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We construct a new set of discrete differential forms based on B-splines of arbitrary degree as well as an associated Hodge operator. The theory is first developed in 1D and then extended to multi-dimension using tensor products. We link our discrete differential forms with the theory of chains and cochains. The spline discrete differential forms are then applied to the numerical solution of Maxwell's equations.

Introduction

The equations of physics are mathematical models consisting of geometric objects and relationships between them. There are many methods to discretize equations, but few maintain the physical nature of objects that constitute them. To respect the geometrical nature of physics, it is necessary to change the point of view and use differential geometry, also for the numerical study. In differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. The operators such as divergence, curl or gradient are replaced by the exterior derivative d. The exterior derivative acts on a k-form to produce a (k+1)-form. So the fundamental theorem of calculus, the divergence theorem, Green's theorem, and Stokes' theorem are also well defined in differential geometry and we also have the de Rham cohomology. The first who used this point of view to discretize equations is Alain Bossavit [START_REF] Bossavit | Computational electromagnetism[END_REF]. He uses Whitney elements [START_REF] Bossavit | Generating Whitney Forms of Polynomial Degree One and High[END_REF] to discretize differential forms and hence, discretize Maxwell equations in the language of differential geometry. Since then, there have been several articles on the subject because there are many problems such as the discretization of Hodge star operator [START_REF] Hiptmair | Discrete Hodge operators[END_REF][START_REF] Tarhasaari | Some realizations of a discrete Hodge: A reinterpretation of finite element techniques[END_REF][START_REF] He | Geometric finite element discretization of Maxwell equations in primal and dual spaces[END_REF] (an important notion which contains all the metric of our domain), and the interpolation of differential forms [START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF][START_REF] Bossavit | Computational electromagnetism[END_REF][START_REF] Bossavit | Generating Whitney Forms of Polynomial Degree One and High[END_REF][START_REF] Rapetti | Whitney forms of higher degree[END_REF]. Until now, the basis functions used for interpolation have been Whitney forms. In this paper we propose to define a new class of discrete differential forms using B-splines. This new approach proves to have many advantages. It allows to define high order approximation and higher degree B-splines are computed by recurrence with de Boor algorithm [START_REF] De Boor | A practical guide to splines[END_REF] so its easy and efficient to implement them; discrete differential forms verify the same properties as "continuous" differential forms especially they preserve the de Rham diagram. Moreover, it appears that in the Finite Element context our B-spline discrete differential forms are naturally related to the B-spline finite elements appearing 2 A short overview of B-splines B-splines on a non uniform set of knots x 0 < x 1 < • • • < x N -1 < x N can be defined recursively. Some kind of boundary conditions need also be defined. In particular natural boundary conditions (vanishing second derivative), Hermite boundary condition (given derivative), or periodic boundary conditions can be used. Let us denote by B α i the B-spline of degree α with support in the interval [x i , x i+α+1 ]. Then B α i is defined recursively by

B 0 i (x) = 1 if x i ≤ x < x i+1 0 else,
and for α ≥ 1

B α i (x) = x -x i x i+α -x i B α-1 i (x) + x i+α+1 -x x i+α+1 -x i+1 B α-1 i+1 (x). (1) 
The B-splines verify the following properties:

1. The B-spline B α i is a polynomial of degree α between two consecutive knots,
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B α i is of class C α-1 ,
3. Partition of unity: for any point x, we have i

B α i (x) = 1.
We shall also need the recursion formula for the derivatives:

B α i ′ (x) = α B α-1 i (x) x i+α -x i - B α-1 i+1 (x) x i+α+1 -x i+1 . (2) 
For details, the reader is refered to the book of de Boor [START_REF] De Boor | A practical guide to splines[END_REF] 3 Construction of discrete differential forms based on B-splines 3.1 The 1D case

Uniform periodic mesh

The primal 1D mesh of our periodic domain will be x 0 < x 1 < • • • < x N -1 < x N and the dual mesh will consist of the points x i+1/2 = 1 2 (x i + x i+1 ). We shall assume x N -x 0 periodicity, so that all functions will be equal at x 0 and x N . Then x N will not be part of the primal mesh and both meshes will have N points.

In the 1D case, we need to define discrete 0-forms and 1-forms on both meshes that will be constructed using basis functions denoted respectively by w 0,α i and w 1,α i , for the primal mesh, and w0,α i+1/2 and w1,α i+1/2 for the dual mesh. Those will be defined using the B-splines of degree α, B α i . Let us start with the discrete 0-form on the primal mesh. We define the basis functions w 0,α i = B α i and the space of linear spline 0-forms S α 0 will be the vector space generated by these basis functions. Any function C 0 ∈ S α 0 writes

C 0 (x) = N -1 j=0 c 0 j B α j (x),
with the c 0 j defined by the interpolation conditions C 0 (x i ) = N -1 j=0 c 0 j B α j (x i ) for 0 ≤ i ≤ N -1 which is a linear system that can be written in matrix form M 0 α c 0 = C 0 , with C 0 = (C 0 (x 0 ), . . . , C 0 (x N -1 )) T , c 0 = (c 0 0 , . . . , c 0 N -1 ) T and M 0 α the square matrix whose components are m 0 ij = B α j (x i ) for i = 0 . . . N -1 and j = -α + 2 . . . N -α + 2 with B α j = B α N +j when j < 0. Lemma 3.1 On uniform set of nodes, we have

• for all odd α, the matrix (M 0 α,ij ) 0≤i,j≤N -1 is non singular.

• for all even α and number of mesh points N an odd number, the matrix (M 0 α,ij ) 0≤i,j≤N -1 is non singular.

Proof. We denote B α i,j = B α i (x j ) = M 0 α,ij . We can easily show by induction, with help of the formula [START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF], that B α i,j = 0 for j / ∈ {i + 1, . . . , i + α}, B α i,i+1 = B α i,i+α = 1 and B α i+1,j = B α i,j-1 . So the formula (1) becomes:

B α i,j = j -i α B α-1 i,j + i + α + 1 -j α B α-1 i,j-1 .
We notice that M 0 α is a circulant matrix and since B α i,j = 0 for j / ∈ {i + 1, . . . , i + α}, it can be written:

M 0 α = α j=1 B α 0,j J j N , (3) 
where

J N =        0 1 0 . . . 0 . . . . . . . . . . . . . . . 0 . . . 0 1 0 0 . . . . . . 0 1 1 0 . . . . . . 0       
with N × N its size. We can factorize (3) by J N α! and we obtain:

M 0 α = J N α! α j=1 j(α -1)!B α-1 0,j + (α + 1 -j)(α -1)!B α-1 0,j-1 J j-1 N , = J N α! E α-1 (J N ),
where E α-1 (X) = α j=1 j(α -1)!B α-1 0,j + (α + 1 -j)(α -1)!B α-1 0,j-1 X j-1 are Eulerian polynomials. Their coefficients are positive and symmetric (symmetric means that if P (X) = a n X n + . . . + a 0 , a n-k = a k ). Moreover, the eigenvalues of J N are the N th roots of unity: {ω 0 , ω 1 , . . . } with ω = exp( 2iπ N ). So, the eigenvalues of M 0 α are {ω 0 E α-1 (ω 0 ), ω 1 E α-1 (ω 1 ), . . . }. Since the determinant is the product of eigenvalues, if an Eulerian polynomial has a root which is a root of unity, M 0 α is singular. But we know [START_REF] Weller | Sampling zeros and the Euler-Frobenius polynomials[END_REF] that Eulerian polynomials have real, negative and distinct roots. So, if -1 is the root of Eulerian polynomials, M 0 α is singular. We can observe that if α is an odd number, E α-1 (X) is a polynomial with even degree and positive, symmetric coefficients. So E α-1 (-1) = 0 if α is an odd number that implies M 0 α is non singular. If α is an even number we have E α-1 (-1) = 0 and so -1 must not be a root of J N . However, exp( 2ikπ N ) = -1 if and only if N is an even number and k = N 2 . So E α-1 (-1) = 0 if α is an even number and N an odd number that implies M 0 α is non singular.

In order to define the 1-forms we shall need the notation

D α i (x) = α x i+α -x i B α-1 i (x),
for this function linked to the derivative of the B-spline B α-1 i . We can now define the basis functions for the discrete 1-forms by w 1,α i (x) = D α i (x) dx. The space of linear spline 1-forms S α 1 will be the vector space generated by these basis functions. Any 1-form C 1 ∈ S α 1 writes

C 1 (x) = N -1 j=0 c 1 j D α j (x) dx,
the coefficients c 1 j being defined by the relations

x i+1 x i C 1 (x) = N -1 j=0 c 1 j x i+1 x i D α j (x) dx for 0 ≤ i ≤ N -1,
this also defines a linear system that can be written in matrix form

M 1 α c 1 = C 1 , with C 1 = ( x 1 x 0 C 1 (x), . . . , x N x N -1 C 1 (x)) T , c 1 = (c 1 0 , . . . , c 1 N -1 ) T and M 1 α the square matrix whose components are m 1 ij = x i+1 x i D α j (x) dx.
Lemma 3.2 Under the conditions of the previous lemma, the matrix M 1 α is non singular.

Proof.

The basis functions w 1,α i have been chosen using the recursion formula for the spline derivatives (2) and verify

w 1,α i (x) -w 1,α i+1 (x) = B α i ′ (x) dx.
Using this relation and the fact that B α i (x) vanishes for x ∈ [x i , x i+α ], it follows easily by recurrence on the degree α that

x i+ν+1 x i+ν w 1,α i (x) = ν k=0 B α i+k (x i+ν+1 ) - ν-1 k=0 B α i+k (x i+ν ).
In the case of uniform meshes, we have the property

B α i+k (x i+ν+1 ) = B α i+k+ν+1 (x i ). So, we deduce that (M 1 α ) i,j = x i+1 x i D α j (x) dx = B α j+1 (x i+1 ).
Denoting by B α j+1/2 the splines whose knots are based on the dual mesh, the discrete 0-forms and 1-forms on the dual mesh are defined in the same way by

C0 (x) = N -1 j=0 c0 j+1/2 B α j+1/2 (x),
with the c0 j+1/2 defined by the interpolation conditions C0 (x i+1/2 ) = N -1 j=0 c0 j+1/2 B α j+1/2 (x i+1/2 ) for 0 ≤ i ≤ N -1 which is a linear system that can be written in matrix form M 0 α c0 = C0 , with C0 = ( C0 (x 1/2 ), . . . , C0 (x N -1/2 )) T , c0 = (c 0 1/2 , . . . , c0 N -1/2 ) T and M 0 α the square matrix whose components are m0 ij = B α j+1/2 (x i+1/2 ). We have that M 0 α meet the conditions of the first lemma and so the square matrix is non singular.

A discrete 1-form on the dual mesh is defined by

C1 (x) = N -1 j=0 c1 j+1/2 D α j+1/2 (x) dx,
the coefficients c1 j+1/2 being defined by the relations

x i+3/2 x i+1/2 C1 (x) = N -1 j=0 c1 j+1/2 x i+3/2 x i+1/2 D α j+1/2 (x) dx for 0 ≤ i ≤ N -1,
this also defines a linear system that can be written in matrix form M 1 α c1 = C1 , with C1 = (

x 3/2 x 1/2 C1 (x), . . . , x N +1/2 x N -1/2 C1 (x)) T , c1 = (c 1 1/2 , . . . , c1 N -1/2 ) T and M 1 α the square matrix whose com- ponents are m1 ij = x i+3/2 x i+1/2 D α j+1/2 (x) dx.
For the same reason as M 1 , M 1 α is non singular. Note that due to the periodicity hypothesis

x N +1/2 x N -1/2 C1 (x) = x N x N -1/2 C1 (x) + x 1/2 x 0 C1 (x).
The discrete Hodge operator: Having defined discrete 0-forms and 1-forms on both grids, we can now define in a natural way the discrete Hodge operators [START_REF] Hiptmair | Discrete Hodge operators[END_REF][START_REF] Tarhasaari | Some realizations of a discrete Hodge: A reinterpretation of finite element techniques[END_REF], mapping primal 0-forms to dual 1-forms, primal 1-forms to dual 0-forms and the other way round.

As discrete differential forms are defined by their coefficients in the appropriate basis, the discrete Hodge operator should map those coefficients to those on the image basis. Let us start with the discrete Hodge mapping primal 0-forms to dual 1-forms. Given a discrete 0-form on the primal mesh

C 0 (x) = N -1 j=0 c 0 j B α j (x),
we can apply the continuous Hodge operator to it, as ⋆1 = dx, we get

⋆C 0 (x) = N -1 j=0 c 0 j B α j (x) dx.
Now, as B α j are not splines on the dual mesh, this does not define a discrete differential form on the dual mesh. We need an additional projection step. Denoting by πC 0 the projection of ⋆C 0 on the space of discrete differential forms of the same order on the dual mesh, we can write

πC 0 (x) = N -1 j=0 c1 j+1/2 D α j+1/2 (x) dx, with x i+3/2 x i+1/2 ⋆C 0 (x) = N -1 j=0 c1 j+1/2 x i+3/2 x i+1/2 D α j+1/2 (x) dx for 0 ≤ i ≤ N -1.
Now defining S1 the matrix whose i, j coefficient is

x i+3/2 x i+1/2 B α j (x) dx, this relation becomes in matrix form S1 c 0 = M 1 α c1 ,
so that the discrete Hodge operator mapping c 0 to c1 is

( M 1 α ) -1 S1 with S1 i,j = x i+3/2 x i+1/2 B α j (x) dx.
In order to define the Hodge operator mapping discrete 1-forms on the primal grid to discrete 0-forms on the dual grid, we apply the continuous Hodge operator (⋆dx = 1) to a discrete 1-form on the primal grid

⋆C 1 (x) = N -1 j=0 c 1 j D α j (x).
Its projection on the space of discrete 0-forms on the dual grid is defined by the point values ⋆C 1 (x i+1/2 ). Hence in the same way as before the discrete Hodge in this case is defined by

( M 0 α ) -1 S0 with S0 i,j = D α j (x i+1/2 ).
The Hodge operators mapping from the dual grid to the primal grid are naturally defined in the same way by

(M 1 α ) -1 S 1 with S 1 i,j = x i+1 x i B α j+1/2 (x) dx,
(M 0 α ) -1 S 0 with S 0 i,j = D α j+1/2 (x i ). Let us finally explicit the different matrices involved in the Hodge operators for the case of uniform periodic linear and cubic splines. In the case of a uniform mesh, due to the recurrence relation on spline derivatives we have

D α j (x) -D α j+1 (x) = B α j+1 ′ (x).
Integrating between i an i + 1 and using that B α j (x) = B α 0 (x -x j ) yields

x i+1 x i (D α 0 (x -x j ) -D α 0 (x -x j -∆x)) dx = B α 0 ((i -j)∆x) -B α 0 ((i -j -1)∆x). So that x i+1 x i D α j (x) dx = B α j+1 (x i+1 ).
From this it follows that on a uniform grid M 0 α = M 1 α = M 0 α = M 1 α are all the usual degree α periodic spline interpolation matrix.

For linear splines (α = 1) the matrices M 0 1 = M 1 1 = M 0 1 = M 1 1 = I are all the identity matrix. For cubic splines (α = 3) these matrices are the circulant matrices with 2/3 on the diagonal and 1/6 on the upper and lower diagonal.

Let us now come to the Hodge matrices. Due to their expressions the matrices are also constant circulant matrices with S 0 α = S0 α and S 1 α = S1 α . In the case α = 1, D α i (x) = 1 ∆x for x i-1 ≤ x ≤ x i and 0 elsewhere. Hence

S 0 1 = S0 1 = 1 ∆x I.
And a simple computation yields that S 1 1 = S1 1 are circulant matrices with three diagonals that read

S 1 1 = S1 1 = ∆x circ[ 1 8 , 3 4 , 1 8 ], 
where

circ[ 1 8 , 3 4 , 1 8 ] =         1 8
0 . . . 

       
.

Notice that S 0 1 and S1 1 are not exactly the inverse of each other as is the case for their continuous counterparts and the same for S 1 1 and S0 1 , but for example S1 1 and (S 0 1 ) -1 can be used as approximations for the discrete Hogde operator.

In the case of cubic splines we have, the following circulant matrices

S 0 3 = S0 3 = 1 ∆x circ[ 1 8 , 3 4 , 1 8 ] 
,

S 1 3 = S1 3 = ∆x circ[ 1 384 , 19 96 , 115 192 , 19 96 , 1 384 ] 
.

Non uniform mesh with perfect conductors boundary conditions

The primal 1D mesh of our domain will be a non uniform set of knots

x 0 < x 1 < • • • < x N -1 < x N .
With perfect conductors boundary conditions, using a degree α taller than one for our interpolation, we have to contend a problem. We have N + α splines functions and N + 1 knots in the primal mesh. So we must add knots for interpolation on primal mesh. As α is odd, we add the middle of (α-1) 2

first primal cells and (α-1) 2 last primal cells. For example, if α equal 3, we must add 2 knots, so we take the middle of [x 0 , x 1 ] and [x N -1 , x N ]. The primal mesh will be

{x 0 , • • • , x N }∪ (x i+1 + x i ) 2 |i ∈ {0, • • • , (α -1) 2 -1} ∪ (x i-1 + x i ) 2 |i ∈ {N - (α -1) 2 + 1, • • • , N } . Denoting by n 0 < n 1 < • • • < n N +α-1
the knots of our primal mesh in increasing order. The dual mesh will consist of the middle points of the primal mesh with the extremal points x 0 and x N , i.e.

n 0 = n -1/2 < n 1/2 < • • • < n N +α-3/2 < n N +α-1/2 = n N +α-1 .
To conclude we have N + α knots for primal meshes and N + α + 1 knots for dual meshes. With this construction, we can interpolate primal and dual 0 and 1-forms.

Let us start with the discrete 0-form on the primal mesh. Any function C 0 ∈ S α 0 writes

C 0 (x) = N -1 j=-α c 0 j B α j (x),
with the c 0 j defined by the interpolation conditions

C 0 (n i ) = N -1 j=-α c 0 j B α j (n i ) for i ∈ {0, • • • N + α -1} on the primal
mesh which is a linear system that can be written in matrix form M 0 α c 0 = C 0 , with 7

C 0 = C 0 (n 0 ), . . . , C 0 (n N +α-1 ) T , c 0 = c 0 -α , . . . , c 0 N -1
T and M 0 α the square matrix with size N +α whose components are m 0

i,j+α = B α j (n i ) for j = -α, • • • , N -1 and i = 0, • • • N + α -1.
Lemma 3.3 The matrix M 0 α is non singular.

Proof. M 0 α meets the conditions of the Schoenberg-Whitney Theorem [START_REF] De Boor | A practical guide to splines[END_REF] and so the square matrix is non singular.

The space of linear spline 1-forms S α 1 will be the vector space generated by these basis functions. Any 1-form C 1 ∈ S α 1 writes

C 1 (x) = N -1 j=-α+1 c 1 j D α j (x) dx,
the coefficients c 1 j being defined by the relations

n i+1 n i C 1 (x) = N -1 j=-α+1 c 1 j n i+1 n i D α j (x) dx for 0 ≤ i ≤ N + α -2,
this also defines a linear system that can be written in matrix form

M 1 α c 1 = C 1 , with C 1 = n 1 n 0 C 1 (x), . . . , n N +α-1 n N +α-2 C 1 (x) T , c 1 = c 1 -α+1 , . . . , c 1 N -1
T and M 1 α the square matrix with size N + α -1 whose components are

m 1 i,j+α-3 = n i+1 n i D α j (x) dx for j = -α + 1, • • • , N -1 and i = 0, • • • N + α -2. Lemma 3.4 The matrix M 1 α is non singular. Proof. Using the relation w 1,α i (x) -w 1,α i+1 (x) = B α i ′ (x)
dx and the fact that B α i (x) vanishes for x ∈ [x i , x i+α ], it follows easily by recurrence on the degree α that

n i+1 n i w 1,α i (x) = N -1 k=j B α k (n i+1 ) - N -1 k=j B α k (n i ) =: A α j (n i+1 ) -A α j (n i ).
We can observe that M 1 α is the principal minor (1,1) of the matrix

         1 0 • • • • • • 0 -1 1 0 . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • 0 -1 1          M 0 α          1 0 • • • • • • 0 1 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 1 • • • • • • 1 1          =         A α -α (n 0 ) A α -α+1 (n 0 ) • • • A α N -1 (n 0 ) n 1 n 0 D -α n 2 n 1 D -α . . . M 1 α n N +α-1 n N +α-2 D -α         .
The matrix A on the left hand side is non singular because it's the product of non singular matrices. Since for all i, n i x 0 and the support of

D -α is ]x -α , x 0 [, we have n i+1 n i D -α = 0. Furthermore, A α -α (n 0 ) = 0 because B i (x) 0 and B -α (n 0 ) = 0. So, 0 = det(A) = A α -α (n 0 )det(M 1 α ) that implies det(M 1 α ) = 0.
The discrete 0-forms and 1-forms on the dual mesh are defined in the same way by

C0 (x) = N -1 j=-α-1 c0 j+1/2 B α j+1/2 (x),
with the c0 j+1/2 defined by the interpolation conditions

C0 (n i-1/2 ) = N -1 j=-α-1 c0 j+1/2 B α j+1/2 (n i-1/2 ) for i ∈ {0, • • • , N + α}
on the dual mesh which is a linear system that can be written in matrix form M 0

α c0 = C0 , with C0 = C0 (n -1/2 ), C0 (n 1/2 ), • • • , C0 (n N +α-1/2 ) T , c0 = c0 -α+3/2 , . . . , c0 N +3/2
T and M 0 α the square matrix with size N + α + 1 whose components are m0 i,j+α-1 = B α j+1/2 (n i-1/2 ) and is nonsingular with help Schoenberg-Whitney Theorem.

A discrete 1-form on the dual mesh is defined by

C1 (x) = N -1 j=-α c1 j+1/2 D α j+1/2 (x) dx,
the coefficients c1 j+1/2 being defined by the relations

n i+1/2 n i-1/2 C1 (x) = N -1 j=-α c1 j+1/2 n i+1/2 n i-1/2 D α j+1/2 (x) dx for 0 ≤ i ≤ N + α -1,
this also defines a linear system that can be written in matrix form M 1

α c1 = C1 , with C1 = n 1/2 n -1/2 C1 (x), • • • , n N +α-1/2 n N +α-3/2 C1 (x) T , c1 = c1 -α+3/2 , . . . , c1 N +3/2 T and M 1 α the square ma- trix with size N + α whose components are m1 i,j+α-2 = n i+1/2 n i-1/2 D α j+1/2 (x)
dx and is nonsingular thanks to the previous lemma.

The discrete Hodge operator: Let us start with the discrete Hodge [START_REF] Hiptmair | Discrete Hodge operators[END_REF][START_REF] Tarhasaari | Some realizations of a discrete Hodge: A reinterpretation of finite element techniques[END_REF] mapping primal 0-forms to dual 1-forms. Given a discrete 0-form on the primal mesh

C 0 (x) = N -1 j=-α c 0 j B α j (x),
and so

⋆C 0 (x) = N -1 j=-α c 0 j B α j (x) dx.
Denoting by πC 0 the projection of ⋆C 0 on the space of discrete differential forms of the same order on the dual mesh, we can write

πC 0 (x) = N -1 j=-α c1 j+1/2 D α j+1/2 (x) dx, with n i+1/2 n i-1/2 ⋆C 0 (x) = N -1 j=-α c1 j+1/2 n i+1/2 n i-1/2 D α j+1/2 (x) dx for 0 ≤ i ≤ N + α -1,
where n -1/2 = n 0 and n N +α-1/2 = n N +α-1 . Now defining S1 the square matrix with a size N + α whose i, j coefficient is

n i+1/2 n i-1/2 B α j (x) dx, this relation becomes in matrix form S1 c 0 = M 1 α c1 ,
so that the discrete Hodge operator mapping c 0 to c1 is

( M 1 α ) -1 S1 with S1 i,j = n i+1/2 n i-1/2 B α j (x) dx.
In order to define the Hodge operator mapping discrete 1-forms in the primal grid to discrete 0-forms on the dual grid, we apply the continuous Hodge operator to a discrete 1-form on the primal grid

⋆C 1 (x) = N -1 j=-α+1 c 1 j D α j (x).
Its projection on the space of discrete 0-forms on the dual grid is defined by the point values

⋆C 1 (n i-1/2 ) for i ∈ {0, • • • , N + α}.
Hence in the same way as before the discrete Hodge in this case is defined by

( M 0 α ) -1 S0 with S0 i,j = D α j (n i-1/2
). We can notice that this matrix is not square because its size is (N + α + 1) × (N + α -1).

The Hodge operators mapping from the dual grid to the primal grid are naturally defined in the same way by

(M 1 α ) -1 S 1 with S 1 i,j = n i+1 n i B α j+1/2 (x) dx.
This matrix is not square, its size is (N + α -1) × (N + α + 1), but the matrix S 0 is square, with a size (N + α) × (N + α):

(M 0 α ) -1 S 0 with S 0 i,j = D α j+1/2 (n i ).

The 3D case

We are now going to define the 3D discrete differential forms on a periodic cartesian grid, which will be needed for Maxwell's equations, by tensor product using the 1D form. This procedure can be generalized in a natural way to any number of dimensions. The set of 3D discrete differential forms will be defined as the span of the following basis functions:

• The basis functions for the 0-forms are

0 w α i,j,k (x, y, z) = B α i (x)B α j (y)B α k (z).
• The basis functions for the 1-forms are

1 w α,x i,j,k (x, y, z) = D α i (x)B α j (y)B α k (z) dx, 1 w α,y i,j,k (x, y, z) = B α i (x)D α j (y)B α k (z) dy, 1 w α,z i, j, k(x, y, z) = B α i (x)B α j (y)D α k (z) dz.
• The basis functions for the 2-forms are

2 w α,x i,j,k (x, y, z) = B α i (x)D α j (y)D α k (z) dy ∧ dz, 2 w α,y i,j,k (x, y, z) = D α i (x)B α j (y)D α k (z) dz ∧ dx, 2 w α,z i,j,k (x, y, z) = D α i (x)D α j (y)B α k (z) dx ∧ dy.
• The basis functions for the 3-forms are

3 w α i,j,k (x, y) = D α i (x)D α j (y)D α k (z) dx ∧ dy ∧ dz.
This construction will yield the same basis functions as in [START_REF] Buffa | Isogeometric analysis in electromagnetics: B-splines approximation[END_REF] and [START_REF] Ratnani | Arbitrary High-Order Spline Finite Element Solver for the Time Domain Maxwell equations[END_REF] where vector calculus is used.

Link with the theory of chains and cochains

We now point out the link of our discrete differential forms with the theory of chains and cochains [START_REF] Bossavit | Computational electromagnetism[END_REF][START_REF] Rapetti | Whitney forms of higher degree[END_REF][START_REF] Desbrun | Discrete differential forms for computational modeling[END_REF][START_REF] Arnold | Mathematical methods of classical mechanics[END_REF].

Notion of chain

Hypercubes [START_REF] Bowen | Hypercubes[END_REF][START_REF] Coxeter | The Beauty of Geometry: Twelve Essays[END_REF]: Let us denote by Ω a domain and by T its boundary. We pave Ω with squares and we denote by m this mesh. We call 0-cubes, the nodes of our mesh, 1-cubes, the edges, 2-cubes, the squares and 3-cubes, the cubes ( 4-cubes, the tesseract, 5-cubes for the penteract, ..). We define an orientation for all of elements of m and denote by H α,p (m) the set of p-cubes (we will see that in the case of a non periodic domain the number of p-cubes depends on the degree of B-splines α). Now, we define the boundary operator ∂ that maps a p-cube to a (p -1)-cube. For example: let e i a vector who has for origin x i and for extremity point x i+1 , so the boundary of e i is ∂e i = x i+1 -x i . In fact, we can define the boundary operator ∂ p , mapping a p-cube to a (p -1)-cube, by a sparse matrix containing only where c p,s ∈ R. We will denote the set of all p-chains as C α,p (m). We define that a p-dimensional manifold is discretized by a p-chain and the boundary operator acts on p-chains by linearity as:

∂c p = ∂   h p,s ∈Hα,p(m) c p,s h p,s   = h p,s ∈Hα,p(m) c p,s ∂ h p,s ,
and when we collect the s-th (p -1)-cube we obtain:

∂c p = h p-1,s ∈H α,p-1 (m) (∂ p c p ) s h p-1,s ,
where c p = (c p,s ) s is a column vector containing the coefficients of a p-chain. And so, applying the boundary operator on a p-chain is equivalent to applying the operator ∂ p on coefficients of a p-chain. Furthermore, since all p-chains are defined by their |H α,p (m)| coefficients c p,s , we can find a bijection mapping C α,p (m) to R |Hα,p(m)| . But, before, we will define the mapping that determines the coefficients c p,s . A p-chain c p represents a discrete p-manifold, so for all basis functions p w α i ∈ W α,p (m) we can compute the integral of p w α i over c p . So, coefficient c p,s is defined by the relations, for all i ∈ |H α,p (m)|:

cp p w α i = h p,s ∈Hα,p(m) c p,s h p,s p w α i .
This yields a linear system. For example, in one dimension, we must solve

• for a 0-chain C 0 = (M 0 α ) t c 0 , where C 0 = (B α 0 (c 0 ), . . . , B α |H α,0 (m)|-1 (c 0 )) t , c 0 = (c 0,0 , . . . , c 0,|H α,0 (m)|-1
) t and M 0 α is the square matrix we constructed for discrete differential 0-forms.

• for a 1-chain

C 1 = (M 1 α ) t c 1 , where C 1 = ( c 1 D α 0 (x)dx, . . . , c 1 D α |H α,1 (m)|-1 (x)dx) t , c 1 = (c 1,0 , . . . , c 1,|H α,1 (m)|-1 ) t and M 1 α
is the square matrix we constructed for discrete differential 1-forms.

In the same way, in two or three dimension, we can remark that we also must solve linear systems involving tensor products of matrices (M 1 α ) t and (M 0 α ) t . More generally, for all dimensions, we denote by M p α the square matrix that we use for finding the coefficients of p-chain c p i.e. for solving the linear system C p = (M p α ) t c p . Now, we can define

P t α mapping C α,p (m) to R |Hα,p(m)| and R t α mapping R |Hα,p(m)| to C α,p (m) such that P t α : C α,p (m) → R |Hα,p(m)| c p → {c p | C p = (M p α ) t c p } and R t α : R |Hα,p(m)| → C α,p (m) c p = (c p,s ) s → h p,s ∈Hα,p(m) c p,s h p,s .
Now we can show that we have a de Rham complex:

C α,3 (m) ∂ / / P t α C α,2 (m) ∂ / / P t α C α,1 (m) ∂ / / P t α C α,0 (m) 
P t α R |H α,3 (m)| ∂ 3 / / R t α O O R |H α,2 (m)| ∂ 2 / / R t α O O R |H α,1 (m)| ∂ 1 / / R t α O O R |H α,0 (m)| R t α O O with ∂ 2 ∂ 3 = 0 and ∂ 1 ∂ 2 = 0. Lemma 4.1 This diagram is commutative.
Proof. Remember a property of B-splines

B α j (x i+1 ) -B α j (x i ) = x i+1 x i D j (x) dx - x i+1 x i D j+1 (x) dx, this becomes in matrix from (M 0 α ) t ∂ 1 = ∂ 1 (M 1 α ) t and we have also (M 1 α ) t ∂ 2 = ∂ 2 (M 2 α ) t and (M 2 α ) t ∂ 3 = ∂ 3 (M 3 α ) t .
Then, remenber also that applying the boundary operator on a p-chain its equivalent to applying the operator ∂ p on the coefficients of the p-chain. So, for a 1-chain c 1 ,

∂ c 1 = h 0,s ∈H α,0 (m) (∂ 1 c 1 ) s h 0,s and so P t α ∂ c 1 = ((M 0 α ) t ) -1 ∂ 1 c 1 and ∂ 1 P t α c 1 = ∂ 1 ((M 1 α )t) -1 c 1 . We can deduce that ∂ 1 (P α ) t c 1 = P t α ∂ c 1 .
Proceeding in the same way, we also obtain that

∂ 2 P t α c 2 = P t α ∂ c 2 and ∂ 3 P t α c 3 = P t α ∂ c 3 .
In the dual mesh, denoting by H ⋆ α,p (m) the p-cell, dual of (n -p)-cubes and C ⋆ α,p (m) the set of p-chain in the dual mesh. Similarly, we obtain a de Rham complex, also commutative:

C ⋆ α,3 (m) ∂ / / P t α C ⋆ α,2 (m) ∂ / / P t α C ⋆ α,1 (m) ∂ / / P t α C ⋆ α,0 (m) P t α R |H α,0 (m)| (∂ 1 ) t / / R t α O O R |H α,1 (m)| (∂ 2 ) t / / R t α O O R |H 2,α (m)| (∂ 3 ) t / / R t α O O R |H α,3 (m)| R t α O O

Notion of cochain

Cochains: A p-cochain w p is the dual of a p-chain. That is to say w p is a linear mapping that takes p-chains to R:

w p : C α,p (m) → R c p → w p (c p )
We denote the set of p-cochains or p-forms by W α,p (m). By duality, this space has a finite dimension |H α,p (m)|. A p-cochain w p operates on a p-chain c p and returns a linear combination of the values of the cochain on each p-cube.

Link with differentials forms: p-cochains are discrete analogs of differential forms. So, a discrete differential p-form, w p , is a linear mapping that takes p-chains to R. We have seen, during the construction of discrete differential p-forms, or p-cochains, that they can be written as:

w p = p w α s ∈W α,p (m) w p,s p w α s ,
where the coefficients w p,s are defined as the solution of the linear system:

W p = M p α w p .
Now, we can define the non degenerate bilinear form:

, : W α,p (m) × C α,p (m) → R (w p , c p ) -→ w p , c p = cp w p .
Let c p a p-chain and w p a differential p-form, we obtain by linearity:

cp w p = h p,s ∈Hα,p(m) c p,s h p,s w p .
So, the bilinear mapping acts on the spline coefficients and on the coefficients of p-chains as:

w p , c p = c t p M p α w p ,
where c p and w p are column vectors of coefficients of the p-chain c p and the p-cochain w p respectively.

Exterior derivative, Stokes theorem and de Rham complex: The exterior derivative maps a (p -1)-form to p-form. For example, in the 3D case and p = 1:

dw 0 = d w i,j,k B α i (x)B α j (y)B α k (z) = w i,j,k d B α i (x)B α j (y)B α k (z) = w i,j,k (D α i (x) -D α i+1 (x))B α j (y)B α k (z) dx + w i,j,k (D α j (y) -D α j+1 (y))B α i (x)B α k (z) dy + w i,j,k (D α k (z) -D α k+1 (z))B α i (x)B α j (y) dz = (w i,j,k -w i-1,j,k )D α i (x)B α j (y)B α k (z) dx + (w i,j,k -w i,j-1,k )B α i (x)D α j (y)B α k (z) dy + (w i,j,k -w i,j,k-1 )B α i (x)B α j (y)D α k (z) dz =
(w i,j,k -w i-1,j,k ) 1 w α,x i,j,k (x, y, z) + (w i,j,k -w i,j-1,k ) 1 w α,y i,j,k (x, y, z) + (w i,j,k -w i,j,k-1 ) 1 w α,z i,j,k (x, y, z).

We remember that we have an equivalence between applying the boundary operator on a p-chain and applying ∂ p on coefficients of a p-chain for p = 1, 2, 3 respectively. Here, we have the dual property. We can see that applying the exterior derivative on a differential p-form is equivalent to applying the incidence matrix (∂ p ) t on the spline coefficients. Now, construct a diagram. Denoting by F p (Ω) the set of differential p-forms on Ω (not discrete). We can pass from p-form to a (p + 1)-form by exterior derivative and the sequence

F 0 (Ω) d / / F 1 (Ω) d / / F 2 (Ω) d / / F 3 (Ω) ,
is exact when Ω is star-shaped [START_REF] Desbrun | Discrete Poincaré lemma[END_REF] and we have, in the same way, for discrete differential p-forms,

W α,0 (m) d / / W α,1 (m) d / / W α,2 (m) d / / W α,3 (m) ,
is exact when m is the mesh of a star-shaped Ω. Seeing that W α,p (m) was constructed as a finite dimensional subspace of F p (Ω), we can project the set of differential p-forms on W p,α (m). We obtain the de Rham complex:

F 0 d / / proj F 1 d / / proj F 2 d / / proj F 3 proj W α,0 (m) d / / Pα W α,1 (m) d / / Pα W α,2 (m) d / / Pα W α,3 (m) Pα R |H α,0 (m)| (∂ 1 ) t / / Rα O O R |H α,1 (m)| (∂ 2 ) t / / Rα O O R |H α,2 (m)| (∂ 3 ) t / / Rα O O R |H α,3 (m)| Rα O O
where proj is a projection and mapping P α and R α are the dual mapping of P t α and R t α defined by :

P α : W α,p (m) → R |Hα,p(m)| w p → {w p |W p = M p α w p } and R α : R |Hα,p(m)| → W α,p (m) w p → p w α s ∈W α,p (m)
w p,s p w α s .

Lemma 4.2 This diagram is commutative.

Proof. First, let us show that the part involving discrete differential p-forms and spline coefficients, a commutative diagram. With help of a property of splines, we have seen that (M 0

α ) t ∂ 1 = ∂ 1 (M 1 α ) t , (M 1 α ) t ∂ 2 = ∂ 2 (M 2 α ) t and (M 2 α ) t ∂ 3 = ∂ 3 (M 3 α ) t .
We take the tranpose and we have (∂

1 ) t M 0 α = M 1 α (∂ 1 ) t , (∂ 2 ) t M 1 α = M 2 α (∂ 2 ) t and (∂ 3 ) t M 2 α = M 3 α (∂ 3 ) t .
Furthermore, applying the exterior derivative on a differential p-form is equivalent to applying the incidence matrix on the spline coefficients. We have

P α d w 0 = (M 1 α ) -1 (∂ 1
) t w 0 and (∂ 1 ) t P α w 0 = (∂ 1 ) t (M 0 α ) -1 w 0 and so (∂ 1 ) t P α w 0 = P α d w 0 . In the same way, we obtain (∂ 2

) t P α w 1 = P α d w 1 , (∂ 3 ) t P α w 2 = P α d w 2 .
Secondly, let us show that the part concerning differential p-forms and discrete differential pforms is a commutative diagram. On the one hand, let ω p-1 ∈ F p-1 (Ω) a differential (p -1)-form. The exterior derivative of a (p -1)-form dω p-1 is p-form. So, with help of the Leibniz property , we obtain that

proj d ω p-1 = p w α s ∈W α,p (m) (M p α ) -1 (∂ p ) t W p-1 s p w α s .
On other hand, with help of exterior derivative on splines coefficients

d proj ω p-1 = p w α s ∈W α,p (m) (∂ p ) t M p-1 α -1 W p-1 s p w α s .
And so, showing that d proj ω p-1 = proj d ω p-1 is equivalent to showing that (∂

p ) t M p-1 α -1 = (M p α ) -1 (∂ p ) t
, that we have.

Remark 4.1 Since splines have a compact support, we can observe that W α,0 (m) ⊂ H(grad, Ω),

W α,1 (m) ⊂ H(curl, Ω), W α,2 (m) ⊂ H(div, Ω) and W α,3 (m) ⊂ L 2 (Ω) in the sense of differential forms. That is, if w p ∈ W α,p (m), w p ∧ ⋆w p ∈ L 2 (Ω) and dw p ∧ ⋆dw p ∈ L 2 (Ω).
Also, for p-cochains on the dual mesh W α,p ⋆ , we have similarly a commutative diagram:

F 0 d / / proj F 1 d / / proj F 2 d / / proj F 3 proj W α,0 ⋆ (m) d / / Pα W α,1 ⋆ (m) d / / Pα W α,2 ⋆ (m) d / / Pα W α,3 ⋆ (m) Pα R |H ⋆ α,0 (m)| ∂ 3 / / Rα O O R |H ⋆ α,1 (m)| ∂ 2 / / Rα O O R |H ⋆ α,2 (m)| ∂ 1 / / Rα O O R |H ⋆ α,3 (m)| Rα O O

A broader view

In parallel with gradient, curl and divergence, we denote by G, R, D the matrix (∂ p ) t for p = 1, 2, 3 respectively. Furthermore, using Hodge star operator ⋆ mapping a p-form to a (n -p)-form, where n is the dimension of space, we have

F 0 d proj / / ⋆ + + W α,0 (m) d Pα / / R |H α,0 (m)| G Rα o o ( M 3 ) -1 S3 / / R |H ⋆ α,3 (m)| (M 0 ) -1 S 0 o o Rα / / W α,3 ⋆ (m) Pα o o F 3 proj o o F 1 d proj / / W α,1 (m) d Pα / / R |H α,1 (m)| R Rα o o ( M 2 ) -1 S2 / / R |H ⋆ α,2 (m)| (M 1 ) -1 S 1 o o G t O O Rα / / W α,2 ⋆ (m) Pα o o d O O F 2 proj o o d O O F 2 d proj / / W α,2 (m) d Pα / / R |H α,2 (m)| D Rα o o ( M 1 ) -1 S1 / / R |H ⋆ α,1 (m)| (M 2 ) -1 S 2 o o R t O O Rα / / W α,1 ⋆ (m) Pα o o d O O F 1 proj o o d O O F 3 proj / / W α,3 (m) Pα / / R |H α,3 (m)| Rα o o ( M 0 ) -1 S0 / / R |H ⋆ α,0 (m)| (M 3 ) -1 S 3 o o D t O O Rα / / W α,0 ⋆ (m) Pα o o d O O F 0 proj o o d O O ⋆ -1 k k
In the n-dimensional space , we denote by ( M n-p ) -1 Sn-p maps from a discrete primal p-form to a discrete dual (n -p)-form and denote by (M n-p ) -1 S n-p maps from a discrete dual p-form to a discrete primal (n -p)-form. In theory, we have ⋆ ⋆ ω p = (-1) p(n-p) ω p for all differential p-forms. We do not have this property with discrete differential forms but (M n-p ) -1 S n-p ( M n-p ) -1 Sn-p tends to (-1) p(n-p) Id when we increase the order of spline for interpolation. We remark that it does not depend on the number of mesh points. In the case of periodic domain in 1-dimension, we obtain the following table:

Degree of Spline M ax (| ⋆ ⋆ -Id|) α = 1 0.25 α = 3 0.011031684 α = 5 0.001809231
5 Application to the Maxwell equations

General case

The 3D Maxwell equations can be written in terms of differential forms [START_REF] Bossavit | Computational electromagnetism[END_REF] in the following way

-∂ t 2 D + d 1 H = 2 J, (4) 
∂ t

where2 D, 2 B, 2 J are 2-forms, 1 E, 1 H are 1-forms and 3 ρ is a 3-form. For the purpose of numerical validation, let us consider the 2D case, where all functions depend only on the x and y variables. In this case, the Maxwell equations keep their three components, we therefore still need to consider the differential forms in a 3D space but restrict them to coefficients depending only on x and y. For the discretization of Maxwell's equations with our spline discrete differential forms, we can define two dual uniform cartesian grids of [0, 1] 3 . The mesh we shall consider will be a the cartesian product of a 2D mesh with one cell of length one in the z direction. The primal 2D grid is based on the points x i = i/∆x, y j = j/∆y, with (i, j) ∈ [0, N x ] × [0, N y ] and N x ∆x = N y ∆y. In case of periodic boundary conditions in the x direction, the point x Nx corresponds to x 0 and is omitted from the grid. Periodic boundary conditions in the other direction are dealt with in the same manner.

The points of the dual grid are

x i+1/2 = (i + 1/2)/∆x, y j+1/2 = (j + 1/2)/∆y, with (i, j, k) ∈ [0, N x -1] × [0, N y -1].
The basis functions for our spline discrete differential forms in this case will be

• for the 0-forms 0 w α i,j (x, y) = B α i (x)B α j (y),
• for the 1-forms

1 w α,x i,j (x, y) = D α i (x)B α j (y) dx, 1 w α,y i,j (x, y) = B α i (x)D α j (y) dy, 1 w α,z i,j (x, y) = B α i (x)B α j (y) dz,
• for the 2-forms

2 w α,x i,j (x, y) = B α i (x)D α j (y) dy ∧ dz, 2 w α,y i,j (x, y) = D α i (x)B α j (y) dz ∧ dx, 2 w α,z i,j (x, y) = D α i (x)D α j (y) dx ∧ dy,
• for the 3-forms 3 w α i,j (x, y) = D α i (x)D α j (y) dx ∧ dy ∧ dz.

The discrete differential forms on the dual mesh are defined in the same way with their indices on the dual mesh.

Let us now introduce approximations of the unknowns of Maxwell's equations as linear combinations of these basis functions for the corresponding p-forms. Let us denote by 1 wα and 2 wα , the discrete spline one form and two form basis functions for the splines with knots being the points of the dual mesh. In 2D, Maxwell's equations decouple into two systems, one linking the x and y components of 2 D and 1 E and the z component of 2 B and 1 H, and the other one linking the x and y components of 2 B and 1 H and the z component of 2 D and 1 E. We shall only consider the first one here. The other can be dealt with similarly.

Let us now express the relevant components of our electromagnetic field in the appropriate basis of discrete differential forms

2 D x h (t, x, y) = i,j d x i+1/2,j+1/2 (t) 2 wα,x i+1/2,j+1/2 (x, y), 1 E x h (t, x, y) = i,j e x i,j (t) 1 w α,x i,j (x, y),
In order to obtain equations relating the coefficients of this discrete differential forms, we inject these expressions into the Maxwell equations ( 4)- [START_REF] Buffa | Isogeometric analysis in electromagnetics: B-splines approximation[END_REF], and take the De Rahm maps for two forms on each facet of the the dual mesh for (4) and ( 6) and of primal mesh for ( 5) and [START_REF] Buffa | Isogeometric analysis in electromagnetics: B-splines approximation[END_REF] .

Let us first compute the exterior derivatives of 1 H h and 1 E h :

d 1 H z h (t, x, y) = i,j h z i+1/2,j+1/2 (t)d 1 wα,z i+1/2,j+1/2 (x, y) = i,j h z i+1/2,j+1/2 (t) -B α i+1/2 ′ (x)B α j+1/2 (y) dz ∧ dx + B α i+1/2 (x)B α j+1/2
′ (y) dy ∧ dz , using the formula (2) for the derivative of the spline functions and the definition of D α i , (3.1.1), we get

d 1 H z h (t, x, y) = i,j h z i+1/2,j+1/2 (t) (D α i+3/2 (x) -D α i+1/2 (x))B α j+1/2 (y) dz ∧ dx +B α i+1/2 (x)(D α j+1/2 -D α j+3/2 )(y) dy ∧ dz = i,j (h z i-1/2,j+1/2 (t) -h z i+1/2,j+1/2 (t))D α i+1/2 (x)B α j+1/2 (y) dz ∧ dx + i,j (h z i+1/2,j+1/2 (t) -h z i+1/2,j-1/2 (t))B α i+1/2 (x)D α j+1/2 (y) dy ∧ dz. (8) 
In the same way

d 1 E x h (t, x, y) = i,j e x i,j (t)d 1 wα,x i,j (x, y) 
= - i,j e x i,j (t)D α i (x)B α j ′ (y) dx ∧ dy = - i,j (e x i,j (t) -e x i,j-1 (t))D α i (x)D α j (y) dx ∧ dy, (9) 
and

d 1 E y h (t, x, y) = i,j e y i,j (t)d 1 wα,y i,j (x, y) = i,j e y i,j (t)B α i ′ (x)D α j (y) dx ∧ dy = i,j (e y i,j (t) -e y i-1,j (t))D α i (x)D α j (y) dx ∧ dy, (10) 
Ampere's law (4), without current, for the first two components can be written

∂ t 2 D x + ∂ t 2 D y -d 1 H = 0.
Then using expression [START_REF] De Boor | A practical guide to splines[END_REF] and identifying the components on the basis vectors of the discrete differential forms we get the following relation between the spline coefficients

d x i+1/2,j+1/2 ′ (t) + h z i+1/2,j+1/2 (t) -h z i+1/2,j-1/2 (t) = 0, d y i+1/2,j+1/2 ′ (t) -h z i+1/2,j+1/2 (t) + h z i-1/2,j+1/2 (t) = 0.
On the other hand, Faraday's law [START_REF] Bossavit | Generating Whitney Forms of Polynomial Degree One and High[END_REF], for the third component can be written

∂ t 2 B z + d 1 E = 0.
This becomes using ( 9) and ( 10) and identifying the components on the basis vectors of the discrete differential forms b z i,j ′ (t) + (e y i,j (t) -e y i-1,j (t)) -(e x i,j (t) -e x i,j-1 (t)) = 0.

Discrete Hodge operators: Let us denote by b z = ((b z i,j )) 1≤i≤Nx-1,1≤j≤Ny-1 , e x = ((e x i,j )) 1≤i≤Nx-1,1≤j≤Ny-1 , e y = ((e y i,j )) 1≤i≤Nx-1,1≤j≤Ny-1 ,

h z = ((h z i+1/2,j+1/2 )) 1≤i≤Nx-1,1≤j≤Ny-1 , d x = ((d x i+1/2,j+1/2 )) 1≤i≤Nx-1,1≤j≤Ny-1 , d y = ((d y i+1/2,j+1/2 )) 1≤i≤Nx-1,1≤j≤Ny-1
, the matrices of spline coefficients on the discrete grids.

We now need to define the discrete Hodge operators mapping d x to e x , d y to e y and b z to h z . The same procedure as for the 1D case will be used. We have

2 D x h (t, x, y) = i,j d x i+1/2,j+1/2 (t)B α i+1/2 (x)D α j+1/2 (y) dy ∧ dz,
defines a 2-form to which we can apply the continuous Hodge operator, yielding the one form

⋆ 2 D x h (t, x, y) = i,j d x i+1/2,j+1/2 (t)D α i+1/2 (x)B α j+1/2 (y) dx.
We now define the image of 2 D by the discrete Hodge operator as the projection of this 1-form onto the primal grid. Denoting 1 E h = i,j e x i,j (t)D α i (x)B α j (y) dx this image. Then we have for any

(k, l) ∈ [0, N x -1] × [0, N y -1] x k+1 x k ⋆ 2 D x h (t, x, y l ) = i,j d x i+1/2,j+1/2 (t) x k+1 x k B α i+1/2 (x) dx D α j+1/2 (y l ) = i,j e x i,j (t) 
x k+1

x k D α i (x) dx B α j (y l ).

Recalling that

x k+1

x k B α i (x) dx is the term at position (k, i) of matrix M 1 α , that B α j (y l ) is the term at position (l, j) of matrix M 0 α and denoting by S 1 the matrix whose (k, i) component is

x k+1 x k
B α i+1/2 (x) dx and by S 0 the matrix whose (l, j) component is D α j+1/2 (y l ), the above relation can be written in matrix form S 1 d x (S 0 ) T = M 1 α e x (M 0 α ) T . This defines the discrete Hodge operator mapping d to e. Note that on a uniform grid all these matrices are symmetric so that the transpose can be omitted. For the y component, the D α i and B α j are interchanged so that we get

S 0 d y (S 1 ) T = M 0 α e y (M 1 α ) T .
And the same computation gives us the discrete Hodge operator for the z component

S 1 b z (S 1 ) T = M 0 α h z (M 0 α ) T .

Change of variables in two dimensions

Let us now consider a computational domain defined by a mapping f from a square. The change of variables f : (r, s) → (f 1 (r, s), f 2 (r, s)) = (x, y) is a diffeomorphism. Let us denote J the jacobian matrix of f J(r, s) = ∂f 1 ∂r (r, s) ∂f 1 ∂s (r, s)

∂f 2
∂r (r, s) ∂f 2 ∂s (r, s) , and |J| its determinant. By definition we also have that the jacobian matrix of the inverse of f at point (f 1 (r, s), f 2 (r, s)) is the inverse of the jacobian matrix of f ,

J -1 (r, s) =   ∂f -1 1 ∂x (f 1 (r, s), f 2 (r, s)) ∂f -1 1 ∂y (f 1 (r, s), f 2 (r, s)) ∂f -1 2 ∂x (f 1 (r, s), f 2 (r, s)) ∂f -1 2 ∂y (f 1 (r, s), f 2 (r, s))   = 1 |J| ∂f 2 ∂s (r, s) -∂f 1 ∂s (r, s) -∂f 2
∂r (r, s) ∂f 1 ∂r (r, s)

.

We discretize the cartesian domain parametrized by (r, s) and we will work only on this domain.

The primal 2D mesh of our domain will be r 0 < r 1 < • • • < r N r-1 < r N r in the r-direction and When we do the change of coordinates, we obtain

s 0 < s 1 < • • • < s N s-1 < s N s in
f ⋆ 1 H(r, s) = h z (f 1 (r, s), f 2 (r, s))dz, f ⋆ 2 B(r, s) = b z (f 1 (r, s), f 2 (r, s))|J|dr ∧ ds,
f ⋆ 1 E(r, s) = (e x (f 1 (r, s), f 2 (r, s)) ∂f 1 ∂r (r, s) + e y (f 1 (r, s), f 2 (r, s)) ∂f 2 ∂r (r, s))dr

+(e x (f 1 (r, s), f 2 (r, s)) ∂f 1 ∂s (r, s) + e y (f 1 (r, s), f 2 (r, s)) ∂f 2 ∂s (r, s))ds, f ⋆ 2 D(r, s) = (d x (f 1 (r, s), f 2 (r, s)) ∂f 2 ∂r (r, s) -d y (f 1 (r, s), f 2 (r, s)) ∂f 1 ∂r (r, s))dr ∧ dz +(d x (f 1 (r, s), f 2 (r, s)) ∂f 2 ∂s (r, s) -d y (f 1 (r, s), f 2 (r, s)) ∂f 1 ∂s (r, s))ds ∧ dz.
Let us now express differentials forms in the new coordinates in the appropriate basis of discrete differential forms

f ⋆ 2 D r h (t, r, s) = i,j d r i+1/2,j+1/2 (t) 2 wα,r i+1/2,j+1/2 (r, s), f ⋆ 1 E r h (t, r, s) = i,j
e r i,j (t) 1 w α,r i,j (r, s),

f ⋆ 2 D s h (t, r, s) = i,j d s i+1/2,j+1/2 (t) 2 wα,s i+1/2,j+1/2 (r, s) f ⋆ 1 E s h (t, r, s) = i,j
e s i,j (t) 1 w α,s i,j (r, s),

f ⋆ 1 H z h (t, r, s) = i,j h z i+1/2,j+1/2 (t) 1 wα,z i+1/2,j+1/2 (r, s), f ⋆ 2 B h (t, r, s) = i,j
b z i,j (t) 2 w α,z i,j (r, s).

Coefficients associated to splines are calculated with help of degree of freedom on the cartesian grid (r, s, z).

The exterior derivative d does not depend on the coordinate system, we have f ⋆ d = df ⋆ . This proprety can be verified on discrete differential forms with help of the discrete exterior derivative acting on spline coefficients. So Ampere's law (4), without current, for the first two components can be written

∂ t f ⋆ 2 D r + ∂ t f ⋆ 2 D s -df ⋆ 1 H = 0.
On the other hand, Faraday's law (5), without current, for the third component can be written

∂ t f ⋆ 2 B z + df ⋆ 1 E = 0.
Discrete Hodge operators: We must be careful since f ⋆ does not commute with the Hodge operator, so we must define discrete Hodge operators in the new coordinate system such that the following equalities are true:

f ⋆ 2 B = f ⋆ ⋆ 1 H , f ⋆ 1 E = f ⋆ ⋆ 2 D .
We know f ⋆ 1 H, f ⋆ 2 D and we want calculate the spline coeficients for f ⋆ 2 B, f ⋆ 1 E . For this, we apply the pullback f -1⋆ on f ⋆ 1 H, f ⋆ 2 D to come back in the old variables (x, y, z) to have 1 H, 2 D then we apply the Hodge Star operator followed by the pullback f ⋆ . After simplication, we obtain

f ⋆ ⋆ 1 H = i,j d z i+1/2,j+1/2 (t)B α i+1/2 (r)B α j+1/2 (s)|J(r, s)|dr ∧ ds, (f ⋆ (⋆ 2 D h )) r (t, r, s) = i,j d r i+1/2,j+1/2 (t)B α i+1/2 (r)D α j+1/2 (s) (J t J(r, s)) 1,1 |J(r, s)| +d s i+1/2,j+1/2 (t)D α i+1/2 (r)B α j+1/2 (s) (J t J(r, s)) 2,1 |J(r, s)| dr, (f ⋆ (⋆ 2 D h )) s (t, r, s) = i,j d r i+1/2,j+1/2 (t)B α i+1/2 (r)D α j+1/2 (s) (J t J(r, s)) 1,2 |J(r, s)| +d s i+1/2,j+1/2 (t)D α i+1/2 (r)B α j+1/2 (s) (J t J(r, s)) 2,2 |J(r, s)| ds,
where (J t J(r, s)) i,j is the (i, j) coefficient of the matrix J t J(r, s). We now define the image of 1 H by f ⋆ ⋆ as the projection of this 2-form, denoting by f ⋆ 2 B h (t, r, s) = i,j b z i,j (t) 2 w α,z i,j (r, s), onto primal grid. Then we have for any

(k, l) ∈ [0, N r -1] × [0, N s -1] r k+1 r k s l+1 s l f ⋆ (⋆ 1 H h )(t, r, s) = i,j d z i+1/2,j+1/2 (t) r k+1 r k s l+1 s l B α i+1/2 (r)B α j+1/2 (s)|J(r, s)|dr ∧ ds = r k+1 r k s l+1 s l f ⋆ 2 B h (t, r, s) = i,j b z i,j (t) r k+1 r k s l+1 s l 2 w α,z i,j (r, s).
Also, we denote by

f ⋆ 1 E h = f ⋆ 1 E r h (t, r, s)+f ⋆ 1 E s h (t, r , 
s) = i,j e r i,j (t) 1 w α,r i,j (r, s)+ i,j e s i,j (t) 1 w α,s i,j (r, s) the projection of 2 D and we have

r k+1 r k (f ⋆ ⋆ 2 D h ) r (t, r, s l ) = i,j d r i+1/2,j+1/2 (t)D α j+1/2 (s l ) r k+1 r k B α i+1/2 (r) (J t J) 1,1 (r, s l ) |J(r, s l )| dr + d s i+1/2,j+1/2 (t)B α j+1/2 (s l ) r k+1 r k D α i+1/2 (r) (J t J) 2,1 (r, s l ) |J(r, s l )| dr = r k+1 r k f ⋆ 1 E r h (t, r, s l ) = i,j e r i,j (t) r k+1 r k 1 w α,r i,j (r, s l ), s l+1 s l (f ⋆ (⋆ 2 D h )) s (t, r k , s) = i,j d r i+1/2,j+1/2 (t)B α i+1/2 (r k ) s l+1 s l D α j+1/2 (s) (J t J) 1,2 (r k , s) |J(r k , s)| ds + d s i+1/2,j+1/2 (t)D α i+1/2 (r k ) s l+1 s l B α j+1/2 (s) (J t J) 2,2 (r k , s) |J(r k , s)| ds = s l+1 s l f ⋆ 1 E s h (t, r k , s) = i,j
e s i,j (t)

s l+1 s l 1 w α,s i,j (r k , s).
We proceed in the same way if we must solve

f ⋆ 1 H = f ⋆ ⋆ 2 B knowing f ⋆ 2 B.
We apply the pullback f -1⋆ on f ⋆ 2 B to come back in the old variables (x, y, z) to have 2 B then we apply the Hodge Star operator followed by the pullback f ⋆ . After simplification, we obtain

f ⋆ ⋆ 2 B = i,j b z i,j (t)D α i (r)D α j (s) 1 |J(r, s)| dz.
We denote f ⋆ 1 H z h (t, r, s) = i,j h z i+1/2,j+1/2 (t) 1 wα,z i+1/2,j+1/2 (r, s) the projection onto the dual grid and so we obtain

1 0 f ⋆ ⋆ 2 B(t, r i+1/2 , s j+1/2 ) = i,j b z i,j (t) D α i (r i+1/2 )D α j (s j+1/2 ) |J(r i+1/2 , s j+1/2 )| = f ⋆ 1 H z h (t, r i+1/2 , s j+1/2 ) = i,j h z i+1/2,j+1/2 (t) 1 wα,z i+1/2,j+1/2 (r i+1/2 , s j+1/2 ).
6 Numerical results

Test case in 2D with periodic boundary conditions

In 2 dimension with periodic boundary condition, let us consider the following solution of Maxwell's equations: the electric field, a 1-form, is given by 1 E = -k y sin(k x x + k y y -ω t)dx -k x sin(k x x + k y y -ω t)dy, and the magnetic field, a 2-form, is given by 2 B = ω cos(k x x + k y y -ω t)dx dy.

Then, with help of the Hodge star operator we obtain the formula for the electric displacement field: 1 D = -k y sin(k x x + k y y -ω t)dy -k x sin(k x x + k y y -ω t)dx and for the magnetizing field: 0 H = ω cos(k x x + k y y -ω t). Constants are given by k x = 2 π Lx , k y = 2 π Ly , where L x and L y are the length of our domain in x and y respectively and ω = k 2

x + k 2 y . We test our code with L x = L y = 1 and with a time scheme of order 4 and we observe that the order of our scheme is given by the spline order. In one dimension with perfect electric conductor boundary conditions, we have a solution where the electric field, a 0-form, is given by 0 E = k ω sin(k x) cos(ω t), and the magnetic field, a 1-form, has the form, 1 B = -cos(k x x) sin(ω t)dx. Then, with help of the Hodge star operator we obtain the formula for the electric displacement field: 1 D = k ω sin(k x) cos(ω t)dx and for the magnetizing field : 0 H = -cos(k x x) sin(ω t). Constants are given by k = 2 π L , where L are the length of our domain in x and ω = |k x |. We test our code with x = 1 and with a time scheme of order 4 and we observe that the order of our scheme is given by the spline order. We are going up to time T = 2. These convergence order are obtain with a time step ∆t = ∆x/0.5 when we use B-spline of degree 1 and ∆t = ∆x/3.5 when we use B-spline of degree 3.

Test case in 2D with a change of variables and with perfect electric conductor boundary conditions

We consider a physical domain which is a ring with perfect electric conductor boundary conditions.

We have an exact solution where the electric field, a 1-form, is given by 1 E = -cos(2 k θ) (A cos(ω t) + B sin(ω t)) J 2 k (ω r)dθ+cos(2 k θ) (A cos(ω t) + B sin(ω t)) J ′ 2 k (ω r)dr, and the magnetic field, a 2-form, has the form, 2 B = cos(2 k θ) (A cos(ω t) + B sin(ω t)) J 2 k (ω r)dr dθ,

where J 2 k is the Bessel's function of the first kind with order 2 and J ′ 2 k her derivative. With the help of the Hodge star operator, we obtain the formula for electric displacement field:

1 D = -cos(2 k θ) (A cos(ω t) + B sin(ω t)) J 2 k (ω r)dr+cos(2 k θ) (A cos(ω t) + B sin(ω t)) J ′ 2 k (ω r)dθ, and for magnetizing field:

0 H = cos(2 k θ) (A cos(ω t) + B sin(ω t)) J 2 k (ω r).

The intervals on which we have boundary conditions on perfect conductors are (r, θ) ∈ [γ 1 , γ 2 ]×[0, π 2 ] where γ 1 , γ 2 are the first and second zero of Bessel's function of the first kind with order 2k. In this case the change of variables is nothing other than change of coordinates into polar coordinates.

We test our code with a time scheme of order 4 and we observe that the order of our scheme is given by spline's order as expected. We are going up to time T = 1 for order 1 and T = 2 for order 3. These convergence orders are obtained with a time step ∆ t = min(∆ x , ∆ y )/0.5 when we use B-splines of degree 1 and ∆ t = min(∆ x , ∆ y )/3.5 when we use B-splines of degree 3.
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 1 1 or 0 with size |H α,p-1 (m)| × |H α,p (m)|. These matrices are called the transpose of incidence matrices and verify ∂ p ∂ p+1 = 0. Notion of Chains and discrete manifolds: A p-chain c p is a linear combination of all p-cubes on m i.e.: c p = h p,s ∈Hα,p(m) c p,s h p,s ,

  the s-direction. In 2D, Maxwell's equations use the following differential forms1 H(x, y) = h z (x, y)dz, 2 B(x, y) = b z (x, y)dx ∧ dy, 1 E(x, y) = e x (x, y)dx + e y (x, y)dy, 2 D(x, y) = d x (x, y)dy ∧ dz + d y (x, y)dz ∧ dx.
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 1 Figure 1: The magnetizing field H in 2D with periodic boundary conditions.
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 2 Figure 2: The first component of the electric displacement field Dx in 2D with periodic boundary conditions.

Figure 3 :degree α = 3 2

 332 Figure 3: The second component of the electric displacement field Dy in 2D with periodic boundary conditions.
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 4 Figure 4: The magnetizing field H in 1D with perfect electric conductor boundary conditions.
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 5 Figure 5: The electric field D in 1D with perfect electric conductor boundary conditions.
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 6 Figure 6: The first component of the electric displacement field Dx in physic domain with boundary conditions on perfect conductors.
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 7 Figure 7: The second component of the electric displacement field Dy in physic domain with boundary conditions on perfect conductors.
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 8 Figure 8: The magnetizing field H in physic domain with boundary conditions on perfect conductors.

B + d 1 E = 0, (5)d 2 D =

ρ,(6)d 2 B = 0,(7)

D y h (t, x, y) = i,j d y i+1/2,j+1/2 (t) 2 wα,y i+1/2,j+1/2 (x, y) 1 E y h (t, x, y) = i,je y i,j (t) 1 w α,y i,j (x, y),1 H z h (t, x, y) = i,j h z i+1/2,j+1/2 (t) 1 wα,z i+1/2,j+1/2 (x, y), 2 B h (t, x, y) = i,jb z i,j (t) 2 w α,z i,j (x, y).