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Closed-Form Solution for Attitude and Speed Determination by Fusing
Monocular Vision and Inertial Sensor Measurements

Agostino Martinelli

Abstract— This paper considers the problem of data fusion
when the adopted sensors are a monocular camera and inertial
sensors (i.e. one tri-axial accelerometer and one tri-axial gyrom-
eter). The investigation starts by performing an observability
analysis to analytically derive all the observable modes, i.e.
all the physical quantities that the information contained in
the sensor data allows us to estimate. They are the position
of the features in the camera frame, the vehicle speed in
the same local frame and the absolute roll and pitch angles.
The main contribution of the paper is a new algorithm to
simultaneously estimate all the previous physical quantities. In
particular, the algorithm is based on a closed-form solution
which analytically expresses the vehicle speed and attitude in
terms of the sensor measurements. In this algorithm the camera
only needs to observe four times a single point feature in the
environment. This allows performing the overall estimation
in a very short time interval and without the need of any
initialization or a priori knowledge. This is a key advantage
since allows eliminating the drift on the scale factor and on
the vehicle orientation. In addition, the algorithm can be easily
extended in order to deal with biased inertial measurements and
to deal with multiple features, in which case only three distinct
camera poses are required (instead of four). Specifically, with
three camera poses and two features, the vehicle speed and
attitude together with the scale factor can be determined. The
performance of the proposed approach is evaluated via Monte
Carlo simulations and by using real data.

I. INTRODUCTION

In recent years, vision and inertial sensing have received
great attention by the mobile robotics community. These
sensors require no external infrastructure and this is a key ad-
vantage for robots operating in unknown environments where
GPS signals are shadowed. In addition, these sensors have
very interesting complementarities and together provide rich
information to build a system capable of vision-aided inertial
navigation and mapping and a great effort has been done
very recently in this direction (e.g. [16], [3], [1]). A special
issue of the International Journal of Robotics Research has
recently been devoted to the integration of vision and inertial
sensors [6]. In [5], a tutorial introduction to the vision and
inertial sensing is presented. This work provides a biological
point of view and it illustrates how vision and inertial sensors
have useful complementarities allowing them to cover the
respective limitations and deficiencies. The majority of the
approaches so far introduced, perform the fusion of vision
and inertial sensors by filter-based algorithms. In [2], these
sensors are used to perform egomotion estimation. The
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sensor fusion is obtained with an Extended Kalman Filter
(EKF) and with an Unscented Kalman Filter (U K F'). The
approach proposed in [8] extends the previous one by also
estimating the structure of the environment where the motion
occurs. In particular, new landmarks are inserted on line
into the estimated map. This approach has been validated
by conducting experiments in a known environment where
a ground truth was available. Also, in [18] an EKF has
been adopted. In this case, the proposed algorithm estimates
a state containing the robot speed, position and attitude,
together with the inertial sensor biases and the location of
the features of interest. In the framework of airbone SLAM,
an EKF has been adopted in [10] to perform 3D—SLAM
by fusing inertial and vision measurements. It was remarked
that any inconsistent attitude update severely affects any
SLAM solution. The authors proposed to separate attitude
update from position and velocity update. Alternatively, they
proposed to use additional velocity observations, such as
air velocity observation. Regarding the robot attitude, in [4]
it has been noted that roll and pitch angles remain more
consistent than the heading.

A fundamental issue to address when fusing vision and
inertial measurements, is to understand which are the observ-
able modes, i.e. the physical quantities that the information
contained in the sensor data allows us to estimate. The next
issue to address is to find a reliable and efficient method
to estimate all the previous physical quantities. It is very
reasonable to expect that the scale factor is an observable
mode and can be obtained by a closed-form solution. Let
us consider the trivial case where a robot, equipped with a
bearing sensor (e.g. a camera) and an accelerometer, moves
on a line (see fig 1). If the initial speed in A is known, by
integrating the data from the accelerometer, it is possible to
determine the robot speed during the subsequent time steps
and then the distances A — B and B — C' by integrating the
speed. The lengths A—F and B— F' are obtained by a simple
triangulation by using the two angles 84 and Sp from the
bearing sensor. Let us now assume that the initial speed v 4
is unknown. In this case, all the previous segment lengths
can be obtained in terms of v4. In other words, we obtain
the analytical expression of A — F' and B — F' in terms of
the unknown v4 and all the sensor measurements performed
while the robot navigates from A to B. By repeating the same
computation with the bearing measurements in A and C, we
have a further analytical expression for the segment A — F,
in terms of the unknown v4 and the sensor measurements
performed while the robot navigates from A to C. The
two expressions for A — F' provide an equation in the



unknown v4. By solving this equation we finally obtain all
the lengths in terms of the measurements performed by the
accelerometer and the bearing sensor.

F
B
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Fig. 1. A robot equipped with an accelerometer and a camera moves

on a line. The camera performs three observations of the feature in F,
repsectively from the points A, B and C.

The previous example is very simple because of several
unrealistic restrictions. First of all, the motion is constrained
on a line. Additionally, the accelerometer provides gravity-
free and unbiased measurements. In this paper we will
relax these restrictions' by considering the case of a robot
equipped with IMU and bearing sensors. We want to know
which are the observable modes, namely the physical quanti-
ties that we can estimate without any a priori knowledge (i.e.
by only collecting the data from the previous sensors during
a short time interval). For instance, are the scale factor, the
robot speed and the robot orientation observable modes? If
yes, is it possible to perform their estimation by a closed-
form solution? Does the derived solution work independently
of the vehicle trajectory?

An answer to the first question can be found by applying
the method introduced in [13], where a non standard ob-
servability analysis, based on the new concept of continuous
symmetry, has been introduced. The advantages of this non
standard observability analysis is that, in contrast to previous
approaches, it is able not only to check whether a given state
is observable or not, but, in the negative case, it is also able
to detect the quantities which are observable. In particular, by
analyzing the continuous symmetries of a given system, it is
possible to obtain a system of partial differential equations.
The observable modes are all the independent solutions of
this system of partial differential equations. In addition, this
analysis can also be used to find necessary conditions on the
vehicle trajectory in order to guarantee the observability of
the observable modes.

In this paper we consider a MAV equipped with a sin-
gle camera and /MU sensors (one tri-axial accelerometer
and one tri-axial gyrometer). We perform an observability
analysis (based on the approach introduced in [13]) in order
to understand which are the physical quantities that the
information contained in these data allows us to estimate.
In particular, this analysis allows us to analytically derive
all the observable modes. Specifically, they are the position
of the observed feature and the vehicle speed and attitude.
Then, we derive a closed-form solution which analytically
expresses the previous physical quantities in terms of the
sensor measurements. This allows us to introduce a very
simple and efficient algorithm to perform the estimation.

IThe case of biased measurements is actually dealt in [14] and [15].

This algorithm only requires to observe four times a single
point feature. In this case of one single feature, the algorithm
estimates eight independent quantities. They are: the three
components of the speed in the camera frame, the three
components of the 3D position of the observed feature in
the same camera frame and the roll and pitch angles. In
[14] and [15] we also derive necessary conditions on the
vehicle trajectory in order to guarantee the observability of
the vehicle speed and attitude.

Compared to the state-of-the-art the advantages of the
proposed algorithm are:

1) It only requires a single point feature to work;

2) The estimation does not require any initialization;

3) The estimation can be performed at any moment by
only collecting four consecutive observations;

4) It allows eliminating the drift on the scale factor and on
the roll and pitch angles independently of the vehicle
trajectory;

5) It can be easily extended in order to deal with the case
of multiple features and biased inertial measurements
([14] and [15]).

Regarding the fourth advantage, we remark that other
methods which try to bound the error by using a Bundle Ad-
justment approach (e.g. [7]), cannot fully eliminate the drift
on the previous mentioned quantities. In particular, when
the vehicle moves in large environments without closing any
loop (i.e. without revisiting regions previously explored) the
drift becomes a serious inconvenient.

A further contribution of this paper is a local decompo-
sition of the system which separates the observable modes
from the rest of the system. This allows us to implement
a filter based approach to directly estimate the observable
modes. In particular, we will use this decomposition to
implement an Extended Kalman Filter (EK F").

The paper is organized as follows. Section II provides a
mathematical description of the system. Starting from this
description, in section III an observability analysis which
accounts the system non linearities is provided. Then, in sec-
tion IV we derive the closed-form solution and the algorithm
to estimate the vehicle speed and attitude. In section VI we
evaluate the performance of the proposed algorithm based
on the closed-form solution by using synthetic and real data.
Additionally, we compare two FK F's estimating respectively
the entire vehicle state and the state which only contains
the observable modes. Finally, conclusions are provided in
section VIIL

II. THE CONSIDERED SYSTEM

Let us consider an aerial vehicle equipped with a monoc-
ular camera and /MU sensors. The IMU consists of three
orthogonal accelerometers and three orthogonal gyrometers.
We assume that the transformations among the camera frame
and the IMU frames are known (we can assume that the
vehicle frame coincides with the camera frame). The ITMU
provides the vehicle angular speed and acceleration. Actually,
regarding the acceleration, the one perceived by the ac-
celerometer (A) is not simply the vehicle acceleration (A,).



It also contains the gravity acceleration (Ag). In particular,
we have A = A, — Ay since, when the camera does not
accelerate (i.e. A, is zero) the accelerometer perceives an
acceleration which is the same of an object accelerated
upward in the absence of gravity.

We will use uppercase letters when the vectors are ex-
pressed in the local frame and lowercase letters when they are
expressed in the global frame. Hence, regarding the gravity
we have: ag = [0, 0, — g]7, being g ~ 9.8 ms~2.

We assume that the camera is observing a point feature
during a given time interval. We fix a global frame attached
to this feature. The vehicle and the feature are displayed in
fig 2.

Feature

Fig. 2. The feature position (F), the vehicle acceleration (A ) the vehicle
angular speed (£2) and the gravity acceleration (Ag).

Finally, we will adopt a quaternion to represent the vehicle
orientation. Indeed, even if this representation is redundant,
it is very powerful since the dynamics can be expressed in
a very easy and compact notation [11].

Our system is characterized by the state [r, v, g]7 where
r = [rgy, 1y, 7.]7 is the 3D vehicle position, v is its
time derivative, i.e. the vehicle speed in the global frame
(v= %), q = q:+iq.+jqy+kq. is a unitary quaternion (i.e.
satisfying g7 +q2+q;+q2 = 1) and characterizes the vehicle
orientation. The analytical expression of the dynamics and
the camera observations can be easily provided by expressing
all the 3D vectors as imaginary quaternions. In practice,
given a 3D vector w = [w,, w,, w,]’ we associate with
it the imaginary quaternion w = 0 + fw, + jwy + kw,. The
dynamics of the state [, 9, ¢|T are:

=19

&= qA,Uq* = q/iq* + aq (1)
1 -

1.

q 2(]

being ¢* the conjugate of ¢, ¢* = q: —iq, — jq, — kq.. We
now want to express the camera observations in terms of the
same state ([F, 9, ¢]7). We remark that the camera provides
the direction of the feature in the local frame. In other words,
it provides the unit vector F (see fig. 2). Hence, we can
assume that the camera provides the two ratios y; = % and
Yy = f;”, being F = [F,, F,, F.]T. We need to express
F in terms of [#, 9, ¢]7. We note that the position of the
feature in the frame with the same orientation of the global

frame but shifted in such a way that its origin coincides with
the one of the local frame is —r. Therefore, F' is obtained by
the quaternion product F= —q*7q. The observation function
provided by the camera is:

(@"7q)s  (q"Pq)y "
(¢*7q)=" (q*7q)-
where the pedices x, y and z indicate respectively the 7, j
and k£ component of the corresponding quaternion. We have
also to consider the constraint ¢*¢q = 1. This can be dealt as
a further observation (system output):

I =

hcanL("ﬁv ﬁ) Q) = [yh Y2 (2)

hconst(fa {)7 CI) = q*q (3)
IIT. OBSERVABILITY PROPERTIES

We want to investigate the observability properties of
the system whose dynamics are given in (1) and whose
observations are given in (2) and (3). The goal of this analysis
is to understand how the information contained in the sensor
data (from the IMU and the camera) is related to the state
[#, ©, q]T, which defines our system. In particular, the
question we wish to answer by performing this observability
analysis is the following. By collecting the data provided
by the IMU sensors and by the camera during a given
time interval, which are the observable modes that can we
estimate? An answer to this question for a general system
can be found in [13] where it is shown that these observable
modes are all the independent solutions of a system of partial
differential equations defined on the space of all the states
(in our case this space is a manifold belonging to R'%). In
particular, in [13] it is derived a method able to determine
these partial differential equations starting from the equations
characterizing the system. When this method is used to find
the observable modes for the system characterized by the
equations (1), (2) and (3) the mentioned system of partial
differential equations reduces to a single equation, which is:

2@% +2T"E§7f: —21@3—:1 —1—2%3::4— “4)
oA oA oA OA
50 Yag, + " D, + "o 0
This is a linear partial differential equation.
The number of independent solutions A =

A(rg, Ty, T2, Vi, Uy, Vs, @, s, Qy, ¢z) i equal
to the number of variables (i.e. 10) minus the number
of equations (i.e. 1) [12]. Hence we have 9 independent
solutions.

It is immediate to prove that the distance of the feature
from the camera, i.e. |r| =
this equation (this can be checked by a simple substitution).
This means that the distance of the feature is observable and
it is one among the 9 independent solutions. On the other
hand, since the camera provides the position of the feature
in the local frame up to a scale factor, having the distance
means that the feature position in the local frame is also

2 402 4 02 g i
ry + 1y + 1z, is a solution of



observable. Therefore the three components of the feature
position in the local frame are three independent solutions.
By using quaternions we can say that three independent
solutions are provided by the components of the imaginary
quaternion ¢*7q. Furthermore, since the partial differential
equation in (4) is invariant under the transformation r < v,
three other independent solutions are the components of the
imaginary quaternion ¢*v0q. Physically, this means that the
camera speed in the local frame is also observable. It is
possible to easily derive another independent solution. It is
q*q since it is directly observed (see equation (3); it can be in
any case verified that it satisfies (4)). The last two solutions
are:

r

= 7; = — YzYx 5

Also for these two solutions it is possible to find a physical
meaning. They are related to the two angles: roll and pitch
[11]. In particular, the first solution provides the roll angle
which is R = arctan(2Q,.). The latter provides the pitch
angle which is P = arcsin(2Q),).

The results obtained with this observability analysis are
fundamental. We know that by only considering a single
point feature and by collecting the data simultaneously from
the camera and the IMU during a given time interval we
have all the necessary information to perform the estimation
of the camera speed and the position of the feature in the
local frame, and the roll and the pitch angles describing
the orientation of the camera. Furthermore, this observability
analysis tells us that the system does not contain any infor-
mation related to the yaw angle. Finally, in [14] and [15] this
observability analysis has been extended in order to detect
special trajectories for which the previous estimation cannot
be performed. On the other hand, the previous analysis does
not provide a method to perform the estimation. This will be
discussed in the following.

IV. THE CLOSED-FORM SOLUTION FOR VEHICLE SPEED
AND ATTITUDE DETERMINATION

We provide a closed form solution which directly ex-
presses the observable modes in terms of the sensor mea-
surements collected during a short time interval. We only
consider the case of one feature. The extension to multiple
features and to deal with the case of biased inertial mea-
surements is straightforward and is available in [14] and
[15]. According to the observability analysis in section III
we know that the sensor data collected during a given time
interval contain the information to estimate the vehicle speed
and the position of the feature in the local frame. Hence, we
start by expressing the dynamics and the observation in this
frame. We have:

F=MF-V
V=MV +A+A, (6)
q=mq

where F' is the position of the feature in the local frame,
V is the vehicle speed in the same frame, A, is the gravity
acceleration in the local frame, i.e. Ag = q*a4q, and q is
the four vector whose components are the components of the
quaternion ¢, i.e. ¢ = [, qu, qy, ¢.)". Finally:

0 -9, -9 -Q
1l 0 9 -9
=919, 0. 0 Q
Q. Q -9 0

0o Q. -0,

M=| —-Q, 0 Q.

Q, -2 0

The validity of (6) can be checked by using F = —q*#q,
V = ¢*0q and by computing their time derivatives with (1).
In the local frame, the observation in (2) is:

i )
We remark that, because of the gravity, the first two equations
in (6) cannot be separated from the equations describing the
dynamics of the quaternion. Let us consider a given time
interval, [Ty, Tp+ T. Our goal is to estimate the observable
modes at T;y (i.e. Fy, Vo, Ro, FPy), by only using the data
from the camera and the IM U during the interval [Ty, Tp+
T]. We numerically integrate the equations in (6) by leaving
symbolic the unknown components of the initial state. On
the other hand, the components of g(7j) are not observable
since the yaw angle is not observable. We have the following
fundamental property:

F, F,]"
hcam = [yla yQ]T = |: y:|

Property 1 The position of the feature at any time, F(t),
linearly depends on the initial feature position, Fy, on the
initial vehicle speed, Vy, and on the three quantities: xo =

29(q10qy0 — 4209=0), X8 = —29(¢10420 + @yogz0) and X =
29(q20 + 420) — g In other words:

F(t) = CF(t)F() + Cv(t)‘/g + Cx(t)Xg +Cp (t) (8)

where Xg = [Xa, X8, X7 and Cr(t), Cy(t), Cy(t) are
3 X 3 matrices and Cg(t) is a 3D—vector. In addition,
Cr(t), Cv(t) and Cy(t) only depend on Q(7), T € [Tp, t].

Proof: Before integrating the second equation in (6) we
consider the term Ag, which depends on the quaternion.
In particular, we separate in this term the time-dependent
part from the part which is time-independent. Specifically,
we introduce the quaternion p(t) such that ¢(t) = qop(¢).
Ay(t) = q(t)*agq(t) = p(t)*qiagqop(t). Let us denote with
Xg the 3D vector associated with the quaternion gdgqo,
ie. Xg = qpagqo. Note that xg is the gravity vector in
the local frame at the time 7y. By a direct computation we
obtain: Xg = [Xa» X5, X~)7 and Ag(t) = I'(t)xg, where
I'(t) is the rotation matrix transforming vectors from the
local frame at time 7Tj into local frame at the time ¢. This
matrix can be computed by computing the quaternion p(t),



which is obtained by integrating the equation p = %pQ with
p(0) = 1. T'(¢) is independent of the initial state. We integrate
the second equation in (6), obtaining:

V; = (I3 + M;dt;)V;_1 + Bjdt; 9)

where Bj = Aj + Ag j= Aj =+ Fng~
The previous expression for V; provides the following
expression in terms of the initial conditions:

Vi =5; Vo+(

J
—To)xg + E;lAkdtk] (10)
k=1

with =; = Hizl(Ig + Mydty), which coincides with T';
since it is the rotation matrix transforming vectors from the
local frame at time 7Ty into local frame at the time ;. The
expression of F} in terms of the initial conditions:

J
F; =g (Fo - ZE,;lvkdtk> =Z, [Fo+ (1)

k=1

—(tj — To)Vo — &= To) Z Z B Ak,dtkdtk,]

k=1k'=1

—_

Hence, we have the expression in (8) with: CF( ) ==,
Cv (1) = (Ty = )55, Culty) = 5,450, Cp(ty) =
\_4] Zk 1 k/ 1»—4k/ Ak'dtkdtk/ .
We consider the components of
Fy(t;  Fo, Vo,xg) Fy(t; Fo,
F.(t; Fo, Vo, Xg)- By using (7) we obtain:

F(t), ie.
Vo,Xxg) and

F.(t; Fo, Vo, xg) = w1(t) F.(t; Fo, Vo, Xg)
Fy(ta F07 V07 Xg) = y2(t) Fz(t7 F07 V07 Xg)

i.e., each camera observation occurred at the time ¢ €
[To, To + T provides two equations in the nine unknowns
(which are the components of Fp, Vg and xg4). On the basis
of property 1, the components of F'(t) are linear on the
unknowns. Hence, the equations in (12) are linear and, by
having at least n,,s = 5 camera observations, we can easily
obtain the initial state [Fp, Vo, Xg|7. In particular, when
Nops > 9, the components of Fp, Vp and x4 are obtained
by computing the pseudoinverse of a (2n,ps X 9) matrix.

(12)

A. Exploiting Additional Information

On the basis of the observability analysis performed in
section III, we know that, regarding the robot orientation,
only the roll and pitch angles are observable modes. Hence,
it must be possible to express the components of the vector
Xg only in terms of these two angles. In appendix I we
provide these expressions. These expressions contain addi-
tional information to estimate [Fo, Vo, Xg]”. Indeed, the
components of x4 are three but they only depend on two
quantities. An important consequence due to this additional
information is that it is possible to estimate [Fo, Vo, Xg|

even when the camera only performs n,,; = 4 observations.
On the other hand, when more than four observations are
available (ny,s > 5), the expressions in (20) can be adopted
to improve the precision. We discuss the case of n,,s = 4
observations and we provide a procedure to perform the
estimation. When n.ps = 4, the equations in (12) are eight.
Hence, it is not possible to determine the components of
Fy, Vi and x4 by a simple matrix inversion. On the other
hand, the equations in (12) allow us to express eight among
the nine unknowns in terms of one of them. Let us suppose
to express the components of Fy and Vp, and the first two
components of xg in terms of x.,. We have:

w=cx,+d (13)

where w = [Fy0, Fyo, Fz0,Veo0, Vyo, Vzo,Xa» Xs)T and
c and d are two vectors whose components are obtained by
using the eight linear equations provided by (12) where the
expression of F'(t; Fo, Vb, Xg) is provided in the proof of
property 1. ¢ and d only depend on the vehicle angular speed
and linear acceleration during the interval [Ty, To+ 7). We
start by considering the last two equations in (13). They are:
Xa = C7X~ +d7 and xg = cg)x + dg, where c7, cg are the
7t and 8" component of ¢ and d7, dg are the 7*" and 8"
component of d. We know that the norm of the vector x4
is g. Hence, by using the previous two equations we have:

Xg|? = (crxy +dr)? + (csxy +ds)? +X2 =g°  (14)

which is a second degree equation in Y.,. Therefore, by
solving this equation and by using (13), we immediately
obtain two solutions for w, and so for Fy, Vp and x4. Fig. 3
displays the steps of the procedure previously described. In
this case of n,ps = 4 and one single feature the determination
of the observable modes is not obtained by a simple matrix
inversion or by the computation of a pseudoinverse matrix, as
it happens in the other cases (see [14] and [15] where several
conditions for the observability are derived, depending on the
number of camera poses and features).

IMU data during the

interval [T, T,+7] ) e Obtain all
ain ¢
: Cbtain the
4 camera observations at azngi z ) » by using 9 observable
1Ty b, ot LT ATRE, |29 BY @ modes by
using (25) e

Fig. 3. The steps performed to estimate the observable modes when n,ps =
4 and in the case of one single feature.

In the case we have n.,s > 5, the values of Fp, Vg and
Xg are obtained by using the 2n,,,(> 10) equations in (12)
(it suffices to compute the pseudoinverse of a (2n,ps X 9)
matrix). Then, the equations in (20) are used to obtain the
roll and pitch angles. We have:

P = arcsin (X(’> , R = —arcsin ( Xp
g

——— | (15



The previous expressions only depend on ), and xg. In
other words, by using them to estimate the roll and pitch
angles, the information contained in . is not exploited. A
possible way to exploit this information is to minimize the
cost function:

c(R, P) = (gsin P — xa)’+ (16)

+(—gsinRcos P — X,B)2 + (—gcos Rcos P — Xv)z
where the initial values are set by using (15).

V. LocAL DECOMPOSITION

In this section we want to separate the observable modes
from the rest of the system. In control theory this is
what it is called a local decomposition of the system [9].
Mathematically, we want to do the following operation.
Once the observable modes are stuck in a common vector
S = [F, V,Q,, Q)7 we want to express its dynamics
(.e. S) and the observation function (i.e. the function h.qy,
defined in (2)) only in terms of the components of S.
This decomposition will allow us to implement an Extended
Kalman Filter in order to perform the estimation of the
observable modes.

The equations in (6) do not represent a local decompo-
sition. First of all they do not contain the dynamics of the
roll and pitch angles. Instead, they contain the dynamics of
the quaternion, which is not observable. Additionally, also
the second equation depends on the quaternion through the
term Ag. Instead of considering the two quantities defined
in (5), we found easier to characterize the observable part
of the vehicle orientation by the following two independent
observable modes:

a+a

1 2 —
9z + qyq=

=— (I7)
qtqy — 4z9q>

which are both solutions of (4). The dynamics of these modes
are:

N 2 T2 (18)
T 2 mo my
(22 )y M2 g T
T ( ? f+ >+ Ymy my

In order to complete the system decomposition we have
to express the quaternion g, which appears in the second
equation of (6) through the term Ag, only in terms of m;
and mo.

The expression of the quaternion in terms of the roll, pitch
and yaw angles is given in I. We remind that A is the gravity
in the local frame. On the other hand, rotating the gravity
around the vertical axis does not affect the expression of Ag.
For this reason, we set the yaw angle equal to zero. Finally,
we express the angles R and P in terms of my and ms:

2mims )

2 2 2,2
my +ms — mym;

R = atan (

19
i mE + mimd {19

2
P =asin < 2mamy )

The first two equations in (6) together with (18) and the
expression of the quaternion in appendix I with ¥ = 0
provide the dynamics of the observable modes. Regarding
the observation function given in (2), its expression in terms
of F'is given in (7). By discretizing the previous equations
describing the dynamics of the observable modes and by
computing the Jacobians (also of the observation in (7)) it
is possible to implement the standard EKF equations to

estimate the observable state: [F, V', my, ma]T.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the strategy based on the
form closed solution discussed in section IV. We show some
results obtained by using both synthetic and real data. For
more results the reader is addressed to [14] and [15]. Finally,
we also compare the results achievable by estimating the non
observable state [r, v, q}T and by estimating the observable
modes (i.e. the state [F, V', my, my]T) by using an EKF.

A. Simulated Trajectories

We simulate an aerial vehicle moving along 3D trajecto-
ries. Each trajectory is generated by generating randomly the
linear and angular acceleration at 100 Hz. In particular, at
each time step, the three components of the linear and the
angular acceleration are generated as zero-mean Gaussian
independent variables 2with variance respectively equal to
(1 %)2 and (1 ds@zg? . We adopt many different values
for the initial vehicle speed and position. Starting from
the accomplished trajectory, the true angular speed and
the linear acceleration are computed at each time step of
0.01s (respectively, at the time step ¢, we denote them with
Qirue and AL"*€). Starting from them, the IMU sensors are
simulated by generating randomly the angular speed and the
linear acceleration at each step according to the following:
Q, =N (Qf’"”e,ailg) and A; = N (Af”“e,aglgg) where
N(p, P) denotes the normal distribution with mean value
p and covariance matrix P, I3 the identity 3 X 3 matrix
and o, and o, are respectively set equal to 1 deg s~' and
0.1 m s~ 2.

Regarding the camera, the provided readings are generated
randomly in the following way. By knowing the true trajec-
tory, the true bearing angles of the feature (at the origin) in
the camera frame are computed. They are computed each
0.2s. Then, the camera readings are generated by adding to
the true values zero-mean Gaussian errors whose variance is
equal to (1 deg)? for all the readings.

B. Performance of the Closed-Form Solution

1) Simulation Results: For all the simulations we adopt
the closed-form solution introduced in section IV to esti-

mate the distance of the feature (d = /72 +7r2+712 =
\/F2+ F2+ F?), the speed of the camera (s =

\/v% +vZ + 02 = \/Vf + V2 +V2) and the roll and the




pitch angles (R = arctan(2Q),) and P = arcsin(2Q))).
Specifically, in all the simulations the values of the estimated
d, s, R, P are compared with the ground truth values.
The results are obtained by running 100 simulations and
the errors provided are averaged on them. Regarding d
and s the precision is expressed in terms of the relative
error in % (for instance, if the true value of d is d' it
is computed the difference Ad = |d* — d| and then it is
provided 100%). Regarding the roll and pitch angles it is
provided the absolute error in deg. We obtain the following
values: % =3.2% % =28% AR = 0.18 deg
AP = 0.22 deg. More results are available in [14] and
[15] where the case of biased inertial measurements and the
case of multiple features with different camera poses are
considered. In particular, significant improvement is found
by considering two features.

2) Performance Evaluation with Real Data: We adopted
the data set provided in [17]. This is an excellent test bed
since it also provides a thorough ground truth. The only
drawback for our purposes is that our strategy works also
in 3D while this data set regards experiments carried out in
2D.
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Fig. 4. A piece of the 2D robot trajectory as recovered by the ground
truth data file in the session Bicocca-2009-02-26a of [17]. The four groups
of stars represent the points where the same point feature has been extracted.

We adopted the data provided in the session Bicocca-2009-
02-26a. The robot trajectory in the ground truth data file is
provided at around 50 H z. This allowed us to get a reliable
ground truth for the vehicle speed. The data provided by the
IMU are also available. These data are delivered at around
130 Hz. Finally, by using the provided vision data files,
we were able to extract several point features. In fig 4 we
display a piece of the robot trajectory (as provided by the
ground truth data file). In particular, all the points in blue
represent the robot positions. In the figure four groups of
points are also displayed by using red stars. Each group of
star marks represent the true robot positions where the same
point feature has been extracted from the vision data file.
Unfortunately, through the provided ground truth data set,
we do not have the actual position of our extracted four point
features. For this reason, we cannot evaluate the performance
of our strategy in evaluating the distance of these features. On

the other hand, by having the true robot speed as previously
mentioned, we evaluate the accuracy of the proposed strategy
in estimating the robot speed. For the four groups of points
we obtained by using the proposed approach the following
four initial speeds (in ms~'): 0.49, 0.65, 0.57, 0.63, while
the true values are: 0.466, 0.638, 0.585, 0.661. An additional
real experiment is available in [14] and [15].

C. Comparison of the performances of the two EKFs
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Fig. 5. Results from the EK F' which estimates the entire non-observable
state. The 3D trajectory is displayed. The blue dots indicate the ground
truth while the green circles the estimated trajectory.
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Fig. 6. The true distances from the origin (blue dots), the value of
the distances obtained from the values of x, y and z shown in figure 5
(green circles) and the distances estimated by implementing an £ K F' which
directly estimates the observable modes (black crosses).

We also perform the estimation by using two dis-
tinct EKF's. The former estimates the non-observable
state [r, v, q]T. The latter estimates the observable state
[F, V, mi, ms|’. Figures 5 and 6 show the typical
results we obtained from them. In fig 5 the 3D trajectory is
displayed. The blue dots indicate the ground truth while the
green circles the trajectory estimated by the first EKF. As
expected, the estimation is affected by a drift. Fig 6 displays
the distance of the vehicle from the origin vs time. Blue dots
indicate the true values, green circles the values obtained
from the values of z, y and z shown in figure 5 and black
crosses indicate the distances estimated by implementing the
second EKF.

We performed many simulations obtaining similar results.
We conclude with the following remarks:

1) The estimation of the non-observable
([ry v, q]7) is affected by a drift;

state



2) The observable modes obtained from the estimates
of the previous non-observable state seem to be not
affected by a drift;

3) The observable modes directly estimated by an EKF
are not drift-affected;

4) Directly estimating the observable modes is much
more convenient than obtaining them from the non-
observable state in terms of precision.

VII. CONCLUSIONS

In this paper we considered the problem of data fusion
when the adopted sensors are a monocular camera and
inertial sensors (i.e. one tri-axial accelerometer and one tri-
axial gyrometer). An observability analysis which accounts
the system non linearities allowed us to analytically detect
all the observable modes, i.e. all the physical quantities that
the information contained in the sensor data allows us to
estimate. They are the position of the features in the camera
frame, the vehicle speed in the same local frame and the
absolute roll and pitch angles. The main contribution of the
paper is a new algorithm to simultaneously estimate all the
previous physical quantities. In particular, the algorithm is
based on a closed-form solution which analytically expresses
the vehicle speed and attitude in terms of the sensor mea-
surements. The algorithm only needs to observe four times
a single point feature. Compared to the state-of-the-art the
advantages are:

1) It only requires a single point feature to work;

2) The estimation does not require any initialization;

3) The estimation can be performed at any moment by
only collecting four consecutive observations;

4) It allows eliminating the drift on the scale factor and on
the roll and pitch angles independently of the vehicle
trajectory;

5) It can be easily extended in order to deal with multiple
features and biased inertial measurements ([14], [15]).

Regarding the extension to deal with biased inertial mea-
surements and multiple features, we show in [14] and [15]
that three camera poses and two features allow determining
the vehicle speed and attitude together with the scale factor.
In order to also determine the bias affecting the inertial
measurements, one additional camera pose is required. Note
that the algorithm is in general linear, i.e. the determination
of the previous quantities only requires a matrix inversion
(or the computation of a pseudoinverse). Only in few cases
it is necessary to also solve a quadratic polynomial equation
(e.g. in the case of one feature and four camera poses (see
also [15] where several conditions for the observability are
derived, depending on the number of camera poses and
features)).

APPENDIX I
ANALYTICAL EXPRESSION OF X4, X3 AND X~ IN TERMS
OF THE ROLL AND PITCH ANGLES

Let us consider the unit quaternion: g; + ¢.% + qyJ + ¢.k.
By denoting with R, P and Y respectively the roll, pitch
and yaw angles, we have [11]:

B Py vinBanPanY
q¢ = COS 9 COS 9 COs 5 sSin D) S 9 S 9
e P .Y
qy = SIn 5 (¢0)] B) COS B) COSs B) sin B Sin B
B . L Y
qy = COS 5 Sin 5 [¢0)] 5 Sin B) COS B S B)
R P Y _R_P Y
qz—c05200525m2 bln2bln2C052

We use the previous expressions to obtain x. = 2¢(q:qy —

42q2)s X = —29(q1qx + qyq-) and x, = 2g(¢3 +¢2) — g in
terms of the roll, pitch and yaw angles. They only depend on
the roll and pitch angles. By a direct substitution we obtain:

Xoa = gsin P, xg = —gsin Rcos P, xy = —gcos Rcos P
(20)
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