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Abstract 

A continuum mechanical model is presented to analyze the negative electrorheological responses 

of a particle-liquid mixture with the suspended micro-particles undergoing Quincke rotation for 

both Couette and Poiseuille flow geometries by combining particle electromechanics and 

continuum anti-symmetric/couple stress analyses in the zero spin viscosity limit. We propose a 

phenomenological polarization relaxation model to incorporate both the micro-particle rotation 

speed and macro-continuum spin velocity effects on the fluid polarization during non-

equilibrium motion. Theoretical predictions of the Couette effective viscosity and Poiseuille flow 

rate obtained from the present continuum treatment are in good agreement with the experimental 

measurements reported in current literature. 
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1. Introduction 

      Electrorheological (ER) fluids are a class of fluids that consist of conducting or insulating 

dielectric solid micro-particles suspended within a dielectric liquid medium. Due to the electrical 

property (e.g., conductivity and/or permittivity) mismatch between the solid and liquid phases, 

one can control the apparent macroscopic properties of the ER fluid such as the effective 

viscosity for suspensions via the application of external direct current (DC) or alternating current 

(AC) electric fields. Literature has therefore categorized ER effects, based on the flow or 

rheological responses, into either positive ER or negative ER phenomena when the fluid 

suspension is subjected to electric fields [1-6]. 

      Upon the application of DC electric fields, Foulc et al. [4] discussed the important role of 

electrical conductivities of the respective solid and liquid phases in determining the inter-particle 

electrical force interactions in ER fluids. Boissy et al. [5] then further characterized and made 

distinctions of macroscopic positive and negative ER responses based on different relative 

magnitudes of the respective conductivities of the two phases. For ER fluids consisting of micro-

particles with a conductivity, 2 , larger than that, 1 , of the carrier liquid, stable particle chains 

are formed in the direction of the electric field so that the macroscopic fluid resistance against 

externally applied shear perpendicular to the electric field is enhanced and result in an increased 

measured effective viscosity—the positive ER effect [1-3]. On the other hand, when the 

conductivity of the carrier liquid is larger than that of the micro-particles, i.e., 1 2  , laminated 

layers (perpendicular to the electric field) of packed particles resulting from electromigration are 

formed adjacent to one of the two electrodes leaving a portion of the ER fluid relatively clear of 

particles and hence leading to a reduction in the resistance against externally applied shear forces 

perpendicular to the electric field; a decrease in the effective viscosity is measured—the negative 

ER effect [5, 6]. 

      Despite the relatively sparse reports on negative ER effects, recent experimental observations 

found that: (i) with a given constant shear rate or equivalently the Couette boundary driving 

velocity, the measured shear stress required to drive the Couette ER fluid flow is reduced (an 

effectively decreased viscosity) and (ii) at a given constant pressure gradient, the Poiseuille flow 

rate of the ER fluid can be increased both by applying a uniform DC electric field perpendicular 

to the direction of the flows [7-12]. The mechanism responsible for the apparent increased flow 

rate and decreased effective viscosity was attributed to the spontaneous electrorotation of the 
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dielectric micro-particles suspended within the carrier liquid, which is a mechanism different 

from the traditional electromigration or particle electrophoresis explanation as mentioned in 

previous negative ER literature [5, 6]. This spontaneous particle rotation under the action of a 

DC electric field is often called “Quincke rotation” for G. Quincke‟s systematic study done in 

1896 [13-18]. 

      The origin of Quincke rotation can be illustrated by considering a dilute collection of 

insulating dielectric spherical particles with permittivity 2  and conductivity 2  suspended in a 

slightly conducting carrier liquid having a permittivity of 1  and a conductivity of 1 . The 

material combination is chosen so that 2 1   where 1 1 1    and 2 2 2    are the charge 

relaxation time constants of the liquid and the particles, respectively. When a uniform DC 

electric field is applied across the dilute suspension, charge relaxation follows the Maxwell-

Wagner polarization at the solid-liquid interfaces, and each of the suspended particles attains a 

final equilibrium dipole moment in the opposite direction to that of the applied DC field for the 

condition of 2 1  . This, however, is an unstable equilibrium, and as the applied electric field 

reaches a critical value [17, 18], namely, 

 
0 12

1 1 2 2 1

8
1

2 3
cE

 

    

 
 
 

 


,                                                                                                         (1) 

where 0  is the viscosity of the carrier liquid, the liquid viscous dampening can no longer 

withstand any small perturbations misaligning the particle dipole moment and the applied DC 

field. The electrical torque resulting from the misalignment exceeds the viscous torque exerted 

on the micro-particle giving rise to spontaneous, self-sustained particle rotation either clockwise 

or counter clockwise with the rotation axis perpendicular to the planes defined by the electric 

field. When the particle-liquid suspension, or ER fluid, is driven by a boundary shear stress 

(Couette flow) or a pressure gradient (Poiseuille flow), the macroscopic flow vorticity gives the 

suspended micro-particles, instead of by random chance, preferable directions for rotation via 

viscous interactions once the external electric field (generally larger than the critical field, cE ) is 

applied. It is this combined effect of microscopic electrorotation and macroscopic flow vorticity 

that gives rise to the newly observed negative ER phenomenon as described above [7-12]. 

      Although models are given in current literature for analyzing the new phenomenon, they are 

focused on the dynamics of a single particle and the utilization of a two-phase volume averaged, 
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effective medium description [7-12, 19]. Little has been done in developing a continuum 

mechanical model from a more classical field theory based starting point in predicting the 

dynamical behavior of fluids consisting of micro-particles undergoing spontaneous 

electrorotation. To the best of the authors‟ knowledge, the ferrofluid spin-up flow is the most 

representative flow phenomenon arising from internal particle rotation in current rheology 

research [20-27].  

      In a ferrofluid spin-up flow, magnetic torque is introduced into the ferrofluid, which consists 

of colloidally stabilized magnetic nanoparticles (typically magnetite) suspended in a non-

magnetizable liquid, through the misalignment of the particle‟s permanent magnetization and the 

applied rotating magnetic field. The internal angular momentum of a continuum ferrofluid 

„parcel‟ (containing a representative collection of liquid molecules and rotating magnetic 

nanoparticles) becomes significant and the continuum stress tensor becomes anti-symmetric for 

strong enough magnetic body torques introduced at the microscopic level. A moment-of-inertia 

density is defined for the ferrofluid parcel based on the mass distributions of the liquid molecules 

and magnetic particles in the parcel. A continuum spin velocity (column vector) is then defined 

by the product of the internal angular momentum density (column vector) with the inverse of the 

moment-of-inertia density (tensor) [28-30]. Since a ferrofluid continuum contains an enormous 

amount of these parcels, the spin velocity,  , is defined as a continuous field quantity which in 

general, can be a function of space and time, i.e.,  , , ,x y z t  . In order to describe how 

microscopic particle rotation affects the continuum flow motion, a continuum angular 

momentum conservation equation is added and coupled with the linear momentum equation so 

that, in general, the externally applied magnetic body couple, angular momentum conversion 

between linear and spin velocity fields, and the diffusive transport of angular momentum are 

incorporated into the description of the flow momentum balances [22, 28-31]. 

      A fundamental issue in the current development of ferrofluid spin-up flow is whether the 

diffusive angular momentum transport or couple stress has a finite contribution to the angular 

momentum balances of the flow. The current consensus is that the couple stress contribution is 

vanishingly small, i.e., zero spin viscosity or diffusive transport conditions, as discussed in 

Rosensweig [22], Chaves et al. [26, 27], and Schumacher et al. [32]. In a most recent work by 

Feng et al. [33], scaling and numerical analyses were presented to show that in the limit of an 

effective continuum, the angular momentum equation is to be couple stress free and the value of 
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the spin viscosity should be identically zero. However, spin-up velocity profiles measured by 

ultrasound velocimetry reported by He [23], Elborai [24], and Chaves et al. [26, 27] were 

compared with the numerical simulations of the full spin-up flow governing equations and found 

that the experimental and numerical results would agree only if the spin viscosity assumes some 

finite value instead of being vanishingly small or identically zero. 

      Acknowledging the experimental and theoretical discrepancies in the value of spin viscosity 

and identifying the “mathematically analogous, physically parallel mechanisms” governing the 

respective electrorotation and ferrofluid spin-up flows as summarized in Table 1, this work is 

therefore aimed at developing a classical continuum mechanical model that combines particle 

electrorotation and anti-symmetric/couple stress theories for describing the electrorheological 

behavior of a particle-liquid mixture (termed ER fluid henceforward) subjected to a DC electric 

field strength higher than the Quincke rotation threshold in both Couette and Poiseuille flow 

geometries. Using a set of continuum modeling field equations similar to that utilized in 

ferrofluid spin-up flow analyses, we investigate the effects of a zero spin viscosity, ' 0  , i.e., 

zero diffusive transport of angular momentum or couple stress free conditions, on the angular 

momentum balances in  the present negative ER fluid flow of interest. In the next section, the 

governing equations describing the mass conservation, linear momentum conservation, angular 

momentum conservation, and polarization relaxation of the ER fluid flow will be given in their 

most general forms. The specific governing equations, analytical expressions of the spin velocity 

solutions, and the evaluated numerical results are then presented, compared, and discussed in 

Sections 3 and 4 to respectively show how the pertinent physical parameters are related to the ER 

responses and fluid flow for two dimensional (2D) Couette and Poiseuille flows with internal 

micro-particle electrorotation. A conclusion is given at the end of this article to summarize the 

principle findings and the motivations for future research. 

 

 

2. General Formulation 

      In order to quantitatively model and describe the present ER flow phenomenon, several 

physical principles involved are considered: (i) the continuity or mass conservation, (ii) the linear 

momentum balance, (iii) the angular momentum balance, and (iv) the polarization relaxation of 
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the ER fluid flow. The governing equations are given in the following subsections to describe the 

above physical principles in proper mathematical forms. 

 

2.1 The Fluid Mechanical Equations 

      The continuum equations describing the ER fluid motion are the mass continuity equation for 

incompressible flow, 

0v  ,                                                                                                                                        (2) 

the linear momentum equation, 

    22t e

Dv
p P E v v

Dt
               ,                              (3) 

and the angular momentum equation, 

    22 2 ' 't

D
I P E v

Dt


               ,                                 (4) 

where v  is the linear flow velocity,   is the ER fluid density, p  is the hydrodynamic pressure 

in the flow field, 
tP  is the fluid total polarization, E  is the electric field,   is the flow spin 

velocity, I  is the average moment of inertia per unit volume, '  is the spin viscosity,   is the 

vortex viscosity which is related to the carrier liquid viscosity, 0 , and particle solid volume 

fraction,  , through 01.5   for dilute suspensions with 1 ,        is the sum of  

the second coefficient of viscosity,  , the zero field ER fluid viscosity,  0 1 2.5   , and the 

negative of the vortex viscosity, e     is the sum of the zero field ER fluid viscosity and the 

vortex viscosity, ' ' '     is the sum of the spin viscosity and the second coefficient of spin 

viscosity, '  [19, 22, 30], and D Dt  is the material derivative given by 

 D
v

Dt t


  


.                                                                                       (5) 

      Note that Eq. (3) generally follows the form of the well known Navier-Stokes equation. 

However, by introducing micro-particle rotation to the fluid flow, additional terms are included 

in Eq. (3) to account for the Kelvin body force density,  tP E , and the anti-symmetric force 

density, 2  , as contributions in the linear momentum balances of the fluid flow. Moreover, 

Eq. (4) characterizes the ER fluid parcel spin velocity,  , so that the torque and angular 
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momentum balances resulting from the electrical torque input and fluid motion can be described 

and related to other variables pertinent to this problem. In Eq. (4), the left hand side represents 

the angular momentum per unit volume of a continuum ER fluid parcel; the first term on the 

right hand side (RHS) represents the electrical torque density introduced to the flow field via the 

rotating micro-particles under the action of the external DC field; the second term on the RHS 

represents the angular momentum density transformation or conversion between the vorticity and 

the spin velocity fields; the third term on the RHS represents the gradient of the divergence of 

the spin velocity and is analogous to the “gradient of the divergence of the velocity” term in Eq. 

(3) that measures the bulk compression effects in the fluid flow; and finally, the last term on the 

RHS represents the diffusive transport of angular momentum within the flow field [22]. 

 

2.2 The Equilibrium Polarization and Polarization Relaxation Equations 

      The electric field in the ER flow field is generally described by the electro-quasi-static (EQS) 

Maxwell equations [16, 34], namely, 

0E  , and                                                                                                     (6) 

0fD    ,                  (7) 

where  D  is the electric displacement field and f  is the free space charge density. Here, we 

have assumed that on the macroscopic continuum level, the free space charge density is zero.  

      To complete the description of the electrical subsystem, we need a continuum 

phenomenological polarization relaxation equation that accounts for the non-equilibrium effects 

of both the linear and angular motions on the ER fluid polarization. Since the torque input on the 

micro scale is related to the induced surface charge around the surface of the micro-particles, we 

shall focus on how non-equilibrium motion, i.e., micro-particle rotation,  , continuum fluid 

spin velocity,  , and continuum fluid velocity, v , affects the retarding polarization, P  (the part 

of polarization directly related to the surface charges [7-12]), instead of the total polarization of 

the ER fluid, 
tP . Note that by definition, the spin velocity,  , and the linear velocity, v , are 

continuum variables which are related to respective averages of the internal angular momentum 

and linear momentum over collections of micro-particles and carrier liquid molecules in an ER 

fluid parcel. They should be distinguished from the micro-particle rotation velocity,  , which is 

the microscopic angular velocity of the suspended micro-particles within an ER fluid parcel. 
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 8 

      We start the development of the polarization relaxation equation and its equilibrium 

polarization from the micro scale. The governing equation for the two region problem of the 

EQS fields within ( r R ) and outside ( r R ) a spherical solid particle suspended in a liquid 

medium rotating at a constant speed, 
xi , subjected to a uniform electric field, 

† †

0z z zE E i E i   (†  denotes microscopic field quantities), as shown in Fig. 1 is the Laplace‟s 

equation in spherical coordinates, 

† † 2 †
2 † 2

2 2 2 2 2

1 1 1
sin 0

sin sin
r

r r r r r


    

        
        

       
,                                     (8) 

where R  is the radius of the micro-particle and †  is the electric potential, i.e., 
† †E   . The 

boundary conditions on Eq. (8) are the electric field strength far away from the micro-particle, 

 †

0 0 cos sinz rE E i E i i     as r  ,                                                                             (9a) 

the continuity of the electric potential at the solid-liquid interface, 

   † †, , , ,r R r R        ,                                                                                           (9b) 

and charge conservation at the rotating micro-particle surface, 

† † 0f fn J K     at r R ,                                                                                                   (9c) 

in which 
rn i  is the normal vector of the spherical surface, † †

fJ E  is the Ohmic current per 

unit area,    † † †

1 2, , , ,f r rn J E r R E r R            with 
†

rE  being the r  component of 

the electric field,  I nn     is the surface divergence, and †

f fK V  is the surface 

current density with    † †

1 2, , , ,f r rE r R E r R            and 
x rV i Ri R     

 sin cos cosi i    . Using Eqs. (8) and (9), the electric potentials and electric fields within 

and outside the rotating micro-particle can be solved by the method of separation of variables 

with the aid of associated Legendre polynomials. This problem has been solved by Cebers [35]; 

here, we only summarize the solutions to the electric potential and the effective dipole moment 

of the particle for r R . The outer electric potential ( r R ) is given in spherical coordinates as 
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   
†

1
3 62

1

†
0 02

1

4
cos sin sin

4
, , cos cos

4
t r a a

r

p i
r rE rE

r


  


   


 


      ,                (10) 

where 

2 1 2 1

1 2 1 23 2 1
3 0 2 2

1 2

2 2

2 1 MW

a E R

   

    

  

  
  
  
 
 
  

 


 
 

  
,                                                                        (11) 

2 1 2 1

1 2 1 23
6 0 2 2

2 2

1

MW

MW

a E R

   


   



 
 
 

 
 

 
 

 
,                                                       (12) 

† † † †
t x x y y z zp p i p i p i   ,                                                                     (13) 

sin cos sin sin cosr x y zi i i i       ,                                         (14) 

and 

1 2

1 2

2

2
MW

 


 





,                                                                                   (15) 

is the Maxwell-Wagner relaxation time. With Eqs. (10)-(14), we can find the total dipole 

moment of the rotating particle, †

tp , as 
† 0xp  , †

1 64yp a , and 
†

1 34zp a , and the retarding 

part of the dipole moment is then found as 

† 3 2 1
1 6 1 3 0

1 22
4 4y za a E Rp i i

 

 
 

 
 

 
  .                                 (16) 

The surface charge around the spherical particle with half of the hemisphere having positive 

charge and the other half having negative charge is directly related to the retarding dipole 

moment given by Eq. (16) [35]. By applying a torque balance between the electric torque, 

† † † †

1 6 04t xp E p E a E i    , and the viscous torque, 3

08 xR i  , on the particle in steady 

state, we can find the critical electric field for Quincke rotation as given in Eq. (1) and the 

rotation velocity of the micro-particle being [18] 
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0

0

2

0 ,

0,

1
1 c

c

cMW

E E

E E

E

E


    

  




 
  ,                                                      (17) 

where the + and - signs denote counter clockwise and clockwise rotation with the coordinate 

system defined in Fig. 1. In Eq. (17), we have assumed that the particle rotation is only in the x-

direction; this is because we will only be considering 2D flow geometries in the following 

discussions. Note however that for the most general cases, the particle rotation axis is 

perpendicular to the planes defined by the electric field, which has a three dimensional feature. 

      We next consider a dilute particle suspension with a solid volume fraction of   and a particle 

number density of n  subjected to the DC electric field. The solid volume fraction and the 

particle number density are related through 

 
3

3

6

d
n O nR




 
  

 
,                                                        (18) 

where 2d R  is the diameter of the micro-particle. Assuming that the mutual electrical 

interactions between the suspended micro-particles can be neglected (i.e., dilute suspension with 

1 ), the macroscopic retarding polarization of the ER fluid at equilibrium, 
eqP , can be 

obtained by multiplying Eq. (16) with the particle number density, n , i.e., †

eqP np   

y z

eq y eq zP i P i , with 

0

2 1 2 1

1 2 1 2

2 2

3
1

2 1 2 1

1 2 1 2

2 2

2 2

1

2 2

1

4

MW

y
MWeq

z
eq

MW

E
P

nR
P

   


   



   

   





  
  
  
  
  
    
  

  
 
 

 
 

 


 

 


 

 

 .                 (19) 

Equation (19) represents the macroscopic retarding polarization of a static, motionless ER fluid, 

namely, 0   and 0v  .  However, this does not mean that at macroscopic equilibrium, the 

micro-particles cannot rotate on the microscopic level, i.e.. 0  , when the applied electric field 

is larger than the critical electric field given in Eq. (1), that is, 0 cE E . This formulation is 

similar to the dynamic effective medium model shown by Xiao et al. [36]. As for the cases of 
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0 cE E ,   is set to zero in Eq. (19) since an applied field less than the critical field will give 

imaginary values of   and the real root can only be zero as in Eq. (17). Note that by setting the 

micro-particle rotation speed   to zero, the equilibrium retarding polarization shown in Eq. (19) 

reduces back to the one given by Cebers [35], i.e., all micro-particle rotation speed, continuum 

linear velocity, and continuum spin velocity equal to zero. Combining Eqs. (17) and (19) and 

extending the physical arguments of the phenomenological magnetization relaxation equation 

proposed by Shliomis [22, 37, 38] to the case of the retarding polarization, we arrive at the 

following retarding polarization relaxation equation, 

   1
eq

MW

DP
P P P

Dt



    ,                                                  (20) 

where P  is the retarding polarization. 

      Equations (17), (19), and (20) account for the non-equilibrium effects of the micro-particle 

rotation velocity,  , ER fluid spin velocity,  , and ER fluid linear velocity, v , on the retarding 

polarization. In the development of Eqs. (17), (19), and (20), we have assumed that the induced 

dipole moment on the micro-particles obeys the Maxwell-Wagner polarization—the induced 

charges are distributed on the surface of the particles at the micro scale. We have also assumed 

that only the retarding part of the macroscopic ER fluid polarization, i.e., the polarization directly 

related to the interfacial charges, needs to be relaxed according to the non-equilibrium motions. 

Unlike the ferrofluid equilibrium magnetization, the equilibrium retarding polarization, Eq. (19), 

does not follow a Langevin function [22]. This is because we are considering the rotation of 

micro-sized dielectric insulating particles on which Brownian motion has little influence [18]. 

Rigorously speaking, the micro-particle rotation speed,  , that enters Eqs. (19) and (20) should 

be the speed observed in the reference frame that rotates with the ER fluid parcel. Yet, the 

mathematical analysis of this ER fluid flow will become much more involved and impractical in 

attempts to correct for the difference in reference frames, and is beyond the scope of this work. 

As a first approach, we employ Eq. (17) in Eqs. (19) and (20) to incorporate both microscopic 

(i.e.,  ) and macroscopic (i.e.,   and v ) motions under one continuum mechanical framework. 
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3. Couette Flow with Internal Micro-particle Electrorotation 

3.1 The Governing Equations Specific to the Couette Flow Geometry 

      Consider the Couette flow geometry shown in the schematic diagram of Fig. 2. The lower 

plate of the parallel plate system is fixed at zero velocity while the upper plate is applied with a 

constant velocity, 0U , in the positive y-direction. We assume that the flow is steady ( 0t   ), 

incompressible, fully developed ( 0y   ), and two-dimensional ( 0x   ) in Cartesian 

coordinates. Under these assumptions, the continuity equation, Eq. (2), with 
y y z zv u i u i   is 

readily reduced to 0zdu dz   and subsequently to 0zu   since the z-velocity component, zu , 

has to satisfy the no-slip and non-penetrating (impermeable walls) boundary conditions at 0z   

and h  with h  being the height of the 2D channel. Moreover, by using the EQS Faraday‟s 

equation, Eq. (6), with 
y y z zE E i E i   and the condition of fully developed flow, we find 

0ydE dz   such that yE  is just a constant throughout the 2D channel. Noting that the 

boundaries at 0z   and h  are perfectly conducting electrodes, and that the tangential component 

of the electric field is continuous across the boundaries, the constant yE  is simply zero. 

Therefore, the applied DC electric field is to be in the z-direction only. The fringing effects at the 

ends of the channel are to be neglected. 

      The governing equations are further simplified by considering a zero spin viscosity, i.e., 

' 0  , in the angular momentum equation, Eq. (4). Given the above assumptions combined with 

the continuity and zero spin viscosity conditions, Eqs. (3), (4), and (20), are then simplified into 

the following: 

  0y

MW x z y eqP P P     ,                                                     (21a) 

  0z

MW x y z eqP P P     ,                                                       (21b) 

2

2
2 0

yx
e

d ud

dz dz


   ,                                                      (22) 

and 

2 2 0
y

y z x

du
P E

dz
 
 

    
 

,                                        (23) 

where yu  is the y-velocity component, x  is the x-spin velocity component (note: 
x xi   in 
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2D), zE  is the z-component of the applied DC electric field, and yP  and zP  are respectively the 

retarding polarization components in the y- and z- directions, i.e., 
y y z zP P i P i  . Note that we 

have substituted the total polarization, tyP , with the retarding polarization, yP , in Eq. (23). This 

is because the DC electric field is applied in the z-direction only with 0yE  . Thus the total 

polarization in the y-direction comes from the dipole moment tilt of the rotating micro-particles 

in the micro scale, which, on the macroscopic level, is generally the y-component of the retarding 

polarization. Finally, the z-linear momentum equation reduces to an equation which relates only 

the pressure gradient to the Kelvin body force density, and thus can be treated separately from 

the other equations. 

      Substituting Eq. (19) into Eq. (21), we can solve for the y- and z- components of the retarding 

polarization as 

02 21

y x zMW

y

xMW

P n E
   

 





,                                                                    (24a) 

02 21

z x yMW

z

xMW

P n E
   

 





,                                                                   (24b) 

where 

2 1 2 1

1 2 1 2

2 1 2 1

1 2 1 2

2 2
3

1

2 2

2 2

2 2

1
4

1

MW

y MW

z

MW

R
   

   

   


   

 






  
  
  
  
  
    

  
   

  

 
 

 


 


 

,                        (25) 

with   given in Eq. (17). Generally speaking, the z-component of the electric field, zE , in Eq. 

(23) depends on the flow linear and spin velocities, and the EQS equations, Eqs. (6) and (7), 

need to be solved together with the retarding polarization, Eqs. (24) and (25), linear momentum, 

Eq. (22), and angular momentum, Eq. (23), equations with the suitable electrical and mechanical 

boundary conditions applied at 0z   and h . However, the coupled set of governing equations 

becomes much more non-linear and less practical for engineering analysis purposes. Assuming 

that, due to flow motion, corrections to the z-electric field, zE , can be related to the microscopic 

applied electric field and the micro-particle solid volume fraction through 
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† 2 2

1 2 0 1 2z zE E e e E e e         ,                                                                           (26) 

where ie ‟s are the correction terms, we substitute Eq. (24a) into Eq. (23) and approximate to the 

first order of magnitude of the volume fraction,  , 0 1zE E e   for dilute suspensions, i.e., 

1 , so that the electrical field equations, Eqs. (6) and (7), can be decoupled from the 

mechanical field equations, Eqs. (2)-(4), or Eqs. (22) and (23). Hence the governing equations 

specific to the Couette flow geometry with internal particle electrorotation is obtained as Eq. (22) 

and 

*
2

02 2
2 2 0

1

yMW x
z x

MW x

du
n E

dz

  
  

 

 
    

  
.                   (27) 

where *

y z MW       . In Eq. (27), the first order correction, 1e , to the z-electric field has 

been neglected because 1e  has become a second order term after being substituted into Eq. (23), 

i.e.,  0 0 0 1z z zn E E n E E e      with 1  and  3 3

zn nR nd O   as in Eq. (18). 

The boundary condition for the velocity field, 
yv u yi , is the general no-slip boundary 

condition, i.e., 0v   at 0z   and 
0v U yi  at z h . On the other hand, the angular momentum 

equation, Eq. (27), eventually reduces to an algebraic equation for zero spin viscosity conditions 

as will be discussed shortly in Section 3.2; hence, there are no additional constraints to be 

applied at the boundaries for the Couette spin velocity field. This “free-to-spin” condition on x  

for ' 0   is likely an analogous case to the Euler equation for inviscid fluid flow—the linear 

flow velocity is allowed to slip at the solid-fluid boundaries when the fluid viscosity goes to 

zero. 

 

3.2 Solutions to the Spin Velocity and Effective Viscosity 

      Integrating Eq. (22) with respect to z, we have 

2
y

x e c

du
C

dz
   ,                                                                        (28) 

where cC  is a constant. Substituting Eq. (28) into Eq. (27), we find that the spin velocity, x , 

does not depend on the spatial coordinate, z, and therefore Eq. (22) reduces to the original 

governing equation for simple Couette flow, i.e., 
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2

2
0

yd u

dz
 ,                                                                                   (29) 

and the solution to Eq. (29) is 

  0
y

U
u z z

h
 .                                                                                (30) 

Inserting Eq. (30) into Eq. (27) and using the following non-dimensionalization scheme, namely, 

*
xMW   , * 0

MW

U

h
  , and *

2

0

2

z MW

M
n E



 
 ,                        (31) 

the non-dimensional angular momentum equation is obtained as 

* * *
*3 *2 *

* *

1
1 0

2 2 2 2M M

  
  

  
       

   
.                             (32)  

      Equation (32) can be solved to obtain analytical expressions by symbolic calculation 

packages (Mathematica, Wolfram Research, Inc.) and the three roots of Eq. (32) are expressed as 

functions of *  and *M . Nevertheless, it should be pointed out that not all the three roots to *  

are likely to be physically meaningful and interpretable for the flow phenomena of interest 

presented herein. Moreover, each of the three roots may vary from real to complex valued (or 

vice versa) in different parametric regimes. In order to find the most physically meaningful and 

interpretable solution or combination of solutions from the three possible roots to the current 

problem, the following considerations and conditions are applied to the flow field: (i) only real 

valued solutions are considered, (ii) the ER fluid is “free-to-spin” at the solid-ER fluid 

boundaries since the governing physics reduce from a boundary value problem to an algebraic 

problem in zero spin viscosity conditions, and (iii) due to micro scale viscous interactions, the 

micro-particle angular velocity,  , should rotate in the same direction as that of the macroscopic 

ER flow vorticity so that the micro-particle rotation is always stable [7-12].  

      We have shown that the spin velocity is a constant throughout the channel when ' 0   in the 

Couette geometry. Hence, *  assumes some finite value at the solid-ER fluid boundaries, which 

is readily self-consistent with the “free-to-spin” condition. To satisfy condition (iii) for 0 cE E , 

we need to substitute into Eqs. (24) and (25) the micro-particle angular velocity with the minus 

sign in Eq. (17) which has the same negative sign (or clockwise rotation) as the macroscale 

Couette flow vorticity, namely,  y xv du dz i     0 xU h i  , with the coordinate systems 
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defined in Figs. 1 and 2. For 0 cE E , we employ 0  (see Eq. (17)) in Eqs. (24) and (25) and 

pick out or select the root to the spin velocity, *  or x , that has the same negative sign as the 

Couette flow vorticity. For the parametric regimes of our interests, we identify the stable and real 

valued solution to the spin velocity as: for 0 cE E  (use negative   value in Eqs. (17), (24), and 

(25)), 

      
1

1 1*
3 3* * 3 2 3 23

2 1 2 1 2 2 1 2*3

1
1 3 6 4 4 1 3 4

6 12 2
C C C C C C C Ci M i

M


       



   
            

   

, (33) 

for 0 0.8 cE E  (use 0  in Eqs. (17), (24), and (25)), 

   
1

1 1*
3 3* * 3 2 3 23

1 1 2 1 2 2 1 2*3

1
3 4 4 4

6 6 2
C C C C C C C CM

M


       



 
        

 
,                     (34) 

and for 00.8 c cE E E   with 0  in Eqs. (17), (24), and (25), *  is given by both 
*

1C  and 

*

2C , i.e., Eqs. (33) and (34), where 

* *2 *2 *2

1 6 12C M M M    ,                                                                     (35) 

and 

*2 * *3 * *3 *3 *2 *

2 18 72 2 108C M M M M         .                (36) 

Note that the results shown in Eqs. (33)-(36) are obtained under the “Solve” command of 

Mathematica. In 00.8 c cE E E  , part of the real valued solution to *  is given by Eq. (33) and 

the other part is given by Eq. (34), thus, both solutions have to be used in the evaluation of the 

spin velocity solutions. 

      The effective viscosity of Couette flows with particle electrorotation, eff , is derived by 

recognizing the relationship between the wall shear stress, s , and the average shear rate (or the 

velocity of the upper plate, 0U , divided by the channel height, h ) when the shear stress is held 

constant for a given flow or experimental condition, i.e., 

*

0
s eff eff z y

MW

U
i T i

h


  


     ,                                          (37a) 

in which  denotes the shear stress differences across the solid-liquid interface, 
zi  is the row 
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vector  0 0 1 , 
yi  is the column vector  0 1 0

t
, and 

s aT T T   is the total stress tensor 

with the symmetric part being 

 

0 0

0

0

t
y

s

y

p

du
T pI v v p

dz

du
p

dz

 



 
 
 
         
   
 
 
  

,                               (37b) 

and the anti-symmetric part being 

 

0 0 0

2 0 0 2

0 2 0

y

a x

y

x

du
T v

dz

du

dz

    

 

 
 
 
  
        
  
 

  
    

  

,                              (37c) 

[22]. By expanding the total stress tensor into matrix form as in Eqs. (37b) and (37c) and 

substituting the velocity field, Eq. (30), and the spin velocity field, Eq. (33) and/or (34), into Eq. 

(37), the effective viscosity defined in Eq. (37a) can be obtained as 

*

*
2eff e


  


  ,                                                                  (38a) 

or in dimensionless terms, 

*
*

*

2eff e Ci
  


   

   ,                                                     (38b) 

where 
* *

1Ci C   and/or 
*

2C  depending on the regimes of the electric field strength where 
*

Ci  

become real valued, and  0 1 2.5     is the zero field ER fluid (particle-liquid mixture) 

viscosity as defined in Section 2.1. The shear stress difference in Eq. (37a) is evaluated at 0z  . 

 

3.3 Results and Discussions 

      After obtaining the velocity and spin velocity fields as well as the effective viscosity, we now 

further present the numerical evaluations of the analytical expressions given in Eqs. (33), (34), 

and (38). The system parameters, physical constants, and material properties used in our 
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evaluations follow those given in Ref. [7-12] so as to facilitate a more effective comparison 

between the current continuum model and the two-phase effective continuum formulation found 

in the literature. These data are summarized in Table 2. 

      Shown in Fig. 3 is the Couette spin velocity, 
*

MW x   , given by Eq. (33), i.e., * *

2C  , 

for 0 cE E  and by Eq. (34), i.e., 
* *

1C  , for 0 0.8 cE E  plotted with respect to the average 

shear rate, *

0MWU h  , evaluated at *

0 cE E E 0, 0.4, 0.8, 1.0, 2.0, and 3.0 where 

61.3 10cE    (V m ) is the critical electric field for the onset of particle Quincke rotation 

evaluated by Eq. (1). It is learned from Fig. 3 that the magnitude of the spin velocity within the 

flow field increases as the applied electric field strength is increased with *  kept constant. On 

the other hand, the ER fluid spin magnitude also increases as the average shear rate, * , or the 

applied velocity of the upper boundary, 0U , increases while the electric field strength is kept 

constant. As the applied electric field, 0E  or *E , is gradually reduced, the ER fluid spin velocity 

gradually reduces back to the zero electric field angular velocity of a continuum fluid parcel, i.e., 

* *

0 2   , or half of the Couette flow vorticity, which can be readily deduced from Eq. (32) 

by letting *M   or 0 0E  . This solution is noted by the top most, gray line with * 0E   in 

Fig. 3. 

      Notice that for a given field strength and shear rate, the spin velocity, *  or x , is a constant 

throughout the channel and, thus, does not depend on the spatial z-coordinate as already 

discussed in Section 3.2 for the Couette geometry. With the spin velocity being a constant in Eq. 

(22), the velocity field of Couette flow with internal micro-particle electrorotation is found to be 

the same as that of Couette flow without particles—a result consistent with those given in 

Shliomis [39] and Rosensweig [22]. Thus, the velocity field of Couette flow with micro-particle 

electrorotation in the zero spin viscosity limit is simply the linear profile given by Eq. (30). 

      Figure 4 shows the effective viscosity, *

eff   , of Couette flow with internal micro-

particle electrorotation as given in Eq. (38). The effective viscosity is plotted with respect to the 

average shear rate, 
* , with the electric field strength being evaluated at *E  0, 0.4, 0.8, 1.0, 

2.0, and 3.0. Again, the spin velocity solution given by Eq. (33) is employed in Eq. (38) for 

conditions of 
*

0 1cE E E  , whereas Eq. (34) is employed in Eq. (38) for * 0.8E  . It is readily 
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seen that the effective viscosity decreases as the applied DC electric field strength increases. 

However, as the magnitude of the shear rate increases, the amount of reduction in the effective 

viscosity decreases regardless of the applied electric field strength. Since the effective viscosity 

is normalized and non-dimensionalized by the zero electric field ER fluid viscosity,  , we 

further point out that the value of *  should approach one as the applied electric field goes to 

zero, which is a result easily found by substituting * *

0 2    into Eq. (38). The zero electric 

field result is indicated by the gray line in Fig. 4. It can be seen from the figure that the predicted 

effective viscosities *  approach to one when the shear rate, * , goes large or when the applied 

electric field strength is reduced. 

      From Fig. 4, we find that zero or negative viscosities are attainable when the applied DC 

electric field strength is strong enough. By using the terms “zero or negative viscosities,” we do 

not mean that the true fluid viscosity is zero or negative, but that the effective or apparent 

viscosity comes out to be zero or a negative value through performing the force balance 

described by Eqs. (37) and (38) when the boundary shear stress, s , is maintained a constant. In 

experimental terms, as the applied electric field strength becomes large, the “pumping” or 

“conveyer belt” effect of the micro-particles undergoing electrorotation on the ER fluid 

continuum becomes so significant that the ER fluid spin or rotation itself, instead of some 

externally applied force or torque, provides the shear stress required to move the upper plate of 

the Couette geometry. Therefore, we may observe a finite shear rate, 
* , or plate velocity, 0U , 

while the readings on the rheometer or viscometer indicate a zero torque applied to the fluid. As 

for negative effective viscosity conditions, the electrorotation conveyer belt is so effective that 

the rheometer or viscometer needs to “hold back” the Couette driving plate to maintain some 

value of applied torque or shear rate. Further discussions can be found in Lobry and Lemaire [7] 

for the rheometric experimental considerations and in Rinaldi et al. [40] for experimental torque 

measurements on ferrofluids subjected to rotating magnetic fields. 

      The effective viscosity solutions given by the present continuum model can be compared 

with the theoretical and experimental results found in Lemaire et al. [12] by using the same 

carrier liquid conductivity, 
8

1 1.5 10    ( S m ), and other material parameters in the numerical 

evaluations of the present continuum model. Using their material properties and parameters, the 
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corresponding critical electric field for the onset of Quincke rotation is evaluated to be 0.83cE   

( kV mm ). We find that the continuum model predicted effective viscosity, * , varies in a 

similar trend with respect to *  and/or *E  as compared with the theoretical predictions from the 

two-phase volume averaged model (single particle dynamics based) shown in Figs. 7(a) and 7(b) 

of Lemaire et al. [12]. Unlike the model based on single particle dynamics in Ref. [12] which 

over estimates the reduction in effective viscosity, the present continuum model under estimates 

the reduction in *  at high electric field strengths, but falls closer to the experimental data shown 

in Figs. 7(a) and 7(b) of Ref. [12] at relatively moderate electric field strengths, i.e., 

*

0 cE E E 1.2 and 2.4. This comparison between our continuum model predictions and the 

experimental data found from Lemaire et al. [12] is shown in Figs. 5a and 5b for micro-particle 

solid volume fractions of  0.05 and 0.1, respectively. 

 

 

4. Poiseuille Flow with Internal Micro-particle Electrorotation 

4.1 The Governing Equations Specific to the Poiseuille Flow Geometry 

      Figure 6 shows the schematic diagram of a parallel plate Poiseuille flow. Instead of an upper 

plate moving at a constant velocity 0U , the upper and lower plates are now both fixed at zero 

velocity, and a pressure gradient, p y    , is applied in the positive y-direction, i.e., 0  , 

through the channel to drive the fluid flow. Based on the similar geometries given for both 

Couette and Poiseuille cases, we again assume that the flow is steady, incompressible, two-

dimensional, and fully developed so that the z-velocity component, i.e., zu  in 
y y z zv u i u i  , is 

identically zero and that the applied pressure gradient,  , is a constant for a fully developed 

flow. The applied DC electric field is further approximated to be only in the z-direction, namely, 

z zE E i , with 0zE E  and 0E  being a constant across the channel height, h . 

      For zero spin viscosity conditions, Eqs. (3), (4), and (20) then reduce to Eqs. (21), (23), and 

2

2
2 0

yx
e

d ud

dz dz


    ,                                                               (39) 

where 
x xi   for our 2D geometry. After substituting Eq. (19) into Eq. (21) and solving Eqs. 

(21a) and (21b), we again arrive at Eqs. (24) and (25). Using Eqs. (24a) and (25) in Eq. (23), we 
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obtain the set of governing equations for Poiseuille flow with internal micro-particle 

electrorotation, that is, Eqs. (39) and (27). 

      Since we are considering zero spin viscosities in the angular momentum equation, the spin 

velocity field, 
x  xi , again follows the “free-to-spin” condition at the boundaries while we 

apply the no-slip BC, 0v  , at 0z   and h  on the velocity field,  yv u z yi . Yet, for a 

Poiseuille geometry, the spin velocity is no longer a constant throughout the flow field, i.e., 

 x z 
xi , and thus a geometric condition for the spin velocity field, namely, 0 , is 

needed as 2z h  so as to satisfy the symmetry requirements imposed by the symmetric 

parallel plate Poiseuille flow boundaries [23]. Also, based on the stable rotation requirement on 

the rotating micro-particles, we require the micro-particle rotation speed to approach zero at the 

mid-plane of the flow channel, i.e., 0  as 2z h , since the macroscopically imposed 

Poiseuille vorticity is positive (counter clockwise rotation) in the upper half of the flow channel, 

negative (clockwise rotation) in the lower half of the flow channel, and thus approaches zero at 

the mid-plane or center of the channel. 

 

4.2 Solutions to the Spin Velocity Profile, Linear Velocity Profile, and the Volume Flow Rate 

      Following a similar procedure to that of the Couette geometry case, we integrate Eq. (39) to 

have 

2
y

x e p

du
z C

dz
     ,                                                       (40) 

where pC  is a constant. Equation (40) is then substituted into Eq. (27) so that the angular 

momentum equation becomes 

*
2

02 2

2
2 2 0

1

pMW x
z x x

MW x e e e

C
n E z

   
   

    

  
     

  
.            (41) 

By applying the symmetry conditions, 0  and 0  (i.e., 0x   and 0 ) as 

2z h , to Eq. (41) and recalling that *

y z MW       , the constant pC  is determined to 

be 2h , and Eq. (41) is rewritten as 
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2*
0

2 2

1 2
0

1 2 2
zxMW

x

x e eMW

n E h z

h

   


    

 
 
 

 
   


,                            (42) 

which is an algebraic, cubic equation with the z-coordinate being a spatially varying coefficient. 

Using the following non-dimensionalization scheme, namely, 

*

MW x   , * z
z

h
 , *

2

0

2

z MW e

m
n E



  
 , and * *MWh

V m





 ,          (43) 

Eq. (42) is non-dimensionalized and the dimensionless angular momentum equation for the 

Poiseuille case becomes 

* * *
*3 * *2 * *

* * * *

1 1 1
1 0

2 2 2 2 2 2

V V
z z

m m m m


  

     
            

     
.          (44)  

      We solve Eq. (44) by standard symbolic calculation packages (Mathematica, Wolfram 

Research, Inc.) to express *  in terms of *V , *z , and *m , or equivalently, to express x  in 

terms of z ,  , and 0E . The stability, real valued, and free-to-spin conditions are then applied to 

select or pick out the most physically meaningful solution or combination of solutions to the spin 

velocity, * , from the three possible roots, e.g., 
*

1P , 
*

2P , and 
*

3P , found in solving the angular 

momentum equation, Eq. (44). Recall from Section 3.2 that for 0 cE E , we require the 

suspended micro-particles to rotate in the direction of the macroscopic flow vorticity, which in 

this case, is the Poiseuille flow vorticity direction. Based on this requirement and referring to the 

coordinate systems shown in Figs. 1 and 6, we apply the negative valued micro-particle rotation 

speed  , i.e., clockwise or pointing into the plane, in Eq. (17) to Eqs. (24) and (25) for the lower 

half of the channel, i.e., *0 1 2z  , and the positive valued  , i.e., counter clockwise or 

pointing out of the plane, in Eq. (17) to Eqs. (24) and (25) for the upper half of the channel, i.e., 

*1 2 1z  . On the other hand, for 0 cE E , we set 0  in Eqs. (24) and (25) and require the 

real valued spin velocity *  to be negative in *0 1 2z   and to be positive in *1 2 1z  . 

Figure 7 shows the real valued results of the spin velocity, * , plotted with respect to the spatial 

coordinate, *z , with 42 10    ( Pa m ) at *E  1.0, 1.01, and 1.05 for both Figs. 7a and 7b and 

at *E  0.7, 0.8, 0.9, 0.95, and 0.99 for Fig. 7c where 
*

0 cE E E  with 
61.3 10cE    (V m ); the 

dash-dash curves represent a first root, 
*

1P , the dash-dot-dash curves represent a second root, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 23 

*

2P , and the solid gray curves represent the last root, *

3P . Although the spin velocity profiles 

extend across the whole channel domain, *0 1z  , the solutions for * 1E   shown in Fig. 7a are 

only valid for *1 2 1z   since we have employed in Eqs. (24) and (25) the positive valued   

of Eq. (17) that corresponds to the positive vorticity in *1 2 1z   to satisfy the stable micro-

particle rotation requirement during the numerical evaluation of the figure. Similarly, the spin 

velocity profiles for * 1E   shown in Fig. 7b are only valid for *0 1 2z   since the negative 

valued particle rotation speed   of Eq. (17) corresponding to the negative vorticity in 

*0 1 2z   has been employed in Eqs. (24) and (25) when evaluating the solutions throughout 

the whole spatial domain. For spin velocity profiles shown in Fig. 7c as well as for the * 1E   

solutions shown in both Figs. 7a and 7b, we find that with 0  in Eqs. (24) and (25) (note: Eq. 

(17) goes to zero when * 1E  ), the spin velocity profiles become s-shaped centered at * 0.5z  , 

and become multi-valued with respect to the spatial coordinate, *z , near the middle of the flow 

channel when 42 10    ( Pa m ) and *E  0.95~1.0. This is a similar non-linear behavior found 

in AC or traveling wave ferrofluid spin velocity profiles under zero spin viscosity, ' 0  , 

conditions as discussed in Zahn and Pioch [41, 42]. However, since multi-valued spin velocity 

profiles will eventually lead to linear velocity profiles that are multi-valued in space, the 

situation is less likely to be physical for steady, viscous, and fully developed fluid flows [41, 42]. 

Therefore, resolution is made by requiring 
* *

3 0P    at 
* 1 2z   and discarding the 

*

1P  and 

*

3P   solutions in 
*0 1 2z   and the 

*

2P  and 
*

3P  solutions in 
*1 2 1z  , that is, use the 

negative valued * , i.e., 
*

2P , in 
*0 1 2z   and the positive * , i.e., 

*

1P , in 
*1 2 1z  , so 

that the final solution is real valued, stable, symmetric, free-to-spin, and more likely physical for 

42 10    ( Pa m ) and *E  0.95~1.0 conditions. Finally, for the spin velocity profiles 

evaluated at 42 10    ( Pa m ) and *E  0.9 as shown in Fig. 7c, only one root, 
*

1P , is found 

to be valid, that is, real valued and rotation direction in the vorticity direction, throughout the 

spatial domain, *0 1z  . 

      By carefully examining Figs. 7a, 7b, and 7c and applying all the above reasoning and 

conditions, the explicit expressions of the final solution to the spin velocity of Poiseuille flow 
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with internal micro-particle electrorotation is obtained for 0 cE E  as: (i) in *0.5 1z   

(substitute positive valued   of Eq. (17) in Eqs. (24) and (25)), 

   
1

1 1* * *
3 3* * 2 3 2 33

1 1 2 2 1 2 2 1* *3

2 1
6 4 4 4

12 12 2
P P P P P P P P

V z V
m

m m
       



 
       

 
,      (45) 

(ii) at * 0.5z  , 

*

3 0P  ,                                                                (46) 

and (iii) in *0 0.5z   (using negative valued   of Eq. (17) in Eqs. (24) and (25)), 

   

  

1
1* * *

3* * 2 33

2 1 2 2 1*

1
32 3

2 2 1*3

2
1 3 12 4 4

12

1
1 3 4

24 2

P P P P P

P P P

V z V
i m

m

i
m

    

  



 
     

 

 
    

 

,         (47) 

where 

   
2

* * * * *

1 24 1 2 2P m m V z V     ,                                                  (48) 

and 

* * *2 * *3 * * *

2

*2 * * *3 * *3 *2 *3 *3 *2 *

72 288 2 144

576 12 24 16 864

P m V m V V m V z

m V z V z V z V z m





    

    
.         (49) 

As for electric field strengths below the critical electric field, i.e., 0 cE E , the micro-particle 

rotation speed,  , is set to zero in Eqs. (24) and (25), and Eq. (45) is generally valid throughout 

*0 1z   for the pressure gradients of interest with 0 0.9 cE E . For electric field strengths of 

00.95 c cE E E  , Eqs. (45)-(47) are used with 0  in Eqs. (24) and (25) during the evaluation 

of the spin velocity profile. The analytic expressions given above are obtained under the “Solve” 

command using Mathematica. 

      Again notice that the solution or combination of solutions given to Eq. (44) need to satisfy all 

the above conditions and reasoning within the parametric regimes of interest since it is less likely 

to be physical for solutions being complex or multi-valued. The combination of solutions, Eqs. 

(45)-(47), presented herein is generally for the parametric range of 
*

0 1 3cE E E   with 

61.3 10cE    (V m ) and 
* 0 2r      with 

42 10r    ( Pa m ) in *0 1z  , whereas Eq. 

(45) is generally valid for * 0.9E   and *0 2    throughout *0 1z  . For other parametric 
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regimes of particular interests, the combination of solutions and the parametric range where the 

solutions becomes multi-valued may be different from the ones discussed herein. In this case, we 

need to start from Eq. (44) and solve for the three roots, then simultaneously apply the stability, 

symmetry, real valued, and “free-to-spin” conditions to the roots to finally pick out or select the 

suitable and most physical combination for the desired spin velocity field just like the procedure 

we have shown in this section. Also notice that the jump or discontinuity made in the final spin 

velocity profile at * 0.5z   is permitted self-consistently by the “free-to-spin” condition for the 

zero spin viscosity cases studied herein. This is an analogous situation to the “inviscid” parallel 

shear flow with the velocity field being 
yv Ui  for 0z   and 

yv Ui   for 0z   as one of the 

possible base solutions to Kelvin-Helmholtz instability studies. 

      We can always rewrite Eq. (44) and express the spatial coordinate, *z , as a function of the 

spin velocity, * , (i.e., plot *z  by varying *  instead of plot *  by varying *z ) so as to avoid 

encountering complex valued solutions or transition of the real valued solution from one root to 

another  as shown in Rosensweig [22] for ferrofluid Couette flows subjected to uniform magnetic 

fields. However, even by this method, we will still encounter the problem of multi-valued 

solutions and of finding the most physically likely solution that satisfies the stable micro-particle 

rotation requirement for the present electrorotation flows. Moreover, as will be shortly shown in 

the following, since the linear velocity profile, *u , and the 2D volume flow rate, Q , solutions 

depend on integrations of the spin velocity profile, * , it is much more straight forward, in terms 

of performing the integrations with respect to *z  without obscuring the fundamental physical 

meanings, to express the spin velocity as a function of the spatial coordinate, i.e.,  * * *z  , 

as compared to expressing the spatial coordinate as a function of the spin velocity,  * * *z z  . 

This is why we have chosen a seemly more difficult way of tackling Eq. (44) and explained in 

detail about the reasoning and conditions applied during the solution process. 

      After substituting the spin velocity solutions, *  or x , and 2pC h   into Eq. (40) and 

also noticing that for * 1E  , *  is expressed by Eqs. (45) and (47) in the respective regions of 

*0.5 1z   and *0 0.5z  , we integrate Eq. (40) with respect to the spatial coordinate, *z , to 

obtain the velocity field as: (i) for *0.5 1z  ,  
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     *

1
* * * * * * *

1

4
1UP P

z
e MW

u z z z z d z
h

 


 

 
 
 

  
  ,                     (50a) 

and (ii) for *0 0.5z  , 

     
*

* * * * * * *
2

0

4
1

z

DN P

e MW

u z z z z d z
h

 


 

 
 
 

  
  ,                     (50b) 

where the velocity field, Eq. (50), is made dimensionless by dividing with 2 2h   (note: use   

not e ), i.e.,    * * * 22 yu z u z h  , 
*

1P  and 
*

2P  are respectively defined in Eqs. (45) and 

(47), and 
*z  is a dummy index in both equations. For * 0.9E  , use 

*

1P , i.e., Eq. (45), in place 

of 
*

2P , i.e., Eq. (47), in Eq. (50b), that is, use Eq. (45) for the spin velocities throughout 

*0 1z   in the integration of Eq. (50). From general mathematical point of views, the velocity 

field of the flow, yu , needs to be continuous and smooth (continuous in ydu dz ) throughout the 

channel because of finite ER fluid viscosities,  . However, since we have manually (with 

physical reasoning) made the spin velocity, x , discontinuous at the middle of the channel, the 

smoothness of the velocity distribution near * 0.5z   may not exactly be preserved under the 

framework of zero spin viscosity limits—a cusp may arise at * 0.5z   in the velocity profile 

given by Eq. (50) for certain parametric regimes of interest. This issue will be further discussed 

in Section 4.3. 

      We next calculate the two dimensional volumetric flow rate, Q , by integrating the velocity 

fields, i.e., 

     
3 0.5 1

* * * * * *

0 0 0.52

h

y DN UP

h
Q u z dz u z dz u z dz


 
  


     ,              (51) 

with Eq. (50a) used for *0.5 1z   and Eq. (50b) used for *0 0.5z  . In terms of the spin 

velocities, Eq. (51) is rewritten as, for * 1E  , 

   
*

*

3
1 1 0.5

* * * * * * * *

1 2
0.5 0 0

24
1

12

z

P P
z

e MW

h
Q z d z dz z d z dz

h

 
 

  

     
            

    ,          (52) 

where 
*z  is the dummy index and Eqs. (45) and (47) are used in the integration ranges of 

*0.5 1z   and *0 0.5z  , respectively. Again, for * 0.9E  , use 
*

1P , i.e., Eq. (45), 
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throughout *0 1z   in the integration of Eq. (51) or (52). It is now obvious why we use  , zero 

electric field ER fluid viscosity, instead of e     in non-dimensionalizing the velocity field 

of Eq. (50). The intention is to utilize the ordinary Poiseuille flow solution (no electric field 

applied to the ER fluid) as a reference datum so that the variation and deviation in the 

electrorotation modified Poiseuille velocities and flow rates from those of the zero electric field 

solutions, i.e.,      * * 2 *

0 2 yu z h u z   * *1z z   and 
3

0 12Q h   , can be respectively 

compared. 

      Results of the spin velocity profile, (linear) velocity profile, and the volume flow rate will be 

respectively presented in the following subsection. The system parameters, physical constants, 

and material properties used in the numeric evaluations can be found in Table 2 unless otherwise 

specified. 

 

4.3 Results and Discussions 

      Before presenting the spin velocity profiles, we first normalize the Poiseuille spin velocity, 

Eqs. (45)-(47) by 2MWh  , namely, * * *

1 12P P MWh       for *0.5 1z  , 

* * *

2 22P P MWh       for *0 0.5z  , and * *

3P  
*

32 0P MWh    for * 0.5z  . By 

employing this normalization, we find that the zero electric field solution, 

 * *

0 0.5 2MWh z     , becomes independent of the applied pressure gradient and only 

depends on the spatial position in the channel, i.e.,  * *

0 0.5z   . The zero electric field 

solution then becomes a reference datum invariant of both the applied electric field strength and 

the driving pressure gradient and facilitates a more physically meaningful comparison among the 

solutions. 

      Illustrated in Fig. 8 are the spatial variations of the electrorotation assisted Poiseuille spin 

velocity profiles given by Eqs. (45)-(47) normalized by 2MWh   plotted with respect to 

distinct strengths of the applied electric field, 
*

0 cE E E . With the pressure gradient kept 

constant, i.e., 
* 1r      where 

42 10r    ( Pa m ), the normalized spin velocity 
*  is 

evaluated at *E  0, 0.4, 0.8, 1.0, 2.0, and 3.0 with 
61.3 10cE    (V m ). The solid gray curve 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 28 

shown in Fig. 8 represents the zero electric field solution,  * *

0 0.5z   , or half of the 

Poiseuille vorticity when there is no electric field and internal micro-particle electrorotation 

effects. From the figure, the positive and negative valued spin velocities found in the respective 

regions of *0.5 1z   and *0 0.5z   (with * *

3 0P    at * 0.5z  ) show that we have 

chosen, based on the macroscopic Poiseuille vorticity directions, the combination of solutions 

that satisfies the symmetry, real valued, and stable particle rotation conditions. The apparent 

jump or discontinuity in the spin velocity profile at * 0.5z   is self-consistently permitted by the 

“free-to-spin” condition under the framework of the zero spin viscosity limit as already 

mentioned in the previous sections. 

      As can be seen in Fig. 8, the magnitude of the normalized spin velocity of Poiseuille flow 

with internal particle electrorotation increases as the applied DC electric field strength is 

increased. If, on the contrary, we reduce the applied electric field strength from *E  1.0, 0.8 to 

0.4, we find that the spin velocity gradually approaches the zero electric field solution noted by 

the gray curve in Fig. 8. Moreover, the strength of the jump or discontinuity at * 0.5z   in the 

normalized spin velocity field reduces and eventually smoothes out (see the smooth and 

continuous curves for * 0.4E   and 0.8) as the applied electric field is decreased. Note that in 

this figure, the solutions to * 0.4E   and 0.8 are fully represented by * *

1P  , i.e., Eq. (45), 

throughout the spatial domain, *0 1z  , at * 1  . However, the spin velocity solutions to 

*E  1.0, 2.0, and 3.0 are represented by * *

1P   (Eq. (45)) for *0.5 1z  , * *

2P   (Eq. 

(47)) for *0 0.5z  , and zero (Eq. (46)) for * 0.5z   at * 1  . The transition among the 

different roots verifies the cubic nature of the governing equation, Eq. (44). 

      After the spin velocity field is found, the (linear) velocity field is easily obtained by 

integrating Eq. (50). The results of the velocity field, *u  (or yu ), are plotted with respect to the 

spatial coordinate *z  in Fig. 9 for * 1   with * 0E  , 0.4, 0.8, 1.0, 2.0, and 3.0. The gray solid 

curve represents the zero electric field solution,  * * *

0 1u z z  , i.e., the velocity field of ordinary 

Poiseuille flow without internal micro-particle electrorotation. Recall that the velocity field was 

already normalized by 
2 2h   in the non-dimensional definition of Eq. (50); hence, there is no 

more need to define a normalized velocity field as in the case of the spin velocity.      
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      Based upon the above convention, we find in Fig. 9 that with * 1   kept constant, the flow 

velocity is considerably enhanced and the cusp in the velocity profile at * 0.5z   is sharpened as 

the strength of the applied DC electric field is increased. If we reduce the strength of the electric 

field while the pressure gradient is maintained constant, the cusp at * 0.5z   becomes blunt and 

the electrorotation enhanced velocity profile gradually reduces and converges back to the * 0E   

solution, i.e., the parabolic Poiseuille flow velocity field without internal particle electrorotation 

as noted by the solid gray curve in the figure. The * 0.4E   and 0.8 velocity fields shown are 

evaluated by substituting Eq. (45), i.e., *

1P , into the integrals of both Eqs. (50a) and (50b) with 

0  in Eqs. (24) and (25) since in this parametric regime, 
*

1P  assumes a real value and is 

valid throughout the spatial domain of *0 1z  . As for *E  1.0, 2.0, and 3.0, Eq. (45) is 

employed in the integral of Eq. (50a) whereas Eq. (47) is used in Eq. (50b). The cusped velocity 

profiles shown in Fig. 9 are consistent with those obtained from combined single particle 

dynamics and two-phase effective medium modeling [9] and are interestingly similar to the 

velocity profiles of a power law fluid in circular pipe Poiseuille flow geometries for large power 

indices [43] though, of course, the electrorotation and power law fluid flows work respectively 

on different principles. 

      Finally, using the physical parameters and material properties given in Table 2, the two 

dimensional volume flow rate of Poiseuille flow with internal micro-particle electrorotation, Q  

(
2m s ), is plotted with respect to the driving pressure gradient, 

*

r     with 
42 10r    

( Pa m ), at distinct values of the applied DC electric field strength, 
*

0 cE E E  with 

61.3 10cE    (V m ). The results are shown in Fig. 10 for *E  0, 0.4, 0.8, 1.0, 2.0, and 3.0 with 

the solid gray curve noted by * 0E   corresponding to the two dimensional volume flow rate of 

Poiseuille flow without internal micro-particle electrorotation, i.e., 
3

0 12Q h   .  

      From Fig. 10, we find that the volume flow rate increases as the applied DC electric field 

strength is increased while the driving pressure gradient is kept constant. On the other hand, the 

electrorotation enhanced volume flow rate gradually reduces back to the zero electric field 

solution, 
3

0 12Q h   , as the applied electric field is reduced. These results are consistent with 

our previous examination of the velocity fields shown in Fig. 9 and agree with the experimental 
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observations reported in Ref. [10]. Note that the flow rate solutions evaluated at *E   1.0, 2.0, 

and 3.0 suggest non-zero volume flow rates at zero driving pressure gradients when the flow is 

subjected to an applied electric field strength greater than or equal to the critical electric field for 

the onset of Quincke rotation. This result is particularly due to the fact that we have used the 

combination of solutions to the spin velocity, Eqs. (45)-(47), that satisfies the symmetry, real 

valued, stable micro-particle rotation, and free-to-spin conditions in the modeling and evaluation 

of the volume flow rate, Q , under zero spin viscosity conditions, i.e., ' 0  . Nonetheless, we 

need to point out that unless there is some initial flow ( * 0  ) applied to give the suspended 

micro-particles a favorable direction for electrorotation, the direction for Quincke rotation is 

merely a matter of chance with the particle rotation axis either pointing into or out of the planes 

defined by the electric field under zero flow or equivalently zero driving pressure gradient 

conditions. Up to this point, no experimental evidence has observed a negative ER effect with 

zero initial flow when an electric field strength, 0 cE E , is applied [7]—both initial vorticity and 

micro-particle Quincke rotation are needed for the present negative ER effect. The finite jump of 

volume flow rate at zero driving pressure gradients diminishes and eventually becomes zero, i.e., 

zero flow rate at zero pressure gradient, as we reduce the applied electric field strength from 

*E  1.0, 0.8, to 0.4 as can be found in the figure. Again, for the * 0.9E   solutions, i.e., *E  0.4 

and 0.8, shown in Fig. 10, we have used 
*

1P , Eq. (45), throughout the spatial domain, *0 1z  . 

      Summing up the findings from examining Figs. 8-10, it is found that, in general, the 

magnitude of the normalized spin velocity, the normalized flow velocity, and the 2D volume 

flow rate is increased as the applied electric field, *E , is increased with the driving pressure 

gradient, * , kept constant. Moreover, increasing the applied electric field gives rise to a more 

severe jump or discontinuity at * 0.5z   in the normalized spin velocity profile, sharpens the 

cusp structure at  * 0.5z   in the (normalized) velocity profile, and results in a finite value of 

volume flow rate at zero pressure gradients. Contrarily, reducing the strength of the electric field 

smoothes out the cusp in the velocity profile and reduces the severity of the discontinuity at 

* 0.5z   in the spin velocity field while the pressure gradient is kept constant. The (normalized) 

velocity and spin velocity profiles as well as the 2D volume flow rate gradually reduce back to 

the zero electric field solutions as the applied electric field strength is reduced. 
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      Lastly, as shown in Fig. 11, the theoretical predictions of the 2D Poiseuille volume flow rate 

from the present continuum mechanical model are compared with the experimental data found 

from Figs. 5 and 6 of Lemaire et al. [10] by using the same material and physical parameters, 

e.g., channel height of 750h   ( m ) and electric field strengths of 0 2.7E   and 3.3 ( kV mm ), 

employed therein for micro-particle solid volume fractions of 0.05   (Fig. 11a) and 0.1 (Fig. 

11b). The corresponding critical electric field for the onset of micro-particle Quincke rotation is 

evaluated as 
61.3 10cE    (V m ) by substituting the material properties given in Ref. [10] into 

Eq. (1). It can be found from Fig. 11 that the theoretical Poiseuille volume flow rate results 

obtained from the present continuum analysis are in good agreement with the experimental data 

found from Figs. 5 and 6 of Ref. [10] despite the slight over estimation in the volume flow rate 

as compared to the experimental data from Ref. [10]. The theoretical predictions from both the 

present continuum model and the previous single particle dynamics based model give similar 

variations of the 2D volume flow rate with respect to the applied electric field strength and 

pressure gradient—the volume flow rate increases as the applied electric field increases. 

      As a general conclusion of the results presented in this article, we find that, in the zero spin 

viscosity limit, the full continuum governing equations (from anti-symmetric/couple stress 

theories) employed in this article reduce to a “particulate limit” and predict similar trends of 

variations of the effective viscosities for Couette flow and of the two dimensional volume flow 

rates for Poiseuille  flow as compared to the theoretical predictions from the two-phase volume 

averaged effective medium model (single particle dynamics based) found in the literature [7-12, 

19] for describing the internal micro-particle electrorotation modified flow phenomena. 

 

 

5. Concluding Remarks 

      Two dimensional Couette and Poiseuille flows with internal, spontaneous micro-particle 

electrorotation, or Quincke rotation, are modeled and analyzed through a fully continuum 

mechanical formulation in this article. By combining the theories of particle electromechanics 

and continuum anti-symmetric/couple stresses, general governing equations are given to describe 

the physical aspects of polarization relaxation, mass conservation, momentum conservation, and 

angular momentum conservation involved in this novel negative electrorheological phenomena. 

With the assumptions of steady, incompressible, fully developed, and two dimensional flows, the 
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general governing equations are respectively reduced to two algebraic, cubic equations of the ER 

fluid spin velocity, * , for the Couette and Poiseuille flow geometries in the limit of a zero spin 

viscosity in the angular momentum equation. Stability, symmetry, and “free-to-spin” conditions 

are then applied to the cubic spin velocity equations to pick out or select the real valued solution 

or combination of solutions consistent with the physical assumptions and phenomena of interest. 

Expressions for the effective viscosity, * , of Couette flow as well as the linear velocity field, 

*u , and the 2D volume flow rate, Q , of Poiseuille flow can be further derived in terms of the 

applied electric field, *E , shear rate, * , driving pressure gradient, * , or spatial coordinate, *z , 

by respectively substituting the most physically suitable and meaningful solution or combination 

of solutions to the spin velocity, * , into the linear momentum equation with the no-slip 

boundary conditions on the velocity field applied at the spatial boundaries. Modeling results are 

summarized in the following: 

(i) With internal particle electrorotation, the spin velocity, * , increases as either the applied 

electric field strength, *E , or the shear rate, * , is increased for Couette flow. Contrarily, the 

spin velocity reduces back to the zero electric field solution ( * 0E  , no particle 

electrorotation), i.e., 
* *

0 2   , or half of the Couette flow vorticity, as the applied electric 

field strength is decreased. In the limit of zero spin viscosity, the linear Couette velocity 

profile,   0yu z U z h , remains invariant regardless of the applied electric field strength. 

(ii) The effective viscosity, 
* , is found to decrease as the applied DC electric field strength 

increases for Couette flow with internal particle electrorotation. However, as the driving 

shear rate becomes large, the amount of reduction in the effective viscosity is reduced 

regardless of the applied electric field strength. For a decreasing electric field strength, the 

effective viscosity goes back to the zero electric field solution, 
* 1  , i.e., the zero field 

viscosity of the ER fluid (particle-liquid mixture),  . 

(iii)With a constant driving pressure gradient, * , the magnitude of the normalized Poiseuille 

spin velocity, 
* , as well as the jump or discontinuity in the spin velocity profile increases as 

the applied electric field, *E , increases whereas the spin velocity reduces back to the zero 
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field solution,  * *

0 0.5z   , and the discontinuity in the spin velocity profile diminishes as 

*E  is reduced. 

(iv) With a constant driving pressure gradient, * , the magnitude of the dimensionless 

(normalized) Poiseuille linear velocity, *u , as well as the sharpness of the cusp in the 

velocity profile increases as the applied electric field, *E , increases. On the contrary, the 

velocity profile reduces back to the zero field solution,  * * *

0 1u z z  , and the cusp in the 

velocity profile becomes blunt as *E  is reduced. 

(v) The two dimensional Poiseuille volume flow rate, Q , increases as the applied DC electric 

field strength increases whereas the electrorotation enhanced flow rate solution reduces back 

to the zero electric field solution, 
3

0 12Q h   , as the applied electric field is decreased. At 

zero driving pressure gradients, the electrorotation enhanced volume flow rate assumes some 

finite value because of the fact that we have employed the spin velocity solution that satisfies 

the symmetry, real valued, stable micro-particle rotation, and free-to-spin conditions in the 

evaluation of Q  under zero spin viscosity conditions. 

(vi) Comparing the results of the Couette effective viscosity and the Poiseuille volume flow rate 

obtained herein with those found in current literature, we find that both the present 

continuum and the previous two-phase volume averaged (single particle dynamics based) 

models qualitatively predict the same trends of variation for the effective viscosity with 

respect to the electric field strength and average shear rate, and for the volume flow rate with 

respect to the field strength and driving pressure gradient. The similarities found between the 

two modeling approaches suggest that the fully continuum mechanical modeling field 

equations presented in this article reduces to a “particulate limit” when the spin viscosity in 

the continuum angular momentum equation equals to zero, i.e., couple stress free conditions. 

Note however that the theoretical predictions of the Couette effective viscosity and Poiseuille 

volume flow rate obtained from the present continuum mechanical treatment are in good 

agreement with the experimental measurements as reported in current literature. 

      Future work includes a more advanced modeling of the polarization relaxation processes in 

the electrorheological fluid flow, the investigation of finite spin viscosity effects on the angular 
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momentum balances within the flow field, and the search of possible practical applications for 

such novel negative electrorheological phenomenon. 
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Table Captions 

Table 1. Summary of physical analogy between the electrorotation and ferrofluid spin-up flows. 

Table 2. System parameters, physical constants, and material properties used in the numerical 

evaluations [7-12]. 

 

 

Figure Captions 

Figure 1. The schematic diagram for the problem of solving the EQS fields within and outside a 

spherical particle of radius R  (with conductivity of 2  and permittivity of 2 ) suspended in a 

liquid medium (with 1 , 1 ) rotating at constant angular velocity 
xi  subjected to a 

uniform DC electric field, †

0 zE E i . 

Figure 2. The schematic diagram illustrating the geometry, dimensions, and physical parameters 

for Couette flow with internal micro-particle electrorotation. 

Figure 3. The dimensionless Couette spin velocity, * , plotted with respect to the average shear 

rate, * , evaluated at *E  0, 0.4, 0.8, 1.0, 2.0, and 3.0. For * 1.0E  , the spin velocity is 

given by Eq. (33), i.e., 
* *

2C   (negative valued   from Eq. (17) used in Eqs. (24) and 

(25)), whereas for the cases of * 0.8E  , *  is given by Eq. (34), 
* *

1C  , with the micro-

particle rotation speed,  , set to zero in Eqs. (24) and (25). The gray line denotes the zero 

electric field spin velocity, namely, half of the fluid vorticity, 
* *

0 2   . 

Figure 4. The effective viscosity, * , found for Couette flow plotted with respect to the average 

shear rate, * , evaluated at *E  0, 0.4, 0.8, 1.0, 2.0, and 3.0. For * 1.0E  , the spin velocity 

given by Eq. (33), i.e., 
* *

2C  , is used in the evaluation of Eq. (38), whereas for * 0.8E  , 

* *

1C   given by Eq. (34) is employed in Eq. (38). The gray line denotes the zero electric 

field value of the effective viscosity, i.e., * 1eff    , with the value of   given in Table 2. 

Figure 5. The present continuum modeling results of effective viscosity, 
* , versus average 

shear rate, 
* , are compared with the experimental data found from Lemaire et al. [12] at 

electric field strengths of 0E  1 (diamond), 2 (triangle), and 3 (box) ( kV mm ) for micro-
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particle solid volume fractions of  0.05 (Fig. 5a) and 0.1 (Fig. 5b). Using the material 

properties from Ref. [12], the corresponding critical electric field for Quincke rotation is 

evaluated to be 0.83cE   ( kV mm ). 

Figure 6. The schematic diagram illustrating the geometry, dimensions, and physical parameters 

for Poiseuille flow with internal micro-particle electrorotation. 

Figure 7. The three roots, *

1P , *

2P , and *

3P , of the dimensionless Poiseuille spin velocity, * , 

to the angular momentum equation, Eq. (44). The spin velocity profiles are plotted with 

respect to the spatial coordinate, *z , at 42 10    ( Pa m ) and 
*

0 cE E E =1.0, 1.01, and 

1.05 for both Figs. 7a and 7b, and *E  0.7, 0.8, 0.9, 0.95, and 0.99 for Fig. 7c with 

61.3 10cE    (V m ). The dash-dash curves denote 
*

1P , the dash-dot-dash curves denote 
*

2P , 

and the solid gray curves denote 
*

3P . In Fig. 7a, we have substituted the positive valued 

particle rotation speed,  , of Eq. (17) into Eqs. (24) and (25) in evaluating the spin velocity 

profiles. Therefore, the profiles shown in Fig. 7a are only valid within the spatial region of 

*0.5 1z  . Similarly, a negative valued   from Eq. (17) has been used in Eqs. (24) and 

(25), and thus, the spin velocity profiles shown in Fig. 7b are only valid within *0 0.5z  . 

As for Fig. 7c, the particle rotation speed is set to zero, 0 , in Eqs. (24) and (25). It can be 

seen that the spin velocity profiles evaluated at electric fields strengths of *E  0.95~1 

become multi-valued in space near the middle of the flow channel (note that   goes to zero 

for * 1E   in Eq. (17)). 

Figure 8. The normalized Poiseuille spin velocity profile, 
* , plotted with respect to the spatial 

coordinate, *z , evaluated at *E  0, 0.4, 0.8, 1.0, 2.0, and 3.0, with * 1  . The gray curve 

denotes the zero electric field value for the spin velocity, i.e., the vorticity of ordinary 

Poiseuille flow. Note that Eqs. (45) and (47), with the proper selection of the micro-particle 

rotation speeds in Eq. (17), are used in the evaluation of the spin velocity for * 1E  , whereas 

for * 0.9E  , Eq. (45) (with 0  in Eqs. (24) and (25)) is used throughout the spatial 

domain of interest. 

Figure 9. The normalized linear velocity profile, *u , of Poiseuille flow with internal micro-

particle electrorotation plotted with respect to the spatial coordinate, *z , evaluated at *E  0, 

0.4, 0.8, 1.0, 2.0, and 3.0, with * 1  . The gray curve denotes the zero electric field velocity 
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profile, which is the original Poiseuille parabolic profile. Equations (45) (use positive   from 

Eq. (17) in Eqs. (24) and (25)) and (47) (use negative   from Eq. (17) in Eqs. (24) and (25)) 

are respectively employed in the integrals of Eqs. (50a) and (50b) for * 1E  . The evaluation 

of *u  for * 0.9E   is done by employing Eq. (45) in both Eqs. (50a) and (50b) with 0  in 

Eqs. (24) and (25). 

Figure 10. The two dimensional Poiseuille volume flow rate, Q  ( 2m s ), plotted with respect to 

the applied pressure gradient, * , evaluated at *E  0, 0.4, 0.8, 1.0, 2.0, and 3.0. The gray 

curve represents the zero electric field volume flow rate given by 
3

0 12Q h   . 

Figure 11. The theoretical predictions of the volume flow rate, Q  ( 2m s ), versus pressure 

gradient,   ( Pa m ), obtained by the present continuum treatment are compared with the 

experimental measurements given in Lemaire et al. [10] for micro-particle solid volume 

fractions of 0.05   (Fig. 11a) and 0.1 (Fig. 11b) at electric field strengths of 0E  2.7 

(triangle) and 3.3 (box) ( kV mm ). Using the material properties given in Ref. [10], the critical 

electric field for the onset of particle Quincke rotation is evaluated to be 1.3cE   ( kV mm ). 

The diamond dotted curves represent the volume flow rates at zero electric field strengths.  
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Tables 

Table 1. 

 Electrorotation flow Ferrofluid spin-up flow 

Particles Insulating dielectric micro-particles Magnetic nanoparticles 

Microscopic dipole Maxwell-Wagner induced dipole Permanent magnetic dipole 

Macroscopic polarization Retarding polarization P  Magnetization M  

Applied field DC electric field E  (with vorticity) Rotating magnetic field H  

Body torque density P E  0 M H   

 

 

Table 2. 

Item Description Value Units 

d  Micro-particle diameter 58.00 10  m  

cE  Critical electric field strength 61.30 10  V m  

h  Channel height 31.00 10  m  

n  Particle number density 113.73 10  
31 m  

1  Permittivity of carrier liquid 113.27 10  
2 2C Nm  

2  Permittivity of particles 112.30 10  
2 2C Nm  

  Solid volume fraction of the particles 11.00 10  ---- 

0  Carrier liquid viscosity (no particles) 21.20 10  Pa s  

'  Spin viscosity 0  N s  

  Zero field fluid viscosity (w/ particles) 21.53 10  Pa s  

e  e     21.76 10  Pa s  

1  Conductivity of the carrier liquid 84.00 10  S m  

2  Conductivity of the particles 141.00 10  S m  

MW  Maxwell-Wagner relaxation time 31.11 10  s  

  Vortex viscosity 31.80 10  Pa s  
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31 m  

1  Permittivity of carrier liquid 113.27 10  
2 2C Nm  

2  Permittivity of particles 112.30 10  
2 2C Nm  

  Solid volume fraction of the particles 11.00 10  ---- 

0  Carrier liquid viscosity (no particles) 21.20 10  Pa s  

'  Spin viscosity 0  N s  

  Zero field fluid viscosity (w/ particles) 21.53 10  Pa s  

e  e     21.76 10  Pa s  

1  Conductivity of the carrier liquid 84.00 10  S m  

2  Conductivity of the particles 141.00 10  S m  

MW  Maxwell-Wagner relaxation time 31.11 10  s  

  Vortex viscosity 31.80 10  Pa s  

 

Table
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