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F-91405. Lab FAST, Bat 502, Campus Univ, Orsay, F-91405,

France.

A robust and precise viscometer using the forces exerted by a laminar flow inside a

small duct is presented: the force is measured on a long cylindrical sensor dipped

into the flow. Two devices of respective volumes 1.4 and 0.031ml have been realized,

demonstrating that the technique is usable with small fluid volumes. Several New-

tonian and non-Newtonian fluids have been tested at shear rates ranging from 0.3

up to 10 s−1 for the first device and from 85 up to 2550 s−1 for the second one. For

Newtonian fluids, of viscosities ranging from 10−3 to 0.1 Pa.s, the linear response of

the device has been verified and a 90% agreement with the values provided by com-

mercial rheometers is obtained. For non-Newtonian polymer solutions, the variation

of the force with the flow velocity allows one to determine the dependence of the

viscosity on the shear rate. Two shear thinning polymer solutions with a power law

behaviour at intermediate shear rates have been investigated and their rheological

parameters have been determined.

Keywords: Viscometer,force,non-Newtonian,laminar
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I. INTRODUCTION

Measuring the viscosity of biological or chemical fluids is a key issue in many fields

ranging from medicine and food processing to the chemical and manufacturing industries1.

The viscosity reflects the resistance of a fluid to flow under an applied shear stress and many

different types of viscometers have been developed to achieve this measurement. They may

classified in four main families: capillary viscometers2–4, rotational or sliding viscometers5,6,

falling spheres7,8 or slender objects9, and vibrational viscometers10.

In the present study, a viscosimeter based on the measurement of the friction force ex-

erted by a flowing fluid is presented. This technique is found to be suitable for measuring

rapidly the viscosity of samples of small volume with a precision similar to that of classical

rheometers. Moreover, the device is easy to manufacture, it has no moving parts and and

does not depend critically on small misalignment: the technique is thus inexpensive and

easy to implement. To our knowledge, similar techniques have only be envisioned for high

viscosity fluids flowing in a pipe11. In these cases, a fixed blade transducer coupled to a

shaft-like probe is immersed in the flowing fluid and the value of the force on the blade is

used to determine the fluid viscosity.

Recent progress in the technology of force sensors has allowed us to extend this approach

to fluids of low viscosity. In the present system, the probe is a cylindrical object located on

the axis of a circular duct used as the flow channel so that the local shear rate on the whole

lateral surface of the probe is constant. Unlike for sliding or rotating plate rheometers5, a

precise coincidence of the probe axis with that of the duct is not required.

The force F applied by the fluid on the object has been measured at different flow rates.

For laminar flows of Newtonian fluids, F is related to the mean flow velocity U by the

relation:

F = µ(λ lo U), (1)

where µ is the dynamical viscosity, lo the length of the cylinder inside the flow and λ a

geometrical parameter. Unlike methods using falling objects, these measurements do not

require corrections as long as the flow is controlled by viscous forces12: we demonstrate

below that this is achieved practically by using Reynolds numbers Re ≤ 50.

In Section II, the measurement devices and the viscosity measurement procedure are

presented. The technique has been extended to non-Newtonian fluids: Sec. III B describes
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the inversion method allowing one to determine the rheological curves in this latter case.

In Sec. IV, the results of the viscosity measurements are compared quantitatively to those

obtained with standard rotating viscometers.

II. EXPERIMENTAL SET-UP AND PROCEDURE
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FIG. 1. Schematic view of the experimental viscometer.

The viscometer is displayed schematically in Fig. 1. Two devices have been built and

TABLE I. Characteristic parameters of the experimental devices. D, L and V : diameter, length

and volume of the cylindral duct; d and lo: diameter and immersed length of the probe; Q: flow

rate; γ̇: shear rate (see Fig. 1).

D L V d lo Q γ̇

mm mm mm3 mm mm ml/min s−1

A 10 90 1400 1.1 60−80 3-30 0.1-3

B 1 40 31 0.14 13-57 0.5-15 85-2550

their characteristics are listed in Table I. Device A is large enough so that handling is easy

and the control of the experimental conditions is optimal: in this case, a few milliliters of
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fluid are needed to measure the viscosity. For device B, this volume has been further reduced

by a factor of 50.

Both devices consist of a cylindrical duct of diameter D and length L inside which a small

cylinder is inserted. The ducts are drilled into a PMMA bar with a tolerance of ±0.05 mm:

they are vertical with the open side at the top. In order to reduce the unwanted motions of

the fluid in the measurement region, the diameter of these ducts is increased to 40mm at

their top. This creates a 10mm deep bath into which the fluid is injected through a small

lateral hole: the size of this bath has been chosen to minimize the effect of this transverse

flow on the inner cylindrical probe. The latter is attached to a force sensor located above

the bath. In the duct, fluid flows either from the top towards the bottom (corresponding to

a traction force on the sensor) or from the bottom towards the top (compression force).

For device A, the cylindrical probe is a stainless steel rod of diameter 1.1mm: it is

attached by a flexible thread to a hook located under a SartoriusTMCP225D scale. The

probe hangs freely with its lower part inside the flow duct. The scale allows one to measure

forces ranging from 0.1µN to 0.8N.

For device B, the probe is a glass fiber of diameter 140µm glued to the tip of a MEMs

force sensor. The measurement range of this sensor is 1 to 2500µN.

The Newtonian fluids are either pure water or water-glycerol mixtures with a relative mass

concentration of glycerol ranging from 0 (pure water) to 85%. Tests were also performed

with shear thinning solutions: these are composed of 250 and 1000 ppm of high molecular

weight scleroglucan in high purity water (Millipore - Milli-Q grade). Scleroglucan is a

polysaccharide provided here by Sanofi BioindustriesTM. The solution is protected from

bacterial contamination by adding 0.2 g/l of NaN3.

The density ρ of the solutions and their temperature T are measured after each series of

experiments by means of an Anton PaarTM35N densimeter.

The flow duct and connecting tubes are first filled with the fluid and all trapped air

bubbles are removed from the system. The flow rate is then increased by steps from Q = 0

up to the chosen maximum flow rate and is then reduced back to zero in the same way.

Fig. 2 displays the corresponding variation as a function of time measured by the MEMS

sensor of device B. The non zero mean value reflects the weight of the probe and the zero-

shift of the sensor. Each step lasts from a few seconds (a minimum of 10 s is required so

that the measurement stabilizes at a near constant value) up to a few minutes. The cycle
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FIG. 2. Variation as a function of time of the force measured in device B during two cycles of

stepwise variations of the flow rate.

is repeated (twice in Fig.2) in order to check the reproducibility of the measurements. The

inlet and the outlet of the conduit were connected to a PharmaciaTMdouble syringe pump:

one of the syringes injects the fluid at the inlet while the other one sucks its excess at the

other end of the duct. The oscillations on each plateau are induced by this pump. Gear or

peristaltic pumps have also been used successfully.
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FIG. 3. Variation of the normalized force F (δr/R)/F (0) on the probe as a function of the normal

transverse offset δr/R.

The transverse location of the probe may be adjusted by micrometric screws so that

its axis and that of the duct roughly coincide. The influence of this adjustment is char-
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acterized in Fig. 3: it displays the theoretical variation of the normalized measured force

F (δr/R)/F (0) on the cylindrical probe as a function of the normalized offset δr/R between

its axis and that of the duct. The data plotted in Figure 3 were obtained using finite element

simulations (see Refs. [12 and 13] for details): they demonstrate that an offset δr = R/4

only induces a 10% variation of the measured force. This small influence of the offset is in

agreement with the results from Ref. [12]. This demonstrates the robustness of the reading

of the viscosimeter with respect to small misalignments.

III. ANALYSIS OF THE EXPERIMENTAL DATA

A. Newtonian fluids

After each experiment, the mean and the standard deviation of the value of the force

F on each plateau are computed. Figures 4a-b display the variation of this mean value as

a function of the corresponding mean flow velocity U = Q/S for two of the experiments

performed with pure water (S = π(D2 − d2)/4 is the flow section). Although, with the

present protocol, each data point may be determined several times during one experiment,

only data corresponding to one cycle are shown. Fig. 4a displays data obtained using device

A; the flow in the duct is either upward (U > 0) or downward (U < 0). The force F varies

linearly with U , at least up to |U | ≃ 5× 10−3m.s−1; this velocity corresponds to a Reynolds

number Re = ρ|U |D/µ ≃ 50 (ρ is the fluid density). Moreover, the slope is the same for

positive and negative values of U : therefore, here, the direction of the flow does not affect

the measurement.

Figure 4b displays data obtained using device B: the range of flow rates investigated is

the same as for device A but the corresponding flow velocities are higher due to the smaller

section of the sensor. At first, the force increases linearly with the velocity up to 0.05m.s−1:

the corresponding Reynolds number Re = 50 is of the order of the maximum value reached

with device A for which the variation of F with U was also linear. At higher velocities

(i.e. for Re > 50), one observes an increasing deviation from the linear variation: this

non-linearity may be accounted for by the development of inertial effects in the flow12.

In the following, only measurements performed in the laminar viscous regime at Reynolds

numbers Re 6 50 will be discussed. In this regime, the ratio of the force by the fluid velocity
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FIG. 4. Variation of the force on the cylindrical probe as a function of the mean velocity U of

a water flow. (a) (•): device A (0 ≤ Re ≤ 60); solid line: linear regression on all data of slope

0.715 g.s−1. (b) (◦): device B (0 ≤ Re ≤ 200); solid line: linear regression on the first five points

of slope 0.80 g.s−1.

(see Eq. (1)) is the product of the immersed length lo by the fluid viscosity µ and by a

geometrical parameter λ. Here, we use therefore the constant value of this ratio F/U to

determine the fluid viscosity from the relation:

µ =
F

λ lo U
(2)

Practically, µ is determined either by measuring a single couple of values (F, U) or by

performing a linear regression over a set of different measurements of (F, U) (see Sec.IVA

below). In both cases, however, the value of the geometrical coefficient λ is required in order

to use Eq.(2).
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A first approach is to determine the value of λ (or rather of λ lo) through a calibration

measurement (or a set of measurements) using a fluid of known viscosity µo. Then, the

unknown viscosity µ of the fluid of interest is related to µo by:

µ

µo

=
(F/U)

(F/U)o
(3)

The parameter λ may also be estimated analytically by computing numerically the total

force induced by the fluid flow on the inner cylinder. A first component of this force is the

viscous shear stress force Fs:

Fs =

∫∫

S

σ.n dS = lo [

∮

C

σ.n dℓ] (4)

in which σ is the viscous shear stress tensor which is assumed to be constant along the length

lo; n the unit vector normal to the external lateral surface S and C the curve bounding a

section of the cylinder normal to the axis.

A second component is the pressure force Fp created by the difference between the pres-

sures at the ends of the cylinder: assuming that the pressure gradient ∂p/∂z induced by the

flow is also constant over the length lo leads to:

Fp = −lo
πd2

4

∂p

∂z
(5)

In order to compute the viscous shear stress and the pressure gradient ∂p/∂z, we assume

(in line with the previous simplifications) that the fluid velocity V is everywhere parallel to

z and that V = v(r)ez due to the rotational and translational symmetries of the system.

The governing equation of the flow reduces then to the simple 1D differential equation14:

−
∂p

∂z
+

µ

r

∂

∂r
(r
∂v(r)

∂r
) = 0 (6)

In which ∂p/∂z is constant with both z and r. This equation can be solved analytically for

zero slip boundary conditions at the surface of the cylinders. After computing the total flow

rate in the gap between the coaxial cylinders, the profile v(r) may be related to the mean

velocity U by:

v(r) =
−2U

[

(1− ǫ2) ln(2r
D
) + ln(ǫ)

(

4r2

D2 − 1
)]

(1 + ǫ2) ln(ǫ) + (1− ǫ2)
(7)

in which ǫ = d/D and U is the mean flow velocity.

The gradient ∂p/∂z is then computed from U by means of Eq. (6) and Fp is obtained from

Eq. (5). Using Eq. 4, Fs can be related to v(r) by: Fs = µπd lo∂v(r)/∂r|r=d/2. Computing
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the total force F by summing Fs and Fp provides from Eq. (2) the respective values λ = 9.9

and 12.2 for devices A and B.

Using in Eq.(2) the value of λ corresponding to the device of interest gives then the

viscosity µ once the ratio F/U and the length lo have been measured experimentally. For

instance, the value F/U = 0.715 g.s−1 determined by a linear regression on the data of

Fig. 4 leads to µ = 0.96 ± 0.03mPa.s for lo = 75mm and λ = 9.9: this is only slightly

higher than the value µ = 0.94mPa.s of the viscosity of water at the same temperature

(T = 22.6 oC) quoted in Ref. [15].

Systematic measurements of the viscosity of different Newtonian fluids by this and other

techniques are discussed and compared in Sec.IVA below. We describe now the procedure

developed for determining the rheological characteristics of non-Newtonian fluids.

B. Non-Newtonian fluids

40

20

0

-20

F (µN)

50-5 U (mm.s-1)

FIG. 5. Variation of the force F as a function of the mean flow velocity U for a 250 ppm polymer

solution flowing in device A. (△) and (◦): measurements obtained for two consecutive tests. Solid

line best theoretical fit of the experimental data in the case of a power law rheological characteristic:

µ = kγ̇α.

Fig. 5 shows that, unlike for Newtonian fluids, the force varies non linearly with the mean

velocity U for the polymer solutions. This deviation reflects the variation of the viscosity
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with the shear rate: the velocity is indeed too low for inertia effects to appear and they

would induce an upward curvature of the curve (see Fig. 4b) and not downward as here.

The slower increase of the force with U suggests, from Eq. (2), that the apparent viscosity

decreases with U : this is in agreement with the shear thinning properties reported in the

litterature16 for such solutions.

In order to characterize quantitatively the rheological properties of the fluid, the variation

of F with U must be translated into a rheological characteristic relating the apparent vis-

cosity µ to γ̇ For this purpose we developed first a procedure for computing the variation of

F vs U for any chosen rheological curve µ = f(γ̇) characterized by a set of parameters (2 in

the present case) depending on the rheological model selected. Like in the Newtonian case,

the force F is determined by means of Eqs. (4) and (5). This requires the determination of

the pressure and velocity fields between two coaxial cylinders for any specific rheological law

f(γ̇): it must be noted that the function f(γ̇) only exists for isotropic and non-thixotropic

fluids which will be assumed to be the case in the following. Then, the Newtonian equation

of motion (6) must be replaced by the more general form:

∂p

∂z
=

1

r

∂

∂r
(r σz(r)) =

1

r

∂

∂r
(r γ̇f(γ̇)) (8)

in which σz(r) is the z component of the shear stress on a surface normal to r and γ̇ =

∂v(r)/∂r. The pressure gradient ∂p/∂z is independent of r and z like for Newtonian fluids.

For non Newtonian fluids, this equation cannot generally be solved analytically; for a

given value of ∂p/∂z, v(r) and σz(r) are computed by a numerical integration of Eq. (8)

with zero velocity boundary conditions at the walls. An implicit Runge-Kutta method

implemented in Matlab is used for that purpose. The mean velocity U is then determined

by averaging over the tube section and the corresponding total force F on the probe is

computed by means of Eqs. (4) and (5).

For a chosen mean velocity U , the value of ∂p/∂z is adjusted iteratively until the numerical

value Unum coincides with U . By repeating this procedure, one obtains a force-velocity

relation F (U)num to be compared with the experimental one.

The whole process is then iterated while adjusting the parameters of the rheological model

by a least mean square method until F (U)num coincides with the measured variation.

10



IV. EXPERIMENTAL RESULTS

A. Newtonian fluids

The viscosity of different Newtonian water-glycerol mixtures has been determined by

means of the procedure described in section IIIA.

In this case, it is possible to determine the viscosity µ by measuring the force F at a

single flow velocity U : then µ is given by the relation µ = F/(λ lo U) discussed above. Fig. 6

displays the variation with the shear rate γ̇ of the values of the viscosity µ obtained in this

way for the less viscous fluid studied (i.e. pure water): no systematic trend of variation

with γ̇ is visible. Reference measurements were obtained using a Low Shear 30 rheometer:

both sets of values are compatible within their standard deviation. Other reference mea-

surements were performed using an MCR501 AntonPaarTMrheometer: these data displayed

an unphysical divergence of the measured viscosity at low shear rates and were therefore

discarded. However, for the more viscous fluids (µ & 10mPa.s) to be discussed below, the

values measured by this apparatus are independent of the shear rate and will therefore be

reported.

The graph also displays as an horizontal line the viscosity value µ = 0.96 ± 0.03mPa.s

obtained from a linear regression over the full set of experimental data points in Sec. IIIA (as

mentioned above, it equal within 2% to the published value µ = 0.94mPa.s from Ref. [15]).

Still for Newtonian fluids, the influence of the viscosity on the measurement has been

investigated by using water-glycerol solutions with different concentrations. In this case,

and in order to improve the precision, several measurements are performed for each solution

at different mean velocities U . The ratio a = F/U is determined by performing a linear

regression F = a.U on the sets of values of (F, U) and the experimental viscosity is finally

computed by means of Eq. (2). The viscosities obtained in this way are plotted in Fig. 7

together with values from ref. [17]. Most experimental values are close to the theoretical

curve: the small deviations observed likely arise from the small differences between the

actual temperature and the fixed value T = 22.6 oC corresponding to the continuous curve.

The accuracy of the measurements has then been characterized quantitatively by comput-

ing the relative deviation (µmes−µref)/µref of the measured viscosities µmes from published

reference data. This time, µref corresponds to the same temperature as the measurement:
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FIG. 6. Viscosity of pure water (T = 22.6 oC) measured using different devices. (•): device A; (+):

Contraves Low-shear 30 rotating viscometer. Dotted line: value from Ref. [15]; Dashed dotted line,

value obtained from a linear regression on the data of device A at different flow rates.
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FIG. 7. Variation of the dynamic viscosity µ as a function of the relative mass concentration of

glycerol for water-glycerol solutions. Values obtained using (•): device A; (◦): device B. Solid

line: values from Ref.17 for T = 22.6 oC.

this removes the small deviations in Fig. 7 due to temperature variations.

This relative deviation is displayed in Fig.8 as a function of the mass concentration for

measurements obtained with both devices A and B (circles and triangles in Fig.8) and

with two commercial rheometers (diamonds and crosses). At all glycerol concentrations, the

values of the ratio (µmes−µref )/µref are found to be distributed equally above and below zero
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FIG. 8. Variations of the relative difference (µmes − µref )/µref between the measured viscosity

µmes and the values from ref. [17] at the same temperature as a function of the mass concentration

of glycerol. (•): device A; (◦): device B; (+) ContravesTMLow-shear 30 rotating viscometer; (♦):

MCR501 AntonPaarTMrheometer with a double gap Couette assembly (only for µ & 10mPa.s).

with a maximum deviation of the order of 10%. There is no visible trend in the distribution

implying that there is no global variation of the deviation with the concentration. A similar

distribution is also observed for the values measured by the two commercial rheometers at

concentrations above 50%.

Two experimental measurements performed using device B display however a much

stronger deviation of the order of 40%: in these cases, the fluid was flowing upward while

no such effect was observed for downward flows. These two results may be accounted for by

the buckling of the probe cylinder under the compressive stress induced by the upward flow

of the fluid.

In the geometry considered, (i.e. one end fixed and the other free to move laterally),

buckling takes place if the hydrodynamic force µλloU becomes larger than the critical value

Fc = π2EI/(2lo)
2 in which E is the value of Young’s modulus for the probe (here a glass

fiber) and I the moment of inertia of its section (for a cylinder it is I = πd4/32 in which

d is the diameter of the probe)18. Young’s modulus has been determined for the probe by

measuring its deflection under its own weight: the value E = 39GPa found in this way is

close to that usually reported for glass (≃ 70GPa). For a fluid of viscosity of 0.01 Pa.s and
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a probe of length lo = 57mm, buckling should therefore occur for a fluid velocity of the

order of 5.10−3m.s−1: this is close to the value corresponding to the anomalous data in the

present experiments.

B. Non-Newtonian fluids
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FIG. 9. Log-Log plot of the dynamic viscosity µ of a 250 ppm scleroglucan solution at 23.6 oC as

a function of γ̇: (+) Low shear 30 rheometer; ♦: Anton Paar MCR501 rheometer with double gap

assembly. Solid and dotted lines: rheological laws using fitted parameter values listed in Table 2.

Inset: lin-log plot of the same data.

Characterization using commercial rheometers. For non-Newtonian solutions the fluid

viscosity varies with the shear rate. Figures 9 and 10 display the rheological characteristic

curves of the two polymer solutions used in the present study as measured using the Low

shear-30 and Anton Paar rheometers. At shear rates below 100 s−1, the polymer solutions

display a shear thinning behaviour which is well adjusted in the most of the range of values

of γ̇ by the power law variation:

µ = kγ̇−α. (9)

The corresponding values of the rheological parameters k and α fitted are listed in Table II.

At higher shear rates, the viscosity of the solutions tends towards a constant value µ
∞

of the

same order of magnitude. The higher value of µ
∞

measured in the cone-plate configuration
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FIG. 10. Log-log plot of the dynamic viscosity µ of a 1000 ppm scleroglucan solution at 23.6 oC as

a function of γ̇. The solid and dotted lines have the same meaning as in Fig. 9. (�) (resp. (♦)) :

Anton Paar MCR501 rheometer respectively in the cone plate and double gap configuration. Inset:

lin-log plot of the same data.

of the Anton PaarTMrheometer ((♦) in Fig. 10) likely reflects an additional dissipation due

to the appearance of an hydrodynamic instability: it has therefore been discarded. At very

low flow rates, the viscosity should also reach another constant Newtonian plateau: the

corresponding values of γ̇ are however below the range of the present experiments.

Measurements using devices A and B In the range of values of U used here, measure-

ments using device A have been found to correspond to the power law variation regime

(γ̇ was always lower than 100 s−1) because of its relatively large size. Data obtained using

device B correspond instead to the upper shear rate regime in which the viscosity has the

constant value µ
∞
: the values of γ̇ are indeed higher for this device because of its smaller

size. Two different methods have therefore been used to analyze the data from devices A

and B and obtain the values of µ and γ̇ corresponding to the measurements.

For device B, µ
∞

is determined from the couples of data (F, U) by means of the linear

regression procedure of Sec. IIIA for Newtonian fluids. The values of µ
∞

obtained in this

way are plotted as horizontal dotted lines in Figs. 9 and 10 and listed in Table. II. These

values are very similar to those given by the Anton Paar rheometer using the double gap

(DG) assembly (as mentioned above, the measurements of µ
∞

in the CP geometry are not
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TABLE II. Rheological parameters of scleroglucan solutions obtained with the Low shear 30

rheometer (LS), the Anton Paar MCR 501 using the double-gap (MCR − DG) and cone-plate

(MCR− CP ) assemblies with viscosimeters A and B.

Polymer Conc. Apparatus k α µ∞

ppm mPa.s

250 LS 0.018 0.41

MCR−DG 0.019 0.43 1.6 ± 0.1

A 0.019 0.49

B 1.5 ± 0.1

1000 MCR−DG 2.7 ± 0.2

MCR− CP 0.32 0.80

A 0.38 0.81

B 2.8 ± 0.1

valid). In the shear thinning regime at lower values of γ̇, configuration DG is usable for the

250 ppm solution; for the 1000 ppm solution, the viscosity becomes too high and the cone

plate assembly CP gives better results.

For device A, the procedure described in Sec. III B has been used for determining the

rheological curve from the force measurements. The rheological parameters k and α are then

determined by adjusting their values so that the experimental force variation F (U) is well

fitted by that computed numerically. The solid lines in Fig.5 corresponds to the optimal fits

obtained by this technique for F (U) and the corresponding values of k and α are listed in

Tab.II.

The rheological curves determined in this way for the two polymer concentrations are

superimposed in Figs. 9 and 10 over the data from the commercial rheometers: the different

sets of values agree to within 10%.

The same procedure might be applied using any usual rheological characteristic (i.e.

Carreau or Cross functions, truncated power law ...).
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V. DISCUSSION AND CONCLUSION

In this paper, we have described a new device allowing for the quantitative characteriza-

tion of the rheological properties of fluids from the value of the force exerted by a flow on a

cylindrical probe.

For Newtonian water-glycerol solutions of viscosities µ ranging from 10−3 to 0.1mPa.s,

the measured value of µ is almost constant with the shear rate γ̇; even using a single

measurement, the accuracy is similar to that of much more complex and costly commercial

rheometers.

The technique also allows one to determine the rheological characteristic curve of non-

Newtonian fluids: this has been shown by measurements of this curve for two water-polymer

(scleroglucan) solutions of different concentrations. The rheological parameters determined

from the variations of the force with γ̇ at intermediate and high values correspond well to

those obtained using commercial rheometers.

Compared to such rheometers, the present device does not include elements with a tight

machining tolerance and, due to the reduced influence of the positioning of the probe, the set

up does not require a very careful alignment or a specific maintenance. Because of its relative

simplicity, the technique is adaptable to an industrial environment (and possibly to in-line

continuous measurements) and is not restricted to laboratory applications. In addition, the

present device is easy to manufacture and (except for the force sensor) inexpensive. Some

parts (like the duct or the probe) may therefore be disposed of after each use so that the

technique is suitable for medical applications or for the measurement of reactive fluids.

For a given flow velocity, the force measured on the probe is not influenced by scale

reduction (provided that the ratio d/D is kept constant). Hence, in spite of a scale reduction

by a factor 10 between devices A and B, the force measured by the sensor are in the same

range (i.e. between 1 and 1000µN). In device B the measurement volume has been reduced

to 0.03ml: this suggests possible applications to viscosity measurements in microfluidic

apparatus.

In this respect, further miniaturization of the device and a comparison of its perfor-

mance to that of other techniques developed in micro or nano fluidics5,19,20 will represent an

important challenge.
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