w0 and so (∂1)t Pα w0 = Pα dw0. In

the same way, we obtain (∂2)t Pα w1 = Pα dw1, (∂3)t Pα w2 = Pα dw2.

Secondly, let us show that the part concerning differential p-forms and discrete differential p-
forms is a commutative diagram.
On the one hand, let ωp−1 ∈ F p−1(Ω) a differential (p − 1)-form. The exterior derivative of a
(p − 1)-form dωp−1 is p-form. So, with help of the Leibniz property , we obtain that

proj d ωp−1 =
∑

p
w

α
s ∈W α,p(m)

(

(Mp
α)−1 (∂p)t

W
p−1
)

s

pwα
s .

On other hand, with help of exterior derivative on splines coefficients

d proj ωp−1 =
∑

p
w

α
s ∈W α,p(m)

(

(∂p)t
(

M
p−1
α

)−1
W

p−1
)

s

pwα
s .

And so, showing that d proj ωp−1 = proj d ωp−1 is equivalent to showing that (∂p)t
(

M
p−1
α

)−1
=

(Mp
α)

−1
(∂p)t, that we have.

Remark 4.1 Since splines have a compact support, we can observe that Wα,0(m) ⊂ H(grad,Ω),
Wα,1(m) ⊂ H(curl, Ω), Wα,2(m) ⊂ H(div,Ω) and Wα,3(m) ⊂ L2(Ω) in the sense of differential

forms. That is, if wp ∈ Wα,p(m), wp ∧ ⋆wp ∈ L2(Ω) and dwp ∧ ⋆dwp ∈ L2(Ω).

Also, for p-cochains on the dual mesh Wα,p
⋆ , we have similarly a commutative diagram:

F 0 d //

proj
��

F 1 d //

proj
��

F 2 d //

proj
��

F 3

proj
��

Wα,0
⋆ (m)

d //

Pα

��

Wα,1
⋆ (m)

d //

Pα

��

Wα,2
⋆ (m)

d //

Pα

��

Wα,3
⋆ (m)

Pα

��

R
|H⋆

α,0(m)| ∂3
//

Rα

OO

R
|H⋆

α,1(m)| ∂2
//

Rα

OO

R
|H⋆

α,2(m)| ∂1
//

Rα

OO

R
|H⋆

α,3(m)|

Rα

OO
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4.3 A broader view

In parallel with gradient, curl and divergence, we denote by G, R, D the matrix (∂p)t for p = 1, 2, 3
respectively. Furthermore, using Hodge star operator ⋆ mapping a p-form to a (n− p)-form, where
n is the dimension of space, we have

F 0

d

��

proj //

⋆

++
Wα,0(m)

d

��

Pα //
R
|Hα,0(m)|

G

��

Rα

oo
(M̃3)−1S̃3

//
R
|H⋆

α,3(m)|

(M0)−1S0

oo
Rα //

Wα,3
⋆ (m)

Pα

oo F 3
projoo

F 1

d

��

proj // Wα,1(m)

d

��

Pα //
R
|Hα,1(m)|

R

��

Rα

oo
(M̃2)−1S̃2

//
R
|H⋆

α,2(m)|

(M1)−1S1

oo

Gt

OO

Rα //
Wα,2

⋆ (m)
Pα

oo

d

OO

F 2
projoo

d

OO

F 2

d

��

proj // Wα,2(m)

d

��

Pα //
R
|Hα,2(m)|

D

��

Rα

oo
(M̃1)−1S̃1

//
R
|H⋆

α,1(m)|

(M2)−1S2

oo

Rt

OO

Rα //
Wα,1

⋆ (m)
Pα

oo

d

OO

F 1
projoo

d

OO

F 3
proj // Wα,3(m)

Pα //
R
|Hα,3(m)|

Rα

oo
(M̃0)−1S̃0

//
R
|H⋆

α,0(m)|

(M3)−1S3

oo

Dt

OO

Rα //
Wα,0

⋆ (m)
Pα

oo

d

OO

F 0
projoo

d

OO

⋆−1

kk

In the n-dimensional space , we denote by (M̃n−p)−1S̃n−p maps from a discrete primal p-form
to a discrete dual (n− p)-form and denote by (Mn−p)−1Sn−p maps from a discrete dual p-form to
a discrete primal (n− p)-form. In theory, we have ⋆ ⋆ωp = (−1)p(n−p)ωp for all differential p-forms.
We do not have this property with discrete differential forms but (Mn−p)−1Sn−p(M̃n−p)−1S̃n−p

tends to (−1)p(n−p)Id when we increase the order of spline for interpolation. We remark that it
does not depend on the number of mesh points. In the case of periodic domain in 1-dimension, we
obtain the following table:

Degree of Spline Max (| ⋆ ⋆ − Id|)

α = 1 0.25

α = 3 0.011031684

α = 5 0.001809231

5 Application to the Maxwell equations

5.1 General case

The 3D Maxwell equations can be written in terms of differential forms [4] in the following way

−∂t
2D + d 1H = 2J, (4)

∂t
2B + d 1E = 0, (5)

d 2D = 3ρ, (6)

d 2B = 0, (7)
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where 2D, 2B, 2J are 2-forms, 1E, 1H are 1-forms and 3ρ is a 3-form.
For the purpose of numerical validation, let us consider the 2D case, where all functions depend

only on the x and y variables. In this case, the Maxwell equations keep their three components, we
therefore still need to consider the differential forms in a 3D space but restrict them to coefficients
depending only on x and y. For the discretization of Maxwell’s equations with our spline discrete
differential forms, we can define two dual uniform cartesian grids of [0, 1]3. The mesh we shall
consider will be a the cartesian product of a 2D mesh with one cell of length one in the z direction.
The primal 2D grid is based on the points xi = i/∆x, yj = j/∆y, with (i, j) ∈ [0, Nx] × [0, Ny]
and Nx∆x = Ny∆y. In case of periodic boundary conditions in the x direction, the point xNx

corresponds to x0 and is omitted from the grid. Periodic boundary conditions in the other direction
are dealt with in the same manner.

The points of the dual grid are xi+1/2 = (i + 1/2)/∆x, yj+1/2 = (j + 1/2)/∆y, with (i, j, k) ∈
[0, Nx − 1] × [0, Ny − 1].

The basis functions for our spline discrete differential forms in this case will be

• for the 0-forms
0wα

i,j(x, y) = Bα
i (x)Bα

j (y),

• for the 1-forms

1wα,x
i,j (x, y) = Dα

i (x)Bα
j (y) dx, 1wα,y

i,j (x, y) = Bα
i (x)Dα

j (y) dy, 1wα,z
i,j (x, y) = Bα

i (x)Bα
j (y) dz,

• for the 2-forms

2wα,x
i,j (x, y) = Bα

i (x)Dα
j (y) dy ∧ dz, 2wα,y

i,j (x, y) = Dα
i (x)Bα

j (y) dz ∧ dx,

2wα,z
i,j (x, y) = Dα

i (x)Dα
j (y) dx ∧ dy,

• for the 3-forms
3wα

i,j(x, y) = Dα
i (x)Dα

j (y) dx ∧ dy ∧ dz.

The discrete differential forms on the dual mesh are defined in the same way with their indices
on the dual mesh.

Let us now introduce approximations of the unknowns of Maxwell’s equations as linear combi-
nations of these basis functions for the corresponding p-forms. Let us denote by 1w̃α and 2w̃α, the
discrete spline one form and two form basis functions for the splines with knots being the points
of the dual mesh. In 2D, Maxwell’s equations decouple into two systems, one linking the x and y
components of 2D and 1E and the z component of 2B and 1H, and the other one linking the x
and y components of 2B and 1H and the z component of 2D and 1E. We shall only consider the
first one here. The other can be dealt with similarly.

Let us now express the relevant components of our electromagnetic field in the appropriate basis
of discrete differential forms

2Dx
h(t, x, y) =

∑

i,j

dx
i+1/2,j+1/2(t)

2w̃α,x
i+1/2,j+1/2(x, y), 1Ex

h(t, x, y) =
∑

i,j

ex
i,j(t)

1wα,x
i,j (x, y),

2Dy
h(t, x, y) =

∑

i,j

dy
i+1/2,j+1/2(t)

2w̃α,y
i+1/2,j+1/2(x, y) 1Ey

h(t, x, y) =
∑

i,j

ey
i,j(t)

1wα,y
i,j (x, y),

1Hz
h(t, x, y) =

∑

i,j

hz
i+1/2,j+1/2(t)

1w̃α,z
i+1/2,j+1/2(x, y), 2Bh(t, x, y) =

∑

i,j

bz
i,j(t)

2wα,z
i,j (x, y).
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In order to obtain equations relating the coefficients of this discrete differential forms, we inject
these expressions into the Maxwell equations (4)-(7), and take the De Rahm maps for two forms
on each facet of the the dual mesh for (4) and (6) and of primal mesh for (5) and (7) .

Let us first compute the exterior derivatives of 1Hh and 1Eh:

d 1Hz
h(t, x, y) =

∑

i,j

hz
i+1/2,j+1/2(t)d

1w̃α,z
i+1/2,j+1/2(x, y)

=
∑

i,j

hz
i+1/2,j+1/2(t)

(

−Bα
i+1/2

′(x)Bα
j+1/2(y) dz ∧ dx + Bα

i+1/2(x)Bα
j+1/2

′(y) dy ∧ dz
)

,

using the formula (2) for the derivative of the spline functions and the definition of Dα
i , (3.1.1), we

get

d 1Hz
h(t, x, y) =

∑

i,j

hz
i+1/2,j+1/2(t)

(

(Dα
i+3/2(x) − Dα

i+1/2(x))Bα
j+1/2(y) dz ∧ dx

+Bα
i+1/2(x)(Dα

j+1/2 − Dα
j+3/2)(y) dy ∧ dz

)

=
∑

i,j

(hz
i−1/2,j+1/2(t) − hz

i+1/2,j+1/2(t))D
α
i+1/2(x)Bα

j+1/2(y) dz ∧ dx

+
∑

i,j

(hz
i+1/2,j+1/2(t) − hz

i+1/2,j−1/2(t))B
α
i+1/2(x)Dα

j+1/2(y) dy ∧ dz. (8)

In the same way

d 1Ex
h(t, x, y) =

∑

i,j

ex
i,j(t)d

1w̃α,x
i,j (x, y)

= −
∑

i,j

ex
i,j(t)D

α
i (x)Bα

j
′(y) dx ∧ dy

= −
∑

i,j

(ex
i,j(t) − ex

i,j−1(t))D
α
i (x)Dα

j (y) dx ∧ dy, (9)

and

d 1Ey
h(t, x, y) =

∑

i,j

ey
i,j(t)d

1w̃α,y
i,j (x, y)

=
∑

i,j

ey
i,j(t)B

α
i
′(x)Dα

j (y) dx ∧ dy

=
∑

i,j

(ey
i,j(t) − ey

i−1,j(t))D
α
i (x)Dα

j (y) dx ∧ dy, (10)

Ampere’s law (4), without current, for the first two components can be written

∂t
2Dx + ∂t

2Dy − d 1H = 0.

Then using expression (8) and identifying the components on the basis vectors of the discrete
differential forms we get the following relation between the spline coefficients

dx
i+1/2,j+1/2

′(t) + hz
i+1/2,j+1/2(t) − hz

i+1/2,j−1/2(t) = 0,

dy
i+1/2,j+1/2

′
(t) − hz

i+1/2,j+1/2(t) + hz
i−1/2,j+1/2(t) = 0.
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On the other hand, Faraday’s law (5), for the third component can be written

∂t
2Bz + d 1E = 0.

This becomes using (9) and (10) and identifying the components on the basis vectors of the discrete
differential forms

bz
i,j

′(t) + (ey
i,j(t) − ey

i−1,j(t)) − (ex
i,j(t) − ex

i,j−1(t)) = 0.

Discrete Hodge operators: Let us denote by

bz = ((bz
i,j))1≤i≤Nx−1,1≤j≤Ny−1, ex = ((ex

i,j))1≤i≤Nx−1,1≤j≤Ny−1, ey = ((ey
i,j))1≤i≤Nx−1,1≤j≤Ny−1,

hz = ((hz
i+1/2,j+1/2))1≤i≤Nx−1,1≤j≤Ny−1, dx = ((dx

i+1/2,j+1/2))1≤i≤Nx−1,1≤j≤Ny−1,

dy = ((dy
i+1/2,j+1/2))1≤i≤Nx−1,1≤j≤Ny−1,

the matrices of spline coefficients on the discrete grids.
We now need to define the discrete Hodge operators mapping dx to ex, dy to ey and bz to hz.

The same procedure as for the 1D case will be used. We have

2Dx
h(t, x, y) =

∑

i,j

dx
i+1/2,j+1/2(t)B

α
i+1/2(x)Dα

j+1/2(y) dy ∧ dz,

defines a 2-form to which we can apply the continuous Hodge operator, yielding the one form

⋆ 2Dx
h(t, x, y) =

∑

i,j

dx
i+1/2,j+1/2(t)D

α
i+1/2(x)Bα

j+1/2(y) dx.

We now define the image of 2D by the discrete Hodge operator as the projection of this 1-form
onto the primal grid. Denoting 1Eh =

∑

i,j ex
i,j(t)D

α
i (x)Bα

j (y) dx this image. Then we have for any
(k, l) ∈ [0, Nx − 1] × [0, Ny − 1]

∫ xk+1

xk

⋆ 2Dx
h(t, x, yl) =

∑

i,j

dx
i+1/2,j+1/2(t)

∫ xk+1

xk

Bα
i+1/2(x) dx Dα

j+1/2(yl) =
∑

i,j

ex
i,j(t)

∫ xk+1

xk

Dα
i (x) dx Bα

j (yl).

Recalling that
∫ xk+1

xk
Bα

i (x) dx is the term at position (k, i) of matrix M1
α, that Bα

j (yl) is the

term at position (l, j) of matrix M0
α and denoting by S1 the matrix whose (k, i) component is

∫ xk+1

xk
Bα

i+1/2(x) dx and by S0 the matrix whose (l, j) component is Dα
j+1/2(yl), the above relation

can be written in matrix form
S1dx(S0)T = M1

αex(M0
α)T .

This defines the discrete Hodge operator mapping d to e. Note that on a uniform grid all these
matrices are symmetric so that the transpose can be omitted. For the y component, the Dα

i and
Bα

j are interchanged so that we get

S0dy(S1)T = M0
αey(M1

α)T .

And the same computation gives us the discrete Hodge operator for the z component

S1bz(S1)T = M0
αhz(M0

α)T .
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5.2 Change of variables in two dimensions

Let us now consider a computational domain defined by a mapping f from a square. The change of
variables f : (r, s) → (f1(r, s), f2(r, s)) = (x, y) is a diffeomorphism. Let us denote J the jacobian
matrix of f

J(r, s) =

( ∂f1

∂r (r, s) ∂f1

∂s (r, s)
∂f2

∂r (r, s) ∂f2

∂s (r, s)

)

,

and |J | its determinant. By definition we also have that the jacobian matrix of the inverse of f at
point (f1(r, s), f2(r, s)) is the inverse of the jacobian matrix of f ,

J−1(r, s) =





∂f−1

1

∂x (f1(r, s), f2(r, s))
∂f−1

1

∂y (f1(r, s), f2(r, s))
∂f−1

2

∂x (f1(r, s), f2(r, s))
∂f−1

2

∂y (f1(r, s), f2(r, s))



 =
1

|J |

( ∂f2

∂s (r, s) −∂f1

∂s (r, s)

−∂f2

∂r (r, s) ∂f1

∂r (r, s)

)

.

We discretize the cartesian domain parametrized by (r, s) and we will work only on this domain.
The primal 2D mesh of our domain will be r0 < r1 < · · · < rNr−1 < rNr in the r-direction and
s0 < s1 < · · · < sNs−1 < sNs in the s-direction. In 2D, Maxwell’s equations use the following
differential forms

1H(x, y) = hz(x, y)dz,
2B(x, y) = bz(x, y)dx ∧ dy,
1E(x, y) = ex(x, y)dx + ey(x, y)dy,
2D(x, y) = dx(x, y)dy ∧ dz + dy(x, y)dz ∧ dx.

When we do the change of coordinates, we obtain

f⋆ 1H(r, s) = hz(f1(r, s), f2(r, s))dz,

f⋆ 2B(r, s) = bz(f1(r, s), f2(r, s))|J |dr ∧ ds,

f⋆ 1E(r, s) = (ex(f1(r, s), f2(r, s))
∂f1

∂r
(r, s) + ey(f1(r, s), f2(r, s))

∂f2

∂r
(r, s))dr

+(ex(f1(r, s), f2(r, s))
∂f1

∂s
(r, s) + ey(f1(r, s), f2(r, s))

∂f2

∂s
(r, s))ds,

f⋆ 2D(r, s) = (dx(f1(r, s), f2(r, s))
∂f2

∂r
(r, s) − dy(f1(r, s), f2(r, s))

∂f1

∂r
(r, s))dr ∧ dz

+(dx(f1(r, s), f2(r, s))
∂f2

∂s
(r, s) − dy(f1(r, s), f2(r, s))

∂f1

∂s
(r, s))ds ∧ dz.

Let us now express differentials forms in the new coordinates in the appropriate basis of discrete
differential forms

f⋆ 2Dr
h(t, r, s) =

∑

i,j

dr
i+1/2,j+1/2(t)

2w̃α,r
i+1/2,j+1/2(r, s), f⋆ 1Er

h(t, r, s) =
∑

i,j

er
i,j(t)

1wα,r
i,j (r, s),

f⋆ 2Ds
h(t, r, s) =

∑

i,j

ds
i+1/2,j+1/2(t)

2w̃α,s
i+1/2,j+1/2(r, s) f⋆ 1Es

h(t, r, s) =
∑

i,j

es
i,j(t)

1wα,s
i,j (r, s),

f⋆ 1Hz
h(t, r, s) =

∑

i,j

hz
i+1/2,j+1/2(t)

1w̃α,z
i+1/2,j+1/2(r, s), f⋆ 2Bh(t, r, s) =

∑

i,j

bz
i,j(t)

2wα,z
i,j (r, s).

Coefficients associated to splines are calculated with help of degree of freedom on the cartesian grid
(r, s, z).
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The exterior derivative d does not depend on the coordinate system, we have f⋆d = df⋆. This
proprety can be verified on discrete differential forms with help of the discrete exterior derivative
acting on spline coefficients. So Ampere’s law (4), without current, for the first two components
can be written

∂tf
⋆ 2Dr + ∂tf

⋆ 2Ds − df⋆ 1H = 0.

On the other hand, Faraday’s law (5), without current, for the third component can be written

∂tf
⋆ 2Bz + df⋆ 1E = 0.

Discrete Hodge operators: We must be careful since f⋆ does not commute with the Hodge
operator, so we must define discrete Hodge operators in the new coordinate system such that the
following equalities are true:

f⋆ 2B = f⋆
(

⋆ 1H
)

,

f⋆ 1E = f⋆
(

⋆ 2D
)

.

We know f⋆ 1H, f⋆ 2D and we want calculate the spline coeficients for f⋆ 2B, f⋆ 1E . For this, we
apply the pullback f−1⋆ on f⋆ 1H, f⋆ 2D to come back in the old variables (x, y, z) to have 1H, 2D
then we apply the Hodge Star operator followed by the pullback f⋆. After simplication, we obtain

f⋆
(

⋆ 1H
)

=
∑

i,j

dz
i+1/2,j+1/2(t)B

α
i+1/2(r)B

α
j+1/2(s)|J(r, s)|dr ∧ ds,

(f⋆(⋆ 2Dh))r(t, r, s) =
∑

i,j

(

dr
i+1/2,j+1/2(t)B

α
i+1/2(r)D

α
j+1/2(s)

(J tJ(r, s))1,1

|J(r, s)|

+ds
i+1/2,j+1/2(t)D

α
i+1/2(r)B

α
j+1/2(s)

(J tJ(r, s))2,1

|J(r, s)|

)

dr,

(f⋆(⋆ 2Dh))s(t, r, s) =
∑

i,j

(

dr
i+1/2,j+1/2(t)B

α
i+1/2(r)D

α
j+1/2(s)

(J tJ(r, s))1,2

|J(r, s)|

+ds
i+1/2,j+1/2(t)D

α
i+1/2(r)B

α
j+1/2(s)

(J tJ(r, s))2,2

|J(r, s)|

)

ds,

where (J tJ(r, s))i,j is the (i, j) coefficient of the matrix J tJ(r, s). We now define the image of 1H
by f⋆⋆ as the projection of this 2-form, denoting by f⋆ 2Bh(t, r, s) =

∑

i,j bz
i,j(t)

2wα,z
i,j (r, s), onto

primal grid. Then we have for any (k, l) ∈ [0, Nr − 1] × [0, Ns − 1]

∫ rk+1

rk

∫ sl+1

sl

f⋆(⋆ 1Hh)(t, r, s) =
∑

i,j

dz
i+1/2,j+1/2(t)

∫ rk+1

rk

∫ sl+1

sl

Bα
i+1/2(r)B

α
j+1/2(s)|J(r, s)|dr ∧ ds

=

∫ rk+1

rk

∫ sl+1

sl

f⋆ 2Bh(t, r, s) =
∑

i,j

bz
i,j(t)

∫ rk+1

rk

∫ sl+1

sl

2wα,z
i,j (r, s).
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Also, we denote by f⋆ 1Eh = f⋆ 1Er
h(t, r, s)+f⋆ 1Es

h(t, r, s) =
∑

i,j er
i,j(t)

1wα,r
i,j (r, s)+

∑

i,j es
i,j(t)

1wα,s
i,j (r, s)

the projection of 2D and we have

∫ rk+1

rk

(f⋆ ⋆ 2Dh)r(t, r, sl) =
∑

i,j

dr
i+1/2,j+1/2(t)D

α
j+1/2(sl)

∫ rk+1

rk

(

Bα
i+1/2(r)

(J tJ)1,1(r, sl)

|J(r, sl)|

)

dr

+ ds
i+1/2,j+1/2(t)B

α
j+1/2(sl)

∫ rk+1

rk

(

Dα
i+1/2(r)

(J tJ)2,1(r, sl)

|J(r, sl)|

)

dr

=

∫ rk+1

rk

f⋆ 1Er
h(t, r, sl) =

∑

i,j

er
i,j(t)

∫ rk+1

rk

1wα,r
i,j (r, sl),

∫ sl+1

sl

(f⋆(⋆ 2Dh))s(t, rk, s) =
∑

i,j

dr
i+1/2,j+1/2(t)B

α
i+1/2(rk)

∫ sl+1

sl

(

Dα
j+1/2(s)

(J tJ)1,2(rk, s)

|J(rk, s)|

)

ds

+ ds
i+1/2,j+1/2(t)D

α
i+1/2(rk)

∫ sl+1

sl

(

Bα
j+1/2(s)

(J tJ)2,2(rk, s)

|J(rk, s)|

)

ds

=

∫ sl+1

sl

f⋆ 1Es
h(t, rk, s) =

∑

i,j

es
i,j(t)

∫ sl+1

sl

1wα,s
i,j (rk, s).

We proceed in the same way if we must solve f⋆ 1H = f⋆
(

⋆ 2B
)

knowing f⋆ 2B. We apply the
pullback f−1⋆ on f⋆ 2B to come back in the old variables (x, y, z) to have 2B then we apply the
Hodge Star operator followed by the pullback f⋆. After simplification, we obtain

f⋆
(

⋆ 2B
)

=
∑

i,j

bz
i,j(t)D

α
i (r)Dα

j (s)
1

|J(r, s)|
dz.

We denote f⋆ 1Hz
h(t, r, s) =

∑

i,j hz
i+1/2,j+1/2(t)

1w̃α,z
i+1/2,j+1/2(r, s) the projection onto the dual grid

and so we obtain

∫ 1

0
f⋆ ⋆ 2B(t, ri+1/2, sj+1/2) =

∑

i,j

bz
i,j(t)

Dα
i (ri+1/2)D

α
j (sj+1/2)

|J(ri+1/2, sj+1/2)|

= f⋆ 1Hz
h(t, ri+1/2, sj+1/2) =

∑

i,j

hz
i+1/2,j+1/2(t)

1w̃α,z
i+1/2,j+1/2(ri+1/2, sj+1/2).

6 Numerical results

6.1 Test case in 2D with periodic boundary conditions

In 2 dimension with periodic boundary condition, let us consider the following solution of Maxwell’s
equations: the electric field, a 1-form, is given by 1E = −ky sin(kx x + ky y −ω t)dx− kx sin(kx x +
ky y − ω t)dy, and the magnetic field, a 2- form, is given by 2B = ω cos(kx x + ky y − ω t)dx dy.
Then, with help of the Hodge star operator we obtain the formula for the electric displacement
field: 1D = −ky sin(kx x + ky y − ω t)dy − kx sin(kx x + ky y − ω t)dx and for the magnetizing field:
0H = ω cos(kx x + ky y − ω t). Constants are given by kx = 2 π

Lx
, ky = 2 π

Ly
, where Lx and Ly are

the length of our domain in x and y respectively and ω =
√

k2
x + k2

y. We test our code with

Lx = Ly = 1 and with a time scheme of order 4 and we observe that the order of our scheme is
given by the spline order.
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Figure 1: The magnetizing
field H in 2D with periodic
boundary conditions.

Figure 2: The first compo-
nent of the electric displace-
ment field Dx in 2D with pe-
riodic boundary conditions.

Figure 3: The second com-
ponent of the electric displace-
ment field Dy in 2D with peri-
odic boundary conditions.

spline degree α = 1

Number of points L2 errors for Dx conv. order in Dx

10 0.963466687612

20 0.244961611114 1.97567910882

40 0.0617111800439 1.98895188936

80 0.015439432949 1.99891211506

spline degree α = 3

Number of points L2 errors for Dx conv. order in Dx

10 0.0346451065418

20 0.00221920090229 3.96453940841

40 0.000139584011258 3.99083467768

80 8.73723793614e-06 3.99781260726

6.2 Test case in 1D with perfect electric conductor boundary conditions

In one dimension with perfect electric conductor boundary conditions, we have a solution where
the electric field, a 0-form, is given by 0E = k

ω sin(k x) cos(ω t), and the magnetic field, a 1- form,
has the form, 1B = − cos(kx x) sin(ω t)dx. Then, with help of the Hodge star operator we obtain
the formula for the electric displacement field: 1D = k

ω sin(k x) cos(ω t)dx and for the magnetizing
field : 0H = − cos(kx x) sin(ω t). Constants are given by k = 2 π

L , where L are the length of our
domain in x and ω = |kx|. We test our code with Lx = 1 and with a time scheme of order 4 and
we observe that the order of our scheme is given by the spline order.

spline degree α = 1

Number of points L2 errors for H conv. order in H

10 0.14405968937

20 0.0365895785828 1.97716199381

40 0.0091869581337 1.99377364042

80 0.00229392316474 2.00177018523
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Figure 4: The magnetizing field H in 1D with
perfect electric conductor boundary conditions.

Figure 5: The electric field D in 1D with per-
fect electric conductor boundary conditions.

spline degreeα = 3

Number of points L2 errors for H conv. order in H

10 0.00291782099873

20 0.000191704646607 3.92793416901

40 1.22331803519e-05 3.97001387997

80 7.61847256487e-07 4.00515393133

We are going up to time T = 2. These convergence order are obtain with a time step ∆t =
∆x/0.5 when we use B-spline of degree 1 and ∆t = ∆x/3.5 when we use B-spline of degree 3.

6.3 Test case in 2D with a change of variables and with perfect electric conduc-

tor boundary conditions

We consider a physical domain which is a ring with perfect electric conductor boundary conditions.
We have an exact solution where the electric field, a 1-form, is given by

1E = − cos(2 k θ) (A cos(ω t) + B sin(ω t)) J2 k(ω r)dθ+cos(2 k θ) (A cos(ω t) + B sin(ω t)) J ′
2 k(ω r)dr,

and the magnetic field, a 2- form, has the form,

2B = cos(2 k θ) (A cos(ω t) + B sin(ω t)) J2 k(ω r)dr dθ,

where J2 k is the Bessel’s function of the first kind with order 2 k and J ′
2 k her derivative. With the

help of the Hodge star operator, we obtain the formula for electric displacement field:

1D = − cos(2 k θ) (A cos(ω t) + B sin(ω t)) J2 k(ω r)dr+cos(2 k θ) (A cos(ω t) + B sin(ω t)) J ′
2 k(ω r)dθ,

and for magnetizing field:

0H = cos(2 k θ) (A cos(ω t) + B sin(ω t)) J2 k(ω r).

The intervals on which we have boundary conditions on perfect conductors are (r, θ) ∈ [γ1, γ2]×[0, π
2 ]

where γ1, γ2 are the first and second zero of Bessel’s function of the first kind with order 2k.
In this case the change of variables is nothing other than change of coordinates into polar coordi-
nates.

We test our code with a time scheme of order 4 and we observe that the order of our scheme is
given by spline’s order as expected.
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Figure 6: The first compo-
nent of the electric displace-
ment field Dx in physic domain
with boundary conditions on
perfect conductors.

Figure 7: The second com-
ponent of the electric displace-
ment field Dy in physic domain
with boundary conditions on
perfect conductors.

Figure 8: The magnetizing
field H in physic domain with
boundary conditions on perfect
conductors.

spline degree α = 1

Number of points Errors L2 for H conv. order in H

10 0.00513786236267

20 0.00238054129513 1.67627824073

40 0.000947723465878 1.81682625586

80 0.00035447325496 1.85997897801

spline degree α = 3

Number of points Errors L2 for H conv. order in H

10 0.000245195436118

20 1.91520985487e-05 3.67835774002

40 1.4651702633e-06 3.7083622499

80 9.27738247413e-08 3.9812066957

We are going up to time T = 1 for order 1 and T = 2 for order 3. These convergence orders
are obtained with a time step ∆ t = min(∆x,∆y)/0.5 when we use B-splines of degree 1 and
∆ t = min(∆x, ∆y)/3.5 when we use B-splines of degree 3.
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