
HAL Id: hal-00568775
https://hal.science/hal-00568775v1

Submitted on 23 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular resource development and diagnostic
evaluation framework for fast NLP system improvement

Gaël de Chalendar, Damien Nouvel

To cite this version:
Gaël de Chalendar, Damien Nouvel. Modular resource development and diagnostic evaluation frame-
work for fast NLP system improvement. North American Chapter of the Association for Compu-
tational Linguistics - Human Language Technologies 2009, May 2009, Boulder, United States. �hal-
00568775�

https://hal.science/hal-00568775v1
https://hal.archives-ouvertes.fr


Modular resource development and diagnostic evaluation framework for

fast NLP system improvement

Gaël de Chalendar, Damien Nouvel

CEA, LIST, Multilingual Multimedia Knowledge Engineering Laboratory,

F-92265 Fontenay-aux-Roses, France.

{Gael.de-Chalendar,Damien.Nouvel}@cea.fr

Abstract

Natural Language Processing systems are

large-scale softwares, whose development in-

volves many man-years of work, in terms of

both coding and resource development. Given

a dictionary of 110k lemmas, a few hundred

syntactic analysis rules, 20k ngrams matrices

and other resources, what will be the impact

on a syntactic analyzer of adding a new pos-

sible category to a given verb? What will be

the consequences of a new syntactic rules ad-

dition? Any modification may imply, besides

what was expected, unforeseeable side-effects

and the complexity of the system makes it dif-

ficult to guess the overall impact of even small

changes. We present here a framework de-

signed to effectively and iteratively improve

the accuracy of our linguistic analyzer LIMA

by iterative refinements of its linguistic re-

sources. These improvements are continu-

ously assessed by evaluating the analyzer per-

formance against a reference corpus. Our first

results show that this framework is really help-

ful towards this goal.

1 Introduction

1.1 The evaluation framework

In Natural Language Processing (NLP), robustness

and reliability of linguistic analyzers becomes an

everyday more addressed issue, given the increas-

ing size of resources and the amount of code im-

plied by the implementation of such systems. Be-

yond choosing a sound technology, one must now

have efficients and user-friendly tools around the

system itself, for evaluating its accuracy. As shown

by (Chatzichrisafis et al., 2008), where developers

receive daily reports of system’s performance for

improving their system, systematic evaluation with

regression testing has shown to be gainful to accel-

erate grammar engineering.

Evaluation campaigns, where several participants

evaluate their system’s performance on a specific

task against other systems, are a good mean to

search for directions in which a system may be able

to improve its performance. Often, these evaluation

campaigns also give possibility for participants to

run their analyzer on test data and retrieve evalua-

tion results. In this context, parsers authors may rely

on evaluation campaigns to provide performance re-

sults, but they should also be able to continuously

evaluate and improve their analyzers between evalu-

ation campaigns. We aim at providing such a generic

evaluation tool, using evaluation data to assess sys-

tems accuracy, this software will be referenced as

the “Benchmarking Tool”.

Approaches concerning Natural Language Pro-

cessing involve everyday more and more resource

data for analyzing texts. These resources have

grown enough (in terms of volume and diversity),

that it now becomes a challenge to manipulate them,

even for experienced users. Moreover, it is needed

to have non-developers being able to work on these

resources: it is necessary to develop accessible tools

through intuitive graphical user interfaces. Such a

resource editing GUI tool represent the second part

of our contribution, called the “Resource Tool”.

The overall picture is to build a diagnostic frame-

work enabling a language specialist, such as a lin-

guist, to status, almost in real-time, how modifica-



tions impact our analyzer on as much test data as

possible. For analyzers, each resource may have an

effect on the final accuracy of the analysis. It is of-

ten needed to iterate over tests before understanding

what resource, what part of the code needs to be im-

proved. This is especially the case with grammar

engineering, where it is difficult to predict the con-

sequences of modifying a single rule. Ideally, our

framework would allow the manipulator to slightly

alter a resource, trigger an evaluation and, almost in-

stantaneously, view results and interpret them. With

this framework, we expect a large acceleration in the

process of improving our analyzer.

In the remaining of this introduction, we will

describe our analyzer and Passage, a collabora-

tive project including an evaluation campaign and

the production of a reference treebank for French

through a voting procedure. Section 2 will describe

our evaluation framework; its architecture, its two

main modules and our first results using it. Section

3 describes some related works. We conclude in sec-

tion 4 by describing the next steps of our work.

1.2 The LIMA linguistic analyzer

Our linguistic analyzer LIMA (LIc2m Multilingual

Analyzer, (Besancon and de Chalendar, 2005)), is

implemented as a pipeline of independent modules

applied successively on a text. It implements a de-

pendency grammar (Kahane, 2000) in the sense that

produced analysis are exclusively represented as bi-

nary dependency relations between tokens.

The analyzer includes, among other modules, a

tokenizer segmenting the text based on punctuation

marks, a part of speech tagger, short and long dis-

tance dependencies extractors based on finite-state

automata defined by contextualized rules. The latter

rules express successions of categories, augmented

with constraints (on words inflexion, existence of

other dependencies, etc.). The analyzer also in-

cludes modules to find idiomatic expressions and

named entities that, once recognized, are merged

into a single token, thus allowing grammar rules to

apply on those. Furthermore, modules may be spe-

cialized in processing language-specific phenomena,

e.g. Chinese tokenization, German compounds, etc.

Currently, the analyzer is able to process more or

less deeply ten languages, including English, Span-

ish, Chinese, Arab, French and German.

1.3 The Passage Project

Our work is part of the Passage project (Clergerie

et al., 2008b). The objectives of this project are

twofold. Firstly, it organizes two evaluation cam-

paigns of syntactic analyzers (around 15 participat-

ing systems) for the French language. Secondly, it

aims at producing a large scale reference treebank

for French by merging the output of all the partic-

ipating parsers, using a Rover (Recognizer Output

Voting Error Reduction) (Fiscus, 1997) approach.

Within this project, syntactic annotations are pro-

duced in a common format, rich enough to represent

all necessary linguistic features and simple enough

to allow participating parsers (using very different

parsing approaches) to represent their analysis in

this format. It is an evolution of the EASy cam-

paign format, mixing simple non recursive chunks

and dependency relations between chunks or tokens.

It respects two proposed ISO specifications: MAF

(ISO 24611) and SynAF (ISO 24615). The chunks

and dependencies types are issued from the ISO data

category registry, DCR1, currently using the French

language section names. The syntactic analysis of

a corpus in the Passage format provides information

about:

• Segmentation of the corpus into sentences

• Segmentation of sentences into forms

• Non-recursive typed (listed in Table 1) chunks

embedding forms

• Labeled typed (listed in Table 2) dependencies

that are anchored by either forms or chunks

Type Explanation

GN Nominal Chunk

NV Verbal Kernel

GA Adjectival Chunk

GR Adverbial Chunk

GP Prepositional Chunk

PV Prepositional non-tensed Verbal Kernel

Table 1: Chunks types

Within the EASy project, parsers have been eval-

uated against a reference, which itself was a small

subset of the available corpora. The reference was

1http://www.isocat.org



Type Explanation

SUJ-V Subject-verb

AUX-V Aux-verb

COD-V Direct objects

CPL-V Other verb arguments/complements

MOD-V Verb modifiers (e.g. adverbs)

COMP Subordinate sentences

ATB-SO Verb attribute

MOD-N Noun modifier

MOD-A Adjective modifier

MOD-R Adverb modifier

MOD-P Preposition modifier

COORD Coordination

APPOS Apposition

JUXT Juxtaposition

Table 2: Dependencies types

created by human annotation of random sentences

within the corpora. Thus, once this evaluation cam-

paign had been finished, the annotated corpora ref-

erence was released for participants to test and im-

prove their parser. Currently, we use this reference

for benchmarking our analyzer.

1.4 Metrics for parsing evaluation

We are constantly recalled that evaluation metrics

and methodologies evolve and are subject to intense

research and innovation (Carroll et al., 2002). Dis-

cussing these metrics is not in the scope of this pa-

per, we only need to be able to work out as many

metrics as possible on the entire corpus or on any

part of it. The evaluation is supposed, for each doc-

ument d and for each type (of chunk or of depen-

dency) t within all types set T , to return following

counts:

• Number of items found and correct - fc(d, t)

• Number of items found - f(d, t)

• Number of items correct - c(d, t)

With this approach, we are able to compute com-

mon Information Retrieval (IR) metrics (Rijsbergen,

1979): precision, recall, f-measure. We also intro-

duce a new metric that gives us indications about

what types are the most lowering overall perfor-

mance, called “Type error ratio”:

f(d, t) + c(d, t) − 2.fc(d, t)
∑

t∈T f(d, t) + c(d, t) − 2.fc(d, t)
(1)

This metric counts the number of errors and

misses for a given type reported to the total number

of errors and misses. It allows us to quantify how

much an improvement on a given type will improve

the overall score. In our case, scores are computed

for chunks on the one hand, and for dependencies

on the other hand. For instance, we have noticed

that GN errors represent 34.6% of the chunks errors,

whereas PV only represent 2.2%: we are thus much

more interested in improving detection of GN than

PV regarding current evaluation campaign.

2 The evaluation framework

2.1 Architecture

We need our framework to be portable and to be im-

plemented using an agile approach: each new ver-

sion should be fully functional while adding some

more features. It also must be user-friendly, allow-

ing to easily add eye-candy features. Consequently,

we have chosen to implement these tools in C++,

using the Qt 4.5 library2. This library satisfies our

requirements and will allow to rely on stable and

open source (LGPL) tools, making it feasible for us

to possibly deliver our framework as a free software.

This approach allows us to quickly deliver work-

ing software while continuously testing and devel-

oping it. Iterations of this process are still occurring

but the current version, with its core functions, al-

ready succeeded in running benchmarks and in be-

ginning the improvement of our linguistic resources

while regularly delivering upgraded versions of our

framework. First results of this work will be pre-

sented below in this paper.

The open architecture we have chosen implies to

use externals tools, for analysis and evaluation on

the one hand, for compiling and installing resources

on the other hand. These tools may then be con-

sidered as black boxes, being externals commands

called with convenient parameters. In particular, the

Benchmarking Tool relies on two commands: the

analyzer command, receiving input file as a param-

eter and producing the analyzed file, the evaluation

command, receiving the analyzed file and the ref-

erence file as parameters and outputting counts of

found, correct, found and correct items for each di-

mension. This allows, for example, to replace our

2http://www.qtsoftware.com/



analyzer with another one, by just wrapping the lat-

ter in a thin conversion layer to convert its inputs and

its outputs.

2.2 Benchmarking Tool

The Benchmarking Tool, which architecture is de-

picted in Figure 1, is responsible of executing anal-

ysis and evaluation on pairs of data and reference

files, using commands stored in benchmarking con-

figuration. For each pair of files, the registered anal-

ysis command is executed followed by the evalua-

tion one. In our case, those commands apply to the

task of annotating files for syntactic chunks and de-

pendencies.

Figure 1: Benchmarking Tool data flow

We may consider the type of chunks and depen-

dencies as dimensions of an evaluation. To a certain

extent, these may be associated to linguistics phe-

nomena which are tested, as proposed within the

TSNLP project (Balkan et al., 1994) or, more re-

cently, for Q/A systems by (Paiva et al., 2008). But

in these projects, focus is also made on the evalua-

tion tool, where we do not implement the evaluation

tool but rely on an external program to provide ac-

curacy of analysis.

The pairs of data and reference files are inserted

inside a structure implemented as a pipeline, which

may be modified (adding, removing, reordering

units) with common GUI interfaces. After creation

of the pipeline, the user may trigger a benchmark-

ing (progress is shown by coloring pipeline units),

which may be suspended, resumed or restarted at

any moment. For note, the current version of the

framework uses the local machine’s processors to

analyze pipeline units in parallel, but we intend to

distribute the analyzes on the available nodes of a

cluster soon. As soon as results are received, tables

and graphics are updated on screen within a view

showing previous and current results for each eval-

uated dimension. To refine diagnosis, the user may

choose what dimensions are displayed, what met-

rics should be computed, and what pipeline units are

used. Finally, any evaluation may be deleted if the

corresponding modification did not increase perfor-

mance and should be reverted.

Upon demand, the tool saves current benchmark-

ing configuration and results as an XML file. Con-

versely, it loads a pipeline and results from file, so

as to resume or switch between evaluations. The

parsed output of the evaluator tool is recorded for

each pipeline unit and for each dimension, so that

metrics based on those quantities are computed for

each pipeline unity or for the overall corpus. Be-

sides, the date and a user comment for each evalua-

tion are also saved for these records. Writing com-

ments has proved to be very helpful to keep track

of what changes have been made on code, linguistic

resources, configuration, parameters, etc.

As an example within the Passage project, run-

ning evaluation with the Benchmarking Tool al-

lowed us to notice that we had difficulties in rec-

ognizing verb-auxiliary dependencies. Considering

previous results, we detected that this issue appeared

after having introduced a set of idioms concerning

pronominal verbs. Unit testing showed that the anal-

ysis of past perfect progressive for pronominal verbs

was buggy. Patching the code gave us a 10 points f-

measure gain for AUX-V dimension and 0.3 for all

dependencies dimensions (AUX-V having a 2.6%

global error rate within dependencies). Thus, bench-

marking results have been saved with appropriate

comment and other improvements or deficiencies

could be examined.

With these features, the tool offers the possibility

to have an overall view on evaluation results and on

their evolution across time, given multiple data, di-

mensions of analysis and computed metrics. There-

fore, it helps us, without any complex manipulation,

to get a visual report on what implication on evalu-

ation results has a modification to the analysis pro-

cess. Furthermore, those tests allow to search for

errors in resources as well as in code, so as to find

how to enrich our linguistic resources or to identify

deficiencies in our code.

Figure 2 shows a benchmarking using a set of 24

evaluation files (left part) to improve the analyzer’s



Figure 2: Chunks (CONSTS), dependencies (RELS), nominal chunks (GN) and direct objects dependencies (COD V)

f-measure results evolution through 4 evaluations on a 24 files corpus

results. The central table shows the measures corre-

sponding to 4 successive evaluations, displaying re-

sults for the dimensions selected on the top most part

(check-boxes). The right-hand side shows graph-

ically the same data, successive evaluations being

displayed as its abscissa and measures as its ordi-

nate.

2.3 Resource Tool

The Resource Tool, which modular design is de-

picted in Figure 3, aims at making resources edit-

ing accessible for people who have neither a deep

knowledge of the system internals nor computer pro-

gramming skills. Enriching our resources implies

having people, either specialized in linguistics or in

testing to interact with the resources, even if not ac-

customed to our specific storage format for each re-

source.

In its current version, the Resource Tool allow to

edit the following resources:

• Dictionary: items and their categories

• Syntactic rules: syntactic dependency detection

Figure 3: Resource Tool modular design

• Part-of-speech tagger learning corpus: tagged

examples of ngrams disambiguation matrices

• Idioms: language dependent fixed expressions

Those resources are presented in a tabbed view,

each having a dedicated interface and access func-

tions. Within each resource, a search feature is im-

plemented, which has shown to be really useful, es-

pecially for dictionary. The tool also provides sim-

ple means to save, compile and install resources,

once they have been modified. This has to be very

transparent for the user and we just provide a “Save”

button and another “Compile and install” button.

The current version of Resource Tool is quite ba-



Figure 4: Viewing and editing disambiguation matrices: probabilities and examples for articles followed by nouns

sic in terms of edition capacities. Dictionary has a

dedicated interface for editing words and their cat-

egories, but ngrams, syntactic rules and idioms re-

sources may yet only be changed through a basic

text editor.

Figure 4 shows the resource tool interface for the

annotated corpus that allows to build part-of-speech

disambiguation matrices. The top most tabs allow

to switch between resources among editable ones.

The data table shows the computed 3-grams (from

our own tag set). The left part text field shows a

list of sentences, where occurrences of the ngrams

selected in the above table appear. The right part

text field shows correspondences between two tag

sets. Eventually, the “Edit corpus file” button opens

an editor for the user to add sentences or to modify

sentences in the tagged corpus.

The Resource Tool and the Benchmarking Tool

communicate together through two signals: on the

one hand when resources are installed, the Resource

Tool may trigger an evaluation in the Benchmarking

Tool, on the other hand when the evaluation has fin-

ished, the Resource Tool is notified and warns the

user. Being aware of their respective status, we also

warn the user for dangerous operations, like when

trying to install resources while a benchmarking is

still running, or when quitting the application before

last benchmark is finished.

While these two applications are connected to be

aware of benchmarking and resource installation sta-

tus, no more interaction has been implemented for

the moment to link evaluation and resource edition

together. We have considered implementing a fea-

ture making possible to automatically do unit testing

resource modifications, but, from our point of view,

this has to be implemented with following restric-

tions: the Benchmarking Tool should remain generic

(modifying configuration and resources should not

be part of the tool) ; amount of required disk space

should remain minimal (only differences between

evaluations should be stored).

2.4 Preliminary results

We recently finished the first implementation itera-

tion. The evaluator itself is provided by a partner

laboratory. Its measurement methodology is deeply

presented in (Paroubek, 2006). From our point of

view, we are only concerned in the fact that these



Chunks Dependencies Modifications

F P R F P R

72.6 72.0 73.2 45.9 54.2 39.8 Initial evaluation

76.3 76.2 76.3 47.5 56.1 41.1 Code reengineering / debugging

76.7 76.7 76.7 47.6 56.2 41.3 New set of syntactic rules

76.9 76.9 76.9 47.8 56.7 41.4 Specified preposition detection rules

Table 3: Benchmarking results, f-measure (F), precision (P), recall (R)

measures are relevant for improving the quality of

analysis produced by our parser.

We applied our resource improvement methodol-

ogy on a small annotated corpus of approximately

80.000 words, delivered after the EASy campaign,

among 27 thematic files. For information, the whole

process (analysis and evaluation for each file) is 5

minutes long on a bi-processor: this allows the soft-

ware to be used intensively on a personal computer.

Results in Table 3 show that the use of our frame-

work already allowed us to introduce modifications

of the linguistic resources with the Resource Tool;

these changes lead to a slight improvement of the

overall score of the system.

First, we obtained confirmation that some code

reengineering and some debugging was required.

These tasks, associated with iterative evaluation,

have allowed us to detect parts of the code which

did not give entire satisfaction, especially in the step

transforming output from our analyzer to the ex-

pected Passage format. We also found a bug within

the evaluation scripts, which, once corrected, forced

to restart evaluation measures from the beginning:

this shows the importance of having a stable en-

vironment apart analyzer (evaluation process, valid

data and reference file). These results show that iter-

ating over time and saving history may help to reveal

potential weaknesses of the code and to detect what

goes wrong.

Secondly, these tools where well-suited for eval-

uating the impact of a new set of syntactic rules,

for which we did not have opportunities to do pre-

cise evaluation before. For this set of 20 rules,

we systematically tried each rule separately, then

kept the combination of the rules increasing scores.

This improvement may appear as minimal, but these

rules where written in the context of an ongoing

work on our grammar. It gave an intuitive idea that

this approach is not a dead-end and may be further

explored. Besides, methodologies have been sug-

gested to test the impact of each rule in the entire

set of rules by systematically testing combinations

of rules. But, currently, this is beyond our goal.

Finally, we also introduced some “syntactic

sugar”, by grouping some expressions within rules,

and successfully obtained insurance that these mod-

ification did not lower scores. This is an important

result for us in the sense that we ensure that the same

set of rules expressed differently (with rules more

concise thus more readable) do not introduce regres-

sions.

3 Related works

We have previously described the test suite ap-

proach, along with the TSNLP project. This ap-

proach was concerned with identifying and system-

atically testing linguistic phenomena. As a conclu-

sion of TSNLP, (Oepen et al., 1998) points out the

necessity “to assess the impact of individual contri-

butions, regularly evaluate the quality of the overall

grammar, and compare it to previous versions”. This

project thus showed how positive it is to identify de-

ficiencies and improve grammars by iterating tests

over time. This is the goal we intend to reach with

our framework.

More recently, in biomedical domain, (Baum-

gartner et al., 2008) describes implementation of

a framework and, although it is applied to a text

mining task, the approach remains quite close in

its foundations (evaluation oriented, iterative testing,

modular framework, open source, corpora based,

etc.) to ours and encourages these kind of initiative

by showing the importance of continuous evaluation

while coding parser and engineering grammar. This

work present the interest to rely on the UIMA frame-

work, thus allowing a good modularity. In the future,

we should study the interest to give the ability to our

framework to integrate UIMA-ready modules.



Close to our Benchmarking Tool, some projects

aim at building frameworks for text analysis, an-

notation and evaluation, which projects encourage

people to use a common architecture, as openNLP

or GATE. Those may also be used for benchmark-

ing and evaluation tasks (Cunningham et al., 2002)

as part of their process. But, while these frame-

work often provide evaluation and regression test-

ing tools, they are rarely well-suited for only imple-

menting specific diagnostic tasks. We would appre-

ciate that such frameworks focusing on evaluating,

benchmarking and diagnosing, as generic as possi-

ble across IR tasks, become more widely available.

If our Benchmarking Tool appears to be appropri-

ate for other systems evaluations, we will consider

making it available for the IR community.

4 Conclusions and future work

From our first use of the framework, we are con-

vinced of the importance of diagnostic for acceler-

ating the improvement of our analyzer, by making

linguistic resources accessible and by iterating tests

and comparing results obtained over time. We also

concluded that this generic framework would be use-

ful in other tasks, such as Information Retrieval. Es-

pecially, image retrieval is a very active and growing

field of research, and we currently consider apply-

ing the Benchmarking Tool for accelerating the im-

provement of the image retrieval system developed

in our laboratory (Joint et al., 2004).

This work also emphasizes the great distinc-

tion between performance evaluation and diagnos-

tic evaluation. In our case, the association of the

Benchmarking Tool and the Resource Tool used in

conjunction with unit and regression testings helps

to identify what part of the analysis process is con-

cerned and, for grammar engineering, what rule or

set of rules have to be questioned in order to improve

the overall system performance.

Future directions of our work include the paral-

lelization of the analysis on a cluster, so as to re-

trieve evaluation results as quickly as possible. This

should allow us to use evaluation results from a

larger annotated corpus. We also intend to focus on

visualization of results for better identification and

interpretation of errors, in order to access directly er-

roneous analysis and involved resources. A second

development iteration will include the development

of more user friendly resources editors.

We also plan to work on automatic syntactic rules

inference, based on previous work in our laboratory

(Embarek and Ferret, 2008). For this goal, contin-

uous benchmarking will be even more important as

the system will rely on experts tuning parameters for

learning rules, the syntactic rules themselves being

not necessarily edited nor viewable for the expert.

Acknowledgments

This work was partly funded by the French National

Research Agency (ANR), MDCA program 2006.

References

Lorna Balkan, Klaus Netterz, Doug Arnold, Siety Meijer,

1994. Test Suites for Natural Language Processing.

Proceedings of the Language Engineering Convention

(LEC’94), 17–22.

William A Baumgartner, Kevin Bretonnel Cohen,

Lawrence Hunter, 2008. An open-source framework

for large-scale, flexible evaluation of biomedical text

mining systems. Journal of Biomedical Discovery and

Collaboration 2008, Vol. 3, pp 1.

Romaric Besançon, Gaël de Chalendar, 2005.

L’analyseur syntaxique de LIMA dans la campagne

d’valuation EASY. Actes des Ateliers de la 12e Con-

frence annuelle sur le Traitement Automatique des

Langues Naturelles (TALN 2005), Vol. 2, pp 21.

John Carroll, Anette Frank, Dekang Lin, Detlef Prescher,

Hans Uszkoreit, 2002. Proceedings of the workshop

beyond parseval - toward improved evaluation mea-

sures for parsing systems. Proceedings of the 3rd

International Conference on Language Resources and

Evaluation (LREC’02).

Nikos Chatzichrisafis, Dick Crouch, Tracy Holloway

King, Rowan Nairn, Manny Rayner, Marianne Santa-

holma, 2007. Regression Testing For Grammar-Based

Systems. Proceedings of the GEAF07 Workshop, pp

128–143.

Eric V. de la Clergerie, Olivier Hamon, Djamel Mostefa,

Christelle Ayache, Patrick Paroubek, Anne Vilnat,

2008. PASSAGE: from French Parser Evaluation

to Large Sized Treebank. Proceedings of the Sixth

International Language Resources and Evaluation

(LREC’08).

Eric V. de la Clergerie, Christelle Ayache, Gaël de

Chalendar, Gil Francopoulo, Claire Gardent, Patrick

Paroubek, 2008. Large scale production of syntactic



annotations for French. In Proceedings of the interna-

tional workshop on Automated Syntactic Annotations

for Interoperable Language Resources, Hong-Kong.

Hamish Cunningham, Diana Maynard, Kalina

Bontcheva, Valentin Tablan, 2002. GATE: A

framework and graphical development environment

for robust NLP tools and applications. Proceedings of

the 40th Anniversary Meeting of the ACL, 2002.

Mehdi Embarek, Olivier Ferret, 2008. Learning patterns

for building resources about semantic relations in the

medical domain. 6th Conference on Language Re-

sources and Evaluation (LREC’08), Marrakech, Mo-

rocco.

Jonathan G. Fiscus, 1997. A Post-Processing System to

Yield Reduced Word Error Rates: Recognizer Output

Voting Error Reduction (ROVER). Proceedings IEEE

Workshop on Automatic Speech Recognition and Un-

derstanding (ASRU97), pp 347–352.

Magali Joint, Pierre-Alain Moellic, Patrick Hede, Pas-

cal Adam, 2004. PIRIA: a general tool for indexing,

search, and retrieval of multimedia content. Proceed-

ings of SPIE, Vol. 5298, 116 (2004), San Jose, CA,

USA.

Sylvain Kahane, 2000. Les grammaires de dpendance.

Traitement Automatique des Langues, Vol. 41.

Stephan Oepen, Daniel P. Flickinger, 1998. Towards sys-

tematic grammar profiling. Test suite technology ten

years after. Special Issue on Evaluation 12, 411–436.

Valeria de Paiva, Tracy Holloway King, 2008. Design-

ing Testsuites for Grammar-based Systems in Appli-

cations. Proceedings of the GEAF08 Workshop, pp

49–56.

Patrick Paroubek, Isabelle Robba, Anne Vilnat, Christelle

Ayache, 2006. Data, Annotations and Measures in

EASY, the Evaluation Campaign for Parsers of French.

5th Conference on Language Resources and Evalua-

tion (LREC’06), Genoa, Italy.

C. J. van Rijsbergen, 1979. Information Retrieval, 2nd

edition.


