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Closed-Form Solution for Attitude and Speed Determination by
Fusing Monocular Vision and Inertial Sensor Measurements

Agostino Martinelli

Abstract—This paper considers the problem of data fusion
when the adopted sensors are a monocular camera and inertial
sensors (i.e. one tri-axial accelerometer and one tri-axial gyrom-
eter). The investigation starts by performing an observability
analysis to analytically derive all the observable modes, i.e. all the
physical quantities that the information contained in the sensor
data allows us to estimate. They are the position of the features
in the camera frame, the vehicle speed in the same local frame
and the absolute roll and pitch angles. The main contribution
of the paper is a new algorithm to simultaneously estimate all
the previous physical quantities. In particular, the algorithm is
based on a closed-form solution which analytically expresses the
vehicle speed and attitude in terms of the sensor measurements.
In this algorithm the camera only needs to observe four times a
single point feature in the environment. This allows performing
the overall estimation in a very short time interval and without
the need of any initialization or a priori knowledge. This is a key
advantage since allows eliminating the drift on the scale factor
and on the vehicle orientation. In addition, the algorithm can be
easily extended in order to deal with biased inertial measurements
and to deal with multiple features, in which case only three
distinct camera poses are required (instead of four). Specifically,
with three camera poses and two features, the vehicle speed and
attitude together with the scale factor can be determined. The
performance of the proposed approach is evaluated via Monte
Carlo simulations and by using real data.

Index Terms—Sensor Fusion, Inertial Sensors, Vision, Non
linear Observability, Aerial Robotics

I. INTRODUCTION

In recent years, vision and inertial sensing have received
great attention by the mobile robotics community. These
sensors require no external infrastructure and this is a key ad-
vantage for robots operating in unknown environments where
GPS signals are shadowed. In addition, these sensors have
very interesting complementarities and together provide rich
information to build a system capable of vision-aided inertial
navigation and mapping and a great effort has been done very
recently in this direction (e.g. [16], [3], [1]). A special issue
of the International Journal of Robotics Research has recently
been devoted to the integration of vision and inertial sensors
[6]. In [5], a tutorial introduction to the vision and inertial
sensing is presented. This work provides a biological point
of view and it illustrates how vision and inertial sensors have
useful complementarities allowing them to cover the respective
limitations and deficiencies. The majority of the approaches
so far introduced, perform the fusion of vision and inertial
sensors by filter-based algorithms. In [2], these sensors are
used to perform egomotion estimation. The sensor fusion is
obtained with an Extended Kalman Filter (EKF ) and with
an Unscented Kalman Filter (UKF ). The approach proposed
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in [8] extends the previous one by also estimating the structure
of the environment where the motion occurs. In particular, new
landmarks are inserted on line into the estimated map. This
approach has been validated by conducting experiments in a
known environment where a ground truth was available. Also,
in [18] an EKF has been adopted. In this case, the proposed
algorithm estimates a state containing the robot speed, position
and attitude, together with the inertial sensor biases and the
location of the features of interest. In the framework of
airbone SLAM, an EKF has been adopted in [10] to perform
3D−SLAM by fusing inertial and vision measurements. It was
remarked that any inconsistent attitude update severely affects
any SLAM solution. The authors proposed to separate attitude
update from position and velocity update. Alternatively, they
proposed to use additional velocity observations, such as air
velocity observation. Regarding the robot attitude, in [4] it has
been noted that roll and pitch angles remain more consistent
than the heading.

A fundamental issue to address when fusing vision and
inertial measurements, is to understand which are the observ-
able modes, i.e. the physical quantities that the information
contained in the sensor data allows us to estimate. The next
issue to address is to find a reliable and efficient method
to estimate all the previous physical quantities. It is very
reasonable to expect that the scale factor is an observable
mode and can be obtained by a closed-form solution. Let
us consider the trivial case where a robot, equipped with a
bearing sensor (e.g. a camera) and an accelerometer, moves
on a line (see fig 1). If the initial speed in A is known, by
integrating the data from the accelerometer, it is possible to
determine the robot speed during the subsequent time steps
and then the distances A − B and B − C by integrating the
speed. The lengths A−F and B−F are obtained by a simple
triangulation by using the two angles βA and βB from the
bearing sensor. Let us now assume that the initial speed vA
is unknown. In this case, all the previous segment lengths
can be obtained in terms of vA. In other words, we obtain
the analytical expression of A − F and B − F in terms of
the unknown vA and all the sensor measurements performed
while the robot navigates from A to B. By repeating the same
computation with the bearing measurements in A and C, we
have a further analytical expression for the segment A − F ,
in terms of the unknown vA and the sensor measurements
performed while the robot navigates from A to C. The two
expressions for A − F provide an equation in the unknown
vA. By solving this equation we finally obtain all the lengths
in terms of the measurements performed by the accelerometer
and the bearing sensor.

The previous example is very simple because of several
unrealistic restrictions. First of all, the motion is constrained
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Fig. 1. A robot equipped with an accelerometer and a camera moves on a
line. The camera performs three observations of the feature in F , repsectively
from the points A, B and C.

on a line. Additionally, the accelerometer provides gravity-free
and unbiased measurements. In this paper we will relax these
restrictions1 by considering the case of a robot equipped with
IMU and bearing sensors. We want to know which are the
observable modes, namely the physical quantities that we can
estimate without any a priori knowledge (i.e. by only collecting
the data from the previous sensors during a short time interval).
For instance, are the scale factor, the robot speed and the robot
orientation observable modes? If yes, is it possible to perform
their estimation by a closed-form solution? Does the derived
solution work independently of the vehicle trajectory?

An answer to the first question can be found by applying
the method introduced in [13], where a non standard ob-
servability analysis, based on the new concept of continuous
symmetry, has been introduced. The advantages of this non
standard observability analysis is that, in contrast to previous
approaches, it is able not only to check whether a given state
is observable or not, but, in the negative case, it is also able
to detect the quantities which are observable. In particular, by
analyzing the continuous symmetries of a given system, it is
possible to obtain a system of partial differential equations.
The observable modes are all the independent solutions of
this system of partial differential equations. In addition, this
analysis can also be used to find necessary conditions on the
vehicle trajectory in order to guarantee the observability of the
observable modes.

In this paper we consider a MAV equipped with a single
camera and IMU sensors (one tri-axial accelerometer and
one tri-axial gyrometer). We perform an observability analysis
(based on the approach introduced in [13]) in order to under-
stand which are the physical quantities that the information
contained in these data allows us to estimate. In particular,
this analysis allows us to analytically derive all the observable
modes. Specifically, they are the position of the observed
feature and the vehicle speed and attitude. Then, we derive a
closed-form solution which analytically expresses the previous
physical quantities in terms of the sensor measurements. This
allows us to introduce a very simple and efficient algorithm
to perform the estimation. This algorithm only requires to
observe four times a single point feature. In this case of
one single feature, the algorithm estimates eight independent
quantities. They are: the three components of the speed in the
camera frame, the three components of the 3D position of
the observed feature in the same camera frame and the roll
and pitch angles. In [14] and [15] we also derive necessary
conditions on the vehicle trajectory in order to guarantee the

1The case of biased measurements is actually dealt in [14] and [15].

observability of the vehicle speed and attitude.
Compared to the state-of-the-art the advantages of the

proposed algorithm are:
1) It only requires a single point feature to work;
2) The estimation does not require any initialization;
3) The estimation can be performed at any moment by only

collecting four consecutive observations;
4) It allows eliminating the drift on the scale factor and on

the roll and pitch angles independently of the vehicle
trajectory;

5) It can be easily extended in order to deal with the case of
multiple features and biased inertial measurements ([14]
and [15]).

Regarding the fourth advantage, we remark that other
methods which try to bound the error by using a Bundle
Adjustment approach (e.g. [7]), cannot fully eliminate the drift
on the previous mentioned quantities. In particular, when the
vehicle moves in large environments without closing any loop
(i.e. without revisiting regions previously explored) the drift
becomes a serious inconvenient.

A further contribution of this paper is a local decomposition
of the system which separates the observable modes from
the rest of the system. This allows us to implement a filter
based approach to directly estimate the observable modes. In
particular, we will use this decomposition to implement an
Extended Kalman Filter (EKF ).

The paper is organized as follows. Section II provides a
mathematical description of the system. Starting from this
description, in section III an observability analysis which ac-
counts the system non linearities is provided. Then, in section
IV we derive the closed-form solution and the algorithm to
estimate the vehicle speed and attitude. In section VI we
evaluate the performance of the proposed algorithm based
on the closed-form solution by using synthetic and real data.
Additionally, we compare two EKF s estimating respectively
the entire vehicle state and the state which only contains the
observable modes. Finally, conclusions are provided in section
VII.

II. THE CONSIDERED SYSTEM

Let us consider an aerial vehicle equipped with a monoc-
ular camera and IMU sensors. The IMU consists of three
orthogonal accelerometers and three orthogonal gyrometers.
We assume that the transformations among the camera frame
and the IMU frames are known (we can assume that the
vehicle frame coincides with the camera frame). The IMU
provides the vehicle angular speed and acceleration. Actually,
regarding the acceleration, the one perceived by the accelerom-
eter (A) is not simply the vehicle acceleration (Av). It also
contains the gravity acceleration (Ag). In particular, we have
A = Av −Ag since, when the camera does not accelerate
(i.e. Av is zero) the accelerometer perceives an acceleration
which is the same of an object accelerated upward in the
absence of gravity.

We will use uppercase letters when the vectors are expressed
in the local frame and lowercase letters when they are ex-
pressed in the global frame. Hence, regarding the gravity we
have: ag = [0, 0, − g]T , being g ' 9.8 ms−2.
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We assume that the camera is observing a point feature
during a given time interval. We fix a global frame attached
to this feature. The vehicle and the feature are displayed in fig
2.

Fig. 2. The feature position (F ), the vehicle acceleration (Av) the vehicle
angular speed (Ω) and the gravity acceleration (Ag).

Finally, we will adopt a quaternion to represent the vehicle
orientation. Indeed, even if this representation is redundant,
it is very powerful since the dynamics can be expressed in a
very easy and compact notation [11].

Our system is characterized by the state [r, v, q]T where
r = [rx, ry, rz]

T is the 3D vehicle position, v is its time
derivative, i.e. the vehicle speed in the global frame (v ≡
dr
dt ), q = qt + iqx + jqy + kqz is a unitary quaternion (i.e.
satisfying q2

t +q2
x+q2

y +q2
z = 1) and characterizes the vehicle

orientation. The analytical expression of the dynamics and the
camera observations can be easily provided by expressing all
the 3D vectors as imaginary quaternions. In practice, given
a 3D vector w = [wx, wy, wz]

T we associate with it the
imaginary quaternion ŵ ≡ 0+iwx+jwy+kwz . The dynamics
of the state [r̂, v̂, q]T are:

˙̂r = v̂

˙̂v = qÂvq
∗ = qÂq∗ + âg

q̇ =
1

2
qΩ̂

(1)

being q∗ the conjugate of q, q∗ = qt − iqx − jqy − kqz . We
now want to express the camera observations in terms of the
same state ([r̂, v̂, q]T ). We remark that the camera provides
the direction of the feature in the local frame. In other words,
it provides the unit vector F

|F | (see fig. 2). Hence, we can

assume that the camera provides the two ratios y1 = Fx

Fz
and

y2 =
Fy

Fz
, being F = [Fx, Fy, Fz]

T . We need to express
F in terms of [r̂, v̂, q]T . We note that the position of the
feature in the frame with the same orientation of the global
frame but shifted in such a way that its origin coincides with
the one of the local frame is −r. Therefore, F is obtained by
the quaternion product F̂ = −q∗r̂q. The observation function
provided by the camera is:

hcam(r̂, v̂, q) = [y1, y2]T =

[
(q∗r̂q)x
(q∗r̂q)z

,
(q∗r̂q)y
(q∗r̂q)z

]T
(2)

where the pedices x, y and z indicate respectively the i, j
and k component of the corresponding quaternion. We have

also to consider the constraint q∗q = 1. This can be dealt as
a further observation (system output):

hconst(r̂, v̂, q) = q∗q (3)

III. OBSERVABILITY PROPERTIES

We want to investigate the observability properties of the
system whose dynamics are given in (1) and whose obser-
vations are given in (2) and (3). The goal of this analysis
is to understand how the information contained in the sensor
data (from the IMU and the camera) is related to the state
[r̂, v̂, q]T , which defines our system. In particular, the
question we wish to answer by performing this observability
analysis is the following. By collecting the data provided
by the IMU sensors and by the camera during a given
time interval, which are the observable modes that can we
estimate? An answer to this question for a general system
can be found in [13] where it is shown that these observable
modes are all the independent solutions of a system of partial
differential equations defined on the space of all the states
(in our case this space is a manifold belonging to <10). In
particular, in [13] it is derived a method able to determine
these partial differential equations starting from the equations
characterizing the system. When this method is used to find
the observable modes for the system characterized by the
equations (1), (2) and (3) the mentioned system of partial
differential equations reduces to a single equation, which is:

−2ry
∂Λ

∂rx
+ 2rx

∂Λ

∂ry
− 2vy

∂Λ

∂vx
+ 2vx

∂Λ

∂vy
+ (4)

−qz
∂Λ

∂qt
− qy

∂Λ

∂qx
+ qx

∂Λ

∂qy
+ qt

∂Λ

∂qz
= 0

This is a linear partial differential equation.
The number of independent solutions Λ =
Λ(rx, ry, rz, vx, vy, vz, qt, qx, qy, qz) is equal to
the number of variables (i.e. 10) minus the number of
equations (i.e. 1) [12]. Hence we have 9 independent
solutions.

It is immediate to prove that the distance of the feature
from the camera, i.e. |r| ≡

√
r2
x + r2

y + r2
z , is a solution of

this equation (this can be checked by a simple substitution).
This means that the distance of the feature is observable and
it is one among the 9 independent solutions. On the other
hand, since the camera provides the position of the feature
in the local frame up to a scale factor, having the distance
means that the feature position in the local frame is also
observable. Therefore the three components of the feature
position in the local frame are three independent solutions. By
using quaternions we can say that three independent solutions
are provided by the components of the imaginary quaternion
q∗r̂q. Furthermore, since the partial differential equation in
(4) is invariant under the transformation r ↔ v, three other
independent solutions are the components of the imaginary
quaternion q∗v̂q. Physically, this means that the camera speed
in the local frame is also observable. It is possible to easily
derive another independent solution. It is q∗q since it is directly
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observed (see equation (3); it can be in any case verified that
it satisfies (4)). The last two solutions are:

Qr ≡
qtqx + qyqz

1− 2(q2
x + q2

y)
; Qp ≡ qtqy − qzqx (5)

Also for these two solutions it is possible to find a physical
meaning. They are related to the two angles: roll and pitch
[11]. In particular, the first solution provides the roll angle
which is R = arctan(2Qr). The latter provides the pitch angle
which is P = arcsin(2Qp).

The results obtained with this observability analysis are
fundamental. We know that by only considering a single point
feature and by collecting the data simultaneously from the
camera and the IMU during a given time interval we have
all the necessary information to perform the estimation of the
camera speed and the position of the feature in the local frame,
and the roll and the pitch angles describing the orientation of
the camera. Furthermore, this observability analysis tells us
that the system does not contain any information related to the
yaw angle. Finally, in [14] and [15] this observability analysis
has been extended in order to detect special trajectories for
which the previous estimation cannot be performed. On the
other hand, the previous analysis does not provide a method to
perform the estimation. This will be discussed in the following.

IV. THE CLOSED-FORM SOLUTION FOR VEHICLE SPEED
AND ATTITUDE DETERMINATION

We provide a closed form solution which directly expresses
the observable modes in terms of the sensor measurements
collected during a short time interval. We only consider the
case of one feature. The extension to multiple features and
to deal with the case of biased inertial measurements is
straightforward and is available in [14] and [15]. According
to the observability analysis in section III we know that the
sensor data collected during a given time interval contain the
information to estimate the vehicle speed and the position of
the feature in the local frame. Hence, we start by expressing
the dynamics and the observation in this frame. We have: Ḟ = MF − V

V̇ = MV +A+Ag

q̇ = mq

(6)

where F is the position of the feature in the local frame, V
is the vehicle speed in the same frame, Ag is the gravity
acceleration in the local frame, i.e. Âg = q∗âgq, and q is
the four vector whose components are the components of the
quaternion q, i.e. q = [qt, qx, qy, qz]

T . Finally:

m ≡ 1

2


0 −Ωx −Ωy −Ωz

Ωx 0 Ωz −Ωy
Ωy −Ωz 0 Ωx
Ωz Ωy −Ωx 0



M ≡

 0 Ωz −Ωy
−Ωz 0 Ωx
Ωy −Ωx 0



The validity of (6) can be checked by using F̂ = −q∗r̂q,
V̂ = q∗v̂q and by computing their time derivatives with (1).
In the local frame, the observation in (2) is:

hcam = [y1, y2]T =

[
Fx
Fz
,
Fy
Fz

]T
(7)

We remark that, because of the gravity, the first two equations
in (6) cannot be separated from the equations describing the
dynamics of the quaternion. Let us consider a given time
interval, [T0, T0 + T ]. Our goal is to estimate the observable
modes at T0 (i.e. F0, V0, R0, P0), by only using the data
from the camera and the IMU during the interval [T0, T0+T ].
We numerically integrate the equations in (6) by leaving
symbolic the unknown components of the initial state. On
the other hand, the components of q(T0) are not observable
since the yaw angle is not observable. We have the following
fundamental property:

Property 1 The position of the feature at any time, F (t),
linearly depends on the initial feature position, F0, on the
initial vehicle speed, V0, and on the three quantities: χα ≡
2g(qt0qy0 − qx0qz0), χβ ≡ −2g(qt0qx0 + qy0qz0) and χγ ≡
2g(q2

x0 + q2
y0)− g. In other words:

F (t) = CF (t)F0 + CV (t)V0 + Cχ(t)χg +CB(t) (8)

where χg ≡ [χα, χβ , χγ ]T and CF (t), CV (t), Cχ(t) are
3×3 matrices and CB(t) is a 3D−vector. In addition, CF (t),
CV (t) and Cχ(t) only depend on Ω(τ), τ ∈ [T0, t].

Proof: Before integrating the second equation in (6) we
consider the term Ag , which depends on the quaternion.
In particular, we separate in this term the time-dependent
part from the part which is time-independent. Specifically,
we introduce the quaternion p(t) such that q(t) = q0p(t).
Âg(t) = q(t)∗âgq(t) = p(t)∗q∗0 âgq0p(t). Let us denote with
χg the 3D vector associated with the quaternion q∗0 âgq0, i.e.
χ̂g ≡ q∗0 âgq0. Note that χg is the gravity vector in the local
frame at the time T0. By a direct computation we obtain:
χg = [χα, χβ , χγ ]T and:

Ag(t) = Γ(t)χg, Γ(t) ≡ p2
t + p2

x − p2
y − p2

z 2ptpz + 2pxpy −2ptpy + 2pzpx
−2ptpz + 2pxpy p2

t + p2
y − p2

x − p2
z 2ptpx + 2pzpy

2ptpy + 2pxpz −2ptpx + 2pypz p2
t + p2

z − p2
x − p2

y


Note that Γ(t) only depends on p(t). p(t) is obtained by
integrating the equation ṗ = 1

2pΩ̂, with p(0) = 1. Hence, p(t)
only depends on the values of the angular speed for t > T0.
As a result, the matrix Γ(t) only depends on these values. In
particular, Γ(t) is independent of the initial state. The matrix
Γ(t) is the rotation matrix transforming vectors from the local
frame at time T0 into local frame at the time t. We integrate
the second equation in (6), obtaining:

Vj = (I3 +Mjdtj)Vj−1 +Bjdtj (9)

where Bj = Aj +Ag j = Aj + Γjχg .
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The previous expression for Vj provides the following
expression in terms of the initial conditions:

Vj = Ξj

[
V0 + (tj − T0)χg +

j∑
k=1

Ξ−1
k Akdtk

]
(10)

with Ξj ≡
∏j
k=1(I3 +Mkdtk), which coincides with Γj since

it is the rotation matrix transforming vectors from the local
frame at time T0 into local frame at the time tj . The expression
of Fj in terms of the initial conditions:

Fj = Ξj

(
F0 −

j∑
k=1

Ξ−1
k Vkdtk

)
= Ξj [F0+ (11)

−(tj − T0)V0 −
(tj − T0)2

2
χg −

j∑
k=1

k∑
k′=1

Ξ−1
k′ Ak′dtkdtk′

]
Hence, we have the expression in (8) with: CF (tj) ≡ Ξj ,
CV (tj) ≡ (T0 − tj)Ξj , Cχ(tj) ≡ −Ξj

(tj−T0)2

2 , CB(tj) ≡
−Ξj

∑j
k=1

∑k
k′=1 Ξ−1

k′ Ak′dtkdtk′ �
We consider the components of F (t), i.e.

Fx(t; F0, V0,χg) Fy(t; F0, V0,χg) and
Fz(t; F0, V0,χg). By using (7) we obtain:

Fx(t; F0, V0, χg) = y1(t) Fz(t; F0, V0, χg) (12)

Fy(t; F0, V0, χg) = y2(t) Fz(t; F0, V0, χg)

i.e., each camera observation occurred at the time t ∈
[T0, T0 + T ] provides two equations in the nine unknowns
(which are the components of F0, V0 and χg). On the basis
of property 1, the components of F (t) are linear on the
unknowns. Hence, the equations in (12) are linear and, by
having at least nobs = 5 camera observations, we can easily
obtain the initial state [F0, V0, χg]T . In particular, when
nobs ≥ 5, the components of F0, V0 and χg are obtained by
computing the pseudoinverse of a (2nobs × 9) matrix.

A. Exploiting Additional Information

On the basis of the observability analysis performed in
section III, we know that, regarding the robot orientation, only
the roll and pitch angles are observable modes. Hence, it must
be possible to express the components of the vector χg only
in terms of these two angles. In appendix A we provide these
expressions. These expressions contain additional information
to estimate [F0, V0, χg]T . Indeed, the components of χg are
three but they only depend on two quantities. An important
consequence due to this additional information is that it is
possible to estimate [F0, V0, χg]T even when the camera
only performs nobs = 4 observations. On the other hand,
when more than four observations are available (nobs ≥ 5), the
expressions in (20) can be adopted to improve the precision.
We discuss the case of nobs = 4 observations and we provide
a procedure to perform the estimation. When nobs = 4,
the equations in (12) are eight. Hence, it is not possible to
determine the components of F0, V0 and χg by a simple

matrix inversion. On the other hand, the equations in (12)
allow us to express eight among the nine unknowns in terms
of one of them. Let us suppose to express the components of
F0 and V0, and the first two components of χg in terms of
χγ . We have:

w = c χγ + d (13)

where w = [Fx0, Fy0, Fz0, Vx0, Vy0, Vz0, χα, χβ ]T and
c and d are two vectors whose components are obtained by
using the eight linear equations provided by (12) where the
expression of F (t; F0, V0, χg) is provided in the proof of
property 1. c and d only depend on the vehicle angular speed
and linear acceleration during the interval [T0, T0 + T ]. We
start by considering the last two equations in (13). They are:

χα = c7χγ + d7; χβ = c8χγ + d8

where c7, c8 are the 7th and 8th component of c and d7, d8

are the 7th and 8th component of d. We know that the norm
of the vector χg is g. Hence, by using the previous two
expressions we have:

|χg|2 = (c7χγ + d7)2 + (c8χγ + d8)2 + χ2
γ = g2 (14)

which is a second degree equation in χγ . Therefore, by solving
this equation and by using (13), we immediately obtain w,
and so F0, V0 and χg . Fig. 3 displays the steps of the
procedure previously described. In this case of nobs = 4
and one single feature the determination of the observable
modes is not obtained by a simple matrix inversion or by the
computation of a pseudoinverse matrix, as it happens in the
other cases (see [14] and [15] where several conditions for the
observability are derived, depending on the number of camera
poses and features).

Fig. 3. The steps performed to estimate the observable modes when nobs = 4
and in the case of one single feature.

In the case we have nobs ≥ 5, the values of F0, V0 and χg

are obtained by using the 2nobs(≥ 10) equations in (12) (it
suffices to compute the pseudoinverse of a (2nobs×9) matrix).
Then, the equations in (20) are used to obtain the roll and pitch
angles. We have:

P = arcsin

(
χα
g

)
, R = − arcsin

(
χβ√
g2 − χ2

α

)
(15)

The previous expressions only depend on χα and χβ . In other
words, by using them to estimate the roll and pitch angles, the
information contained in χγ is not exploited. A possible way
to exploit this information is to minimize the cost function:
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c(R, P ) = (g sinP − χα)
2

+ (16)

+ (−g sinR cosP − χβ)
2

+ (−g cosR cosP − χγ)
2

where the initial values are set by using (15).

V. LOCAL DECOMPOSITION

In this section we want to separate the observable modes
from the rest of the system. In control theory this is what
it is called a local decomposition of the system [9]. Math-
ematically, we want to do the following operation. Once
the observable modes are stuck in a common vector S ≡
[F, V , Qr, Qp]

T we want to express its dynamics (i.e. Ṡ)
and the observation function (i.e. the function hcam defined in
(2)) only in terms of the components of S. This decomposition
will allow us to implement an Extended Kalman Filter in order
to perform the estimation of the observable modes.

The equations in (6) do not represent a local decomposi-
tion. First of all they do not contain the dynamics of the
roll and pitch angles. Instead, they contain the dynamics of
the quaternion, which is not observable. Additionally, also
the second equation depends on the quaternion through the
term Ag . Instead of considering the two quantities defined
in (5), we found easier to characterize the observable part
of the vehicle orientation by the following two independent
observable modes:

m1 =
q2
x + q2

y

qtqy − qxqz
m2 =

q2
x + q2

y

qtqx + qyqz
(17)

which are both solutions of (4). The dynamics of these modes
are:

 ṁ1 = Ωx
m1

m2
+

Ωy
2

(
m2

1 + 1− m2
1

m2
2

)
+ Ωz

m2
1

m2

ṁ2 =
Ωx
2

(
m2

2 −
m2

2

m2
1

+ 1

)
+ Ωy

m2

m1
− Ωz

m2
2

m1

(18)

In order to complete the system decomposition we have to
express the quaternion q, which appears in the second equation
of (6) through the term Ag , only in terms of m1 and m2.

The expression of the quaternion in terms of the roll, pitch
and yaw angles is given in A. We remind thatAg is the gravity
in the local frame. On the other hand, rotating the gravity
around the vertical axis does not affect the expression of Ag .
For this reason, we set the yaw angle equal to zero. Finally,
we express the angles R and P in terms of m1 and m2:

R = atan

(
2m2

1m2

m2
1 +m2

2 −m2
1m

2
2

)
P = asin

(
2m1m

2
2

m2
1 +m2

2 +m2
1m

2
2

)
(19)

The first two equations in (6) together with (18) and the
expression of the quaternion in appendix A with Y = 0
provide the dynamics of the observable modes. Regarding
the observation function given in (2), its expression in terms
of F is given in (7). By discretizing the previous equations

describing the dynamics of the observable modes and by
computing the Jacobians (also of the observation in (7)) it
is possible to implement the standard EKF equations to
estimate the observable state: [F, V , m1, m2]T .

VI. PERFORMANCE EVALUATION

We evaluate the performance of the strategy based on the
form closed solution discussed in section IV. We show some
results obtained by using both synthetic and real data. For
more results the reader is addressed to [14] and [15]. Finally,
we also compare the results achievable by estimating the non
observable state [r, v, q]T and by estimating the observable
modes (i.e. the state [F, V , m1, m2]T ) by using an EKF .

A. Simulated Trajectories

We simulate an aerial vehicle moving along 3D trajectories.
Each trajectory is generated by generating randomly the linear
and angular acceleration at 100 Hz. In particular, at each
time step, the three components of the linear and the angular
acceleration are generated as zero-mean Gaussian independent
variables with variance respectively equal to

(
1 m
s2

)2
and(

1 deg
s2

)2

. We adopt many different values for the initial
vehicle speed and position. Starting from the accomplished
trajectory, the true angular speed and the linear acceleration
are computed at each time step of 0.01s (respectively, at the
time step i, we denote them with Ωtrue

i and Atrue
i ). Starting

from them, the IMU sensors are simulated by generating
randomly the angular speed and the linear acceleration at each
step according to the following: Ωi = N

(
Ωtrue

i , σ2
ωI3
)

and
Ai = N

(
Atrue

i , σ2
aI3
)

where N(µ, P ) denotes the normal
distribution with mean value µ and covariance matrix P , I3
the identity 3 × 3 matrix and σω and σa are respectively set
equal to 1 deg s−1 and 0.1 m s−2.

Regarding the camera, the provided readings are generated
randomly in the following way. By knowing the true trajectory,
the true bearing angles of the feature (at the origin) in the
camera frame are computed. They are computed each 0.2s.
Then, the camera readings are generated by adding to the true
values zero-mean Gaussian errors whose variance is equal to
(1 deg)2 for all the readings.

B. Performance of the Closed-Form Solution

1) Simulation Results: For all the simulations we adopt
the closed-form solution introduced in section IV to esti-
mate the distance of the feature (d ≡

√
r2
x + r2

y + r2
z =√

F 2
x + F 2

y + F 2
z ), the speed of the camera (s ≡√

v2
x + v2

y + v2
z =

√
V 2
x + V 2

y + V 2
z ) and the roll and the

pitch angles (R ≡ arctan(2Qr) and P ≡ arcsin(2Qp)).
Specifically, in all the simulations the values of the estimated
d, s, R, P are compared with the ground truth values.
The results are obtained by running 100 simulations and the
errors provided are averaged on them. Regarding d and s
the precision is expressed in terms of the relative error in
% (for instance, if the true value of d is dt it is computed
the difference ∆d = |dt − d| and then it is provided 100∆d

dt ).
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Regarding the roll and pitch angles it is provided the absolute
error in deg. We obtain the following values: ∆d

d = 3.2%
∆s
s = 2.8% ∆R = 0.18 deg ∆P = 0.22 deg. More

results are available in [14] and [15] where the case of biased
inertial measurements and the case of multiple features with
different camera poses are considered. In particular, significant
improvement is found by considering two features.

2) Performance Evaluation with Real Data: We adopted
the data set provided in [17]. This is an excellent test bed since
it also provides a thorough ground truth. The only drawback
for our purposes is that our strategy works also in 3D while
this data set regards experiments carried out in 2D.

Fig. 4. A piece of the 2D robot trajectory as recovered by the ground truth
data file in the session Bicocca-2009-02-26a of [17]. The four groups of stars
represent the points where the same point feature has been extracted.

We adopted the data provided in the session Bicocca-2009-
02-26a. The robot trajectory in the ground truth data file is
provided at around 50 Hz. This allowed us to get a reliable
ground truth for the vehicle speed. The data provided by the
IMU are also available. These data are delivered at around
130 Hz. Finally, by using the provided vision data files, we
were able to extract several point features. In fig 4 we display
a piece of the robot trajectory (as provided by the ground
truth data file). In particular, all the points in blue represent
the robot positions. In the figure four groups of points are
also displayed by using red stars. Each group of star marks
represent the true robot positions where the same point feature
has been extracted from the vision data file. Unfortunately,
through the provided ground truth data set, we do not have the
actual position of our extracted four point features. For this
reason, we cannot evaluate the performance of our strategy in
evaluating the distance of these features. On the other hand,
by having the true robot speed as previously mentioned, we
evaluate the accuracy of the proposed strategy in estimating
the robot speed. For the four groups of points we obtained by
using the proposed approach the following four initial speeds
(in ms−1): 0.49, 0.65, 0.57, 0.63, while the true values are:
0.466, 0.638, 0.585, 0.661. An additional real experiment is
available in [14] and [15].

C. Comparison of the performances of the two EKFs

Fig. 5. Results from the EKF which estimates the entire non-observable
state. The 3D trajectory is displayed. The blue dots indicate the ground truth
while the green circles the estimated trajectory.

Fig. 6. The true distances from the origin (blue dots), the value of the
distances obtained from the values of x, y and z shown in figure 5 (green
circles) and the distances estimated by implementing an EKF which directly
estimates the observable modes (black crosses).

We also perform the estimation by using two dis-
tinct EKF s. The former estimates the non-observable
state [r, v, q]T . The latter estimates the observable state
[F, V , m1, m2]T . Figures 5 and 6 show the typical results
we obtained from them. In fig 5 the 3D trajectory is displayed.
The blue dots indicate the ground truth while the green circles
the trajectory estimated by the first EKF . As expected, the
estimation is affected by a drift. Fig 6 displays the distance
of the vehicle from the origin vs time. Blue dots indicate the
true values, green circles the values obtained from the values
of x, y and z shown in figure 5 and black crosses indicate the
distances estimated by implementing the second EKF .

We performed many simulations obtaining similar results.
We conclude with the following remarks:

1) The estimation of the non-observable state ([r, v, q]T )
is affected by a drift;

2) The observable modes obtained from the estimates of the
previous non-observable state seem to be not affected by
a drift;

3) The observable modes directly estimated by an EKF
are not drift-affected;

4) Directly estimating the observable modes is much more
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convenient than obtaining them from the non-observable
state in terms of precision.

VII. CONCLUSIONS

In this paper we considered the problem of data fusion
when the adopted sensors are a monocular camera and in-
ertial sensors (i.e. one tri-axial accelerometer and one tri-
axial gyrometer). An observability analysis which accounts
the system non linearities allowed us to analytically detect all
the observable modes, i.e. all the physical quantities that the
information contained in the sensor data allows us to estimate.
They are the position of the features in the camera frame,
the vehicle speed in the same local frame and the absolute
roll and pitch angles. The main contribution of the paper is
a new algorithm to simultaneously estimate all the previous
physical quantities. In particular, the algorithm is based on a
closed-form solution which analytically expresses the vehicle
speed and attitude in terms of the sensor measurements. The
algorithm only needs to observe four times a single point
feature. Compared to the state-of-the-art the advantages are:

1) It only requires a single point feature to work;
2) The estimation does not require any initialization;
3) The estimation can be performed at any moment by only

collecting four consecutive observations;
4) It allows eliminating the drift on the scale factor and on

the roll and pitch angles independently of the vehicle
trajectory;

5) It can be easily extended in order to deal with the case of
multiple features and biased inertial measurements ([14]
and [15]).

Regarding the extension to deal with biased inertial mea-
surements and multiple features, we show in [14] and [15]
that three camera poses and two features allow determining
the vehicle speed and attitude together with the scale factor.
In order to also determine the bias affecting the inertial mea-
surements with only three camera poses, an additional feature
is required. Otherwise, with only one feature, six camera poses
are sufficient to determine vehicle speed, attitude, scale factor
and bias. Note that the algorithm is in general linear, i.e. the
determination of the previous quantities only requires a matrix
inversion (or the computation of a pseudoinverse). Only in
few cases it is necessary to also solve a quadratic polynomial
equation (e.g. in the case of one feature and four camera poses
(see also [15] where several conditions for the observability
are derived, depending on the number of camera poses and
features)).
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APPENDIX A
ANALYTICAL EXPRESSION OF χα, χβ AND χγ IN TERMS OF

THE ROLL AND PITCH ANGLES

Let us consider the unit quaternion: qt + qxi + qyj + qzk.
By denoting with R, P and Y respectively the roll, pitch and

yaw angles, we have [11]:

qt = cos
R

2
cos

P

2
cos

Y

2
+ sin

R

2
sin

P

2
sin

Y

2

qx = sin
R

2
cos

P

2
cos

Y

2
− cos

R

2
sin

P

2
sin

Y

2

qy = cos
R

2
sin

P

2
cos

Y

2
+ sin

R

2
cos

P

2
sin

Y

2

qz = cos
R

2
cos

P

2
sin

Y

2
− sin

R

2
sin

P

2
cos

Y

2

We use the previous expressions to obtain χα = 2g(qtqy −
qxqz), χβ = −2g(qtqx + qyqz) and χγ = 2g(q2

x + q2
y)− g in

terms of the roll, pitch and yaw angles. They only depend on
the roll and pitch angles. By a direct substitution we obtain:

χα = g sinP, χβ = −g sinR cosP, χγ = −g cosR cosP
(20)
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