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Introduction

This paper is motivated by the general question of global existence in time of solutions to the following reaction-diffusion system (S)

                       u t -d 1 ∆u = w γ -u α v β (0, +∞) × Ω, (E 1 ) v t -d 2 ∆v = w γ -u α v β (0, +∞) × Ω, (E 2 ) w t -d 3 ∆w = -w γ + u α v β (0, +∞) × Ω, (E 3 ) ∂u ∂n (t, x) = ∂v ∂n (t, x) = ∂w ∂n (t, x) = 0 (0, +∞) × ∂Ω, u(0, x) = u 0 (x) ≥ 0 x ∈ Ω, v(0, x) = v 0 (x) ≥ 0 x ∈ Ω, w(0, x) = w 0 (x) ≥ 0 x ∈ Ω,
where Ω is a bounded regular open subset of R N , (d 1 , d 2 , d 3 , α, β, γ) ∈ (0, +∞) 3 × [1, +∞) 3 . Note that the system (S) satisfies two main properties, namely : (P ) the nonnegativity of solutions of (S) is preserved for all time ; (M ) the total mass of the components u, v, w is a priori bounded on all finite intervals (0, t).

If α, β and γ are positive integers, system (S) is intended to describe for example the evolution of a reversible chemical reaction of type αU + βV ⇋ γW where u, v, w stand for the density of U , V and W respectively. This chemical reaction is typical of general reversible reactions and contains the major difficulties encountered in a large class of similar problems as regards global existence of solutions.

Let us make precise what we mean by solution.

By classical solution to (S) on Q T = (0, T ) × Ω, we mean that, at least (i) (u, v, w) ∈ C([0, T ); L 1 (Ω) 3 ) ∩ L ∞ ([0, τ ] × Ω) 3 , ∀τ ∈ (0, T ) ; (ii) ∀k, ℓ = 1 . . . N , ∀p ∈ (1, +∞)

∂ t u, ∂ t v, ∂ t w, ∂ x k u, ∂ x k v, ∂ x k w, ∂ x k x ℓ u, ∂ x k x ℓ v, ∂ x k x ℓ w, u, v, w ∈ L p ((0, T ) × Ω) ;
(iii) equations in (S) are satisfied a.e (almost everywhere).

By weak solution to (S) on Q T = (0, T ) × Ω, we essentially mean solution in the sense of distributions or, equivalently here, solution in the sens of the variation of constants formula with the corresponding semigroups. More precisely

u(t) = S d 1 (t)u 0 + 0 S d 1 (t -s)(w γ (s) -u α (s)v β (s)) ds v(t) = S d 2 (t)v 0 + 0 S d 2 (t -s)(w γ (s) -u α (s)v β (s)) ds w(t) = S d 3 (t)u 0 + 0 S d 3 (t -s)(-w γ (s) + u α (s)v β (s)) ds where S d i (.) is the semigroup generated in L 1 (Ω) by -d i ∆ with homogeneous Neumann boun- dary condition, 1 ≤ i ≤ 3.
By just integrating the sum (E 1 ) + (E 2 ) + 2(E 3 ) in space and time, and taking into account the boundary conditions

Ω ∆(d 1 u + d 2 v + d 3 w) = 0 , we obtain Ω u(t) + v(t) + 2w(t) = Ω u 0 + v 0 + 2w 0 t ≥ 0. ( 1 
)
Together with the nonnegativity of u, v and w, estimate (1) implies that

∀t ≥ 0 , u(t) L 1 (Ω) , v(t) L 1 (Ω) , w(t) L 1 (Ω) ≤ u 0 + v 0 + 2w 0 L 1 (Ω) . (2) 
In other words, the total mass of three components does not blow up ; u(t), v(t) and w(t) rest bounded in L 1 (Ω) uniformly in time.

Although one has uniform L 1 -bound in time, classical solutions may not globally exist for diffusion coefficients d 1 , d 2 , d 3 which are not equal (global existence obviously holds if d 1 = d 2 = d 3 ). As surprisingly proved in [START_REF] Pierre | Blow-up in reaction-diffusion systems with dissipation of mass[END_REF] and [START_REF] Schmitt | Existence globale ou explosion pour des systèmes de réaction-diffusion avec contrôle de masse[END_REF], it may indeed happen that, under assumptions (P ) and (M ), solutions blow up in finite time in L ∞ ! In particular, classical bounded solutions do not exist globally in time.

If u 0 , v 0 , w 0 ∈ L ∞ (Ω), local existence and uniqueness of nonnegative and uniformly bounded solution to (S) are known (see e.g. [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF]). More precisely, there exists T > 0 and a unique classical solution (u, v, w) of (S) on [0, T ). If T max denotes the greatest of these T's, then

T max < +∞ =⇒ lim tրTmax u(t) L ∞ (Ω) + v(t) L ∞ (Ω) + w(t) L ∞ (Ω) = +∞. ( 3 
)
To prove global existence (i.e. T max = +∞), it is sufficient to obtain an a priori estimate of the form ∀t ∈ [0, T max ),

u(t) L ∞ (Ω) + v(t) L ∞ (Ω) + w(t) L ∞ (Ω) ≤ H(t), (4) 
where H : [0, +∞) → [0, +∞) is a nondecreasing and continuous function.

This type of estimates is far of being obvious for our system except the case where diffusion coefficients

d 1 , d 2 , d 3 are equal i.e d 1 = d 2 = d 3 = d. Indeed, Z = u + v + 2w satisfies (E)      Z t -d∆Z = 0 (0, +∞) × Ω, ∂Z ∂n = 0 (0, +∞) × ∂Ω, Z(0, x) = Z 0 (x) x ∈ Ω,
where Z 0 (x) = u 0 (x) + v 0 (x) + 2w 0 (x).

In particular, we deduce by maximum principle that

u(t) + v(t) + 2w(t) L ∞ (Ω) ≤ u 0 + v 0 + 2w 0 L ∞ (Ω) , t ≥ 0.
Together with nonnegativity, this implies

u(t) L ∞ (Ω) + v(t) L ∞ (Ω) + w(t) L ∞ (Ω) ≤ u 0 + v 0 + 2w 0 L ∞ (Ω) , t ≥ 0.
In other words, u(t), v(t) and w(t) stay uniformly bounded in L ∞ (Ω) and therefore T max = +∞.

In the case where the diffusion coefficients are different from each other, global existence is considerably more complicated. It has been studied by several authors in the following cases.

First case α = β = γ = 1.
In this case, global existence of classical solutions has been obtained by Rothe [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF] for dimension N ≤ 5. Later, it has first been proved by Pierre [10] for all dimensions N and then by Morgan [START_REF] Morgan | Global existence for semilinear parabolic systems[END_REF].

The exponentiel decay towards equilibrium has been studied by Desvillettes-Fellner [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF] in the case of one space dimension.

The global existence of weak solutions has been proved by Laamri [START_REF] Laamri | Existence globale pour des systèmes de réaction-diffusion dans L 1[END_REF] for initial data u 0 , v 0 and w 0 only in L 1 (Ω). Second case γ = 1 regardless of α and β.

In this case, global existence of classical solutions has been obtained by Feng [START_REF] Feng | Coupled system of reaction-diffusion equations and Applications in carrier facilitated diffusion[END_REF] in all dimensions N and more general boundary conditions.

Third case α + β ≤ 2 or γ ≤ 2.
In this case, Pierre [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Dissipation of Mass : a Survey[END_REF] has proved global existence of weak solutions for initial data u 0 , v 0 and w 0 only in L 2 (Ω).

Our paper mainly completes the investigations of [ [START_REF] Feng | Coupled system of reaction-diffusion equations and Applications in carrier facilitated diffusion[END_REF], [START_REF] Morgan | Global existence for semilinear parabolic systems[END_REF], [10], [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF]] and [ [START_REF] Laamri | Existence globale pour des systèmes de réaction-diffusion dans L 1[END_REF], [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Dissipation of Mass : a Survey[END_REF]]. As far as we know, our results are new either when α + β < γ, or when 1 < γ < N + 6 N + 2 regardless of α and For the sake of completeness and for the reader's convenience, we shall also give a direct proof different from that of Feng [START_REF] Feng | Coupled system of reaction-diffusion equations and Applications in carrier facilitated diffusion[END_REF] in the special case γ = 1.

Notation : Throughout this study, we denote by C i 's various positive numbers depending only on the data and for p ∈ [1, +∞[

u(t) p = Ω |u(t, x)| p dx 1/p , u L p (Q T ) = T 0 Ω |u(t, x)| p dtdx 1/p , u(t) ∞ = esse sup x∈Ω |u(t, x)|, u L ∞ (Q T ) = esse sup (t,x)∈Q T |u(t, x)|.

The main results

One of the main ingredients for the proof of our results is the following lemma which is based on the regularizing effects of the heat equation. This lemma has been introduced by Hollis-Martin-Pierre in [START_REF] Hollis | Global existence and boundedness in reaction-diffusion systems[END_REF].

Lemma 1 Let T > 0 and (φ, ψ) the classical solution of                      φ t -d 1 ∆φ = f (φ, ψ) (t, x) ∈ (0, T ) × Ω ψ t -d 2 ∆ψ = g(φ, ψ) (t, x) ∈ (0, T ) × Ω ∂φ ∂n (t, x) = 0 (t, x) ∈ (0, T ) × ∂Ω ∂ψ ∂n (t, x) = 0 (t, x) ∈ (0, T ) × ∂Ω φ(0, x) = φ 0 (x) x ∈ Ω ψ(0, x) = ψ 0 (x) x ∈ Ω.
Assume that f + g = 0, then for each p ∈ (1, +∞), there exists C such that for all t ∈ (0, T )

ψ L p (Qt) ≤ C φ L p (Qt) + 1 . (5) 
A more general version of this lemma can be founded in [11, lemma 3.4].

The case α + β < γ

Theorem 1 Assume that 0 ≤ u 0 , v 0 , w 0 ≤ M where M is a positive real. If α + β < γ, then the system (S) admits a global classical solution.

Proof :

• Let T ∈ (0, T max ) and let t ∈ (0, T ]. Thanks to the nonnegativity of u, v and w, we deduce from the equation (E 1 ) that u is bounded from above by the solution U of (P 1 )

     U t -d 1 ∆U = w γ (t, x) ∈ (0, T ) × Ω ∂U ∂n (t, x) = 0 (t, x) ∈ (0, T ) × ∂Ω U (0, x) = u 0 (x) x ∈ Ω,
and we deduce from the equation (E 2 ) that v is bounded from above by the solution V of

(P 2 )      V t -d 2 ∆V = w γ (t, x) ∈ (0, T ) × Ω ∂V ∂n (t, x) = 0 (t, x) ∈ (0, T ) × ∂Ω V (0, x) = v 0 (x) x ∈ Ω.
Therefore it is sufficient to show that w ∈ L p (Q T ) for p large enough.

• Let q > 1. Multiplying the equation (E 3 ) by w q and integrating over Q T , we get

1 q + 1 Ω w q+1 (T ) + qd 3 Q T |∇w| 2 w q-1 + Q T w q+γ = Q T u α v β w q + K 0 (6) 
where

K 0 = 1 q + 1 Ω w q+1 0 .
Thanks to Hölder's inequality, we have

Q T u α v β w q ≤ u α L αr (Q T ) v β L βs (Q T ) w q L γ+q (Q T ) (7) 
where

1 r + 1 s + q q + γ = 1.
Since α + β < γ, we can choose r such that rα ≤ q + γ and s such that sβ ≤ q + γ. To convince oneself, it is enough to draw the straight line with cartesian equation x + y = γ q + γ and to identify the points with coordinates ( α q + γ , 0) and (0,

β q + γ ).
Then

L q+γ (Q T ) ⊂ L αr (Q T ) and L q+γ (Q T ) ⊂ L βs (Q T ). Consequently, there exists C 1 such that Q T u α v β w q ≤ C 1 u α L γ+q (Q T ) v β L γ+q (Q T ) w q L γ+q (Q T ) . (8) 
By virtue of lemma 1, there exists C 2 such that

u L γ+q (Q T ) ≤ C 2 (1 + w L γ+q (Q T ) ) (9) 
and there exists C 3 such that

v L γ+q (Q T ) ≤ C 3 (1 + w L γ+q (Q T ) ). ( 10 
)
Thanks to ( 9) and (10), estimate (8) can be written

Q T u α v β w q ≤ C 4 1 + w L γ+q (Q T ) α 1 + w L γ+q (Q T ) β 1 + w L γ+q (Q T ) q . ( 11 
)
If w L γ+q (Q T ) ≤ 1 then the proof ends up. Otherwise, there exists C 5 such that

Q T u α v β w q ≤ C 5 w q+α+β L γ+q (Q T ) . (12) 
So we deduce from (6)

Q T w q+γ ≤ C 5 w q+α+β L γ+q (Q T ) + K 0 . (13) 
With the notation R := Q T w q+γ , estimate (13) can be written

R ≤ C 5 R q+α+β q+γ + K 0 . (14) 
Since q + α + β < q + γ, by applying Young's inequality to [START_REF] Quittner | Souplet : Superlinear Parabolic Problems : Blow-up, Global Existence and Steady States, Advanced Texts[END_REF], we obtain

(1 -ε)R ≤ K 0 + C 6 . (15) 
Then, for ε ∈ (0, 1), we have the desired estimate

w L q+γ (Q T ) ≤ C 7 . (16) 
Going back to (P 1 ) and (P 2 ), we have, by choosing q such that q + γ γ > N + 2 2 and thanks to the L p -regularity theory for the heat operator (see [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF]),

u L ∞ (Q T ) ≤ C 8 (17) v L ∞ (Q T ) ≤ C 9 . (18) 
Now going back to (E 3 ), we deduce from ( 17) and ( 18) that there exists C 10 such that

w L ∞ (Q T ) ≤ C 10 . (19) 
This implies that T max = +∞.

Remark This method seems to be specific to the case α + β < γ. It fails when α + β ≥ γ since some restrictions on the parameters α, β, γ and on the diffusion coefficients will appear.

Case where

d 1 = d 3 or d 2 = d 3 or d 1 = d 2 .
Theorem 2 Assume that 0 ≤ u 0 , v 0 , w 0 ≤ M . We deduce by maximum principle

u(t) + w(t) ∞ ≤ u 0 + w 0 ∞ . (20) 
Together with the nonnegativity of u et w, this implies that u(t) and w(t) are uniformly bounded in L ∞ (Ω).

By going back to (E 2 ) and thanks to the L p -regularity theory for the heat operator (see [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF]), we conclude that v(t) ∞ is uniformly bounded in L ∞ (Ω) on all interval [0, T ] so that T max = +∞.

(ii) Assume that d 1 = d 2 = d. The case α + β < γ was already handled in the theorem 1, so it remains only to tackle the case γ < α + β. Moreover, one can assume that u 0 = v 0 since if u 0 = v 0 the result is obvious.

Since

d 1 = d 2 = d, we have (u -v) t -d∆(u -v) = 0 ; ∂(u -v) ∂n = 0 ; (u -v)(0, x) = u 0 (x) -v 0 (x).
The maximum principle then implies u(t) -v(t) ∞ ≤ u 0 -v 0 ∞ = C. Hence we have

u α+β = u α v β + u α (u β -v β ) = u α v β + u α β(θu + (1 -θ)v) β-1 (u -v) where θ ∈]0, 1[ ≤ u α v β + u α β2 β-1 C(u β-1 + v β-1 ).
Thanks to Young's inequality, there exists C 11 > 0 and C 12 > 0 such that

C 11 u α+β ≤ u α v β + C 12 . ( 21 
)
By virtue of (21), equation (E 1 ) implies that

u t -d 1 ∆u + C 11 u α+β ≤ w γ + C 12 . ( 22 
)
Let q > 1. Multiplying ( 22) by u q and integrating over Q T , we obtain

1 q + 1 Ω u q+1 (T )+qd 2 Q T |∇u| 2 u q-1 +C 11 Q T u q+α+β ≤ Q T w γ u q +C 12 Q T u q +K 1 (23) where K 1 = 1 q + 1 Ω u q+1 0 .
Thanks to Hölder's inequality, we have

Q T w γ u q ≤ Q T w γr 1/r Q T u qs 1/s (24) 
where r = α + β + q γ and s = α + β + q q + α + β -γ .

Lemma 1 implies that there exists C 13 such that

Q T w γr 1/r = w γ L q+α+β (Q T ) ≤ C γ 13 1 + u L q+α+β (Q T ) γ .
If u L q+α+β (Q T ) ≤ 1 then the proof ends up. Otherwise, there exists C 14 such that

Q T w γr 1/r ≤ C 14 u γ L q+α+β (Q T ) . (25) 
Since qs < q + α + β, we have L q+α+β (Q T ) ⊂ L qs (Q T ), then there exists C 15 such that

Q T u qs 1/s ≤ C 15 u q L q+α+β (Q T ) . (26) 
Denote S := Q T u q+α+β . Estimates (25) and (26) imply that

Q T w γ u q ≤ C 16 S q+γ q+α+β . (27) 
Moreover, since L q+α+β (Q T ) ⊂ L q (Q T ), there exists C 17 such that

C 12 Q T u q ≤ C 17 S q q+α+β . (28) 
Since γ < α + β, by applying Young's inequality, there exists C 18 such that

C 16 S q+γ q+α+β ≤ ε 2 S + C 18 . (29) 
Applying again Young's inequality, there exists C 19 such that

C 17 S q q+α+β ≤ ε 2 S + C 19 . (30) 
Consequently, estimate (23) implies

(C 11 -ε)S ≤ C 18 + C 19 + K 1 . (31) 
By choosing ε < C 11 in (31), there exists C 20 such that

u L q+α+β (Q T ) ≤ C 20 . (32) 
Thanks to lemma 1 and estimate (32) there exists C 21 such that

w L q+α+β (Q T ) ≤ C 21 . (33) 
By going back to (P 1 ) and (P 2 ), we have by choosing q such that q + α + β γ > N + 2 2 and thanks to the L p -regularity theory for the heat operator (see [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF])

u L ∞ (Q T ) ≤ C 22 (34) v L ∞ (Q T ) ≤ C 23 . (35) 
Now let's go back to (E 3 ), we deduce from (34) and (35) that there exists C 24 such that

w L ∞ (Q T ) ≤ C 24 . (36) 
This implies that T max = +∞. Remark Even in the last case i.e d 1 = d 2 , global existence or blow-up in the limit case α+β = γ remain an open problem.

Case

1 ≤ γ < N + 6 N + 2
regardless of α and β. Proof : Let T ∈ (0, T max ) and let t ∈ (0, T ]. Thanks to the nonnegativity of u, v and w, we deduce from the equation (E 1 ) that u is bounded from above by the solution U of (P 1 )

     U t -d 1 ∆U = w γ (t, x) ∈ (0, T ) × Ω ∂U ∂n (t, x) = 0 (t, x) ∈ (0, T ) × ∂Ω U (0, x) = u 0 (x) x ∈ Ω.
Therefore it is sufficient to show that w ∈ L p (Q T ) for p large enough. For this we have to distinguish the case γ = 1 and the case γ > 1.

• Case γ = 1 and α, β ≥ 1.

Let us recall that global existence of classical solutions for (S) when α = β = γ = 1 has been studied by several authors. It has been obtained by Rothe [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF] for dimension N ≤ 5. Later, it has first been proved by Pierre [10] for all dimensions N and then by Morgan [START_REF] Morgan | Global existence for semilinear parabolic systems[END_REF]. Independantly, Feng [START_REF] Feng | Coupled system of reaction-diffusion equations and Applications in carrier facilitated diffusion[END_REF] has proved global existence in the case γ = 1 regardless of α and β and more general boundary conditions. For the sake of completeness and for the reader's convenience, we give here a simple and direct proof in the last case (γ = 1 regardless of α and β). In our proof, we use an idea introduced by Pierre in [10] and applied in [START_REF] Martin | Nonlinear reaction-diffusion systems[END_REF].

For any p ≥ 1, we deduce from (P 1 ) and the semigroup property

u(t) p ≤ u 0 p + t 0 w(s) p ds. (37) 
By applying Hölder's inequality for p > 1 and thanks to (5), we obtain 

Taking the p th power of (39) we obtain

h(t) ≤ 2 p-1 C p 26 + 2 p-1 C p 27 t 0 h(s) ds. (40) 
But, inequality (40) is a linear Gronwall's inequality, then

u L p (Q T ) ≤ C 28 . (41) 
Repeating the method above with v instead of u, we obtain

v L p (Q T ) ≤ C 29 . (42) 
Estimates ( 41) and (42) imply that for some q > N + 2 2

u α v β L q (Q T ) ≤ C 30 . (43) 
Going back to equation (E 3 ) we have, thanks to the L q -regularity theory for the heat operator,

w L ∞ (Q T ) ≤ C 31 . (44) 
This concludes the proof for the case γ = 1 regardless of α and β.

• Case 1 < γ < N + 6 N + 2 .
The proof in this case is based on lemma 1 and these two following lemmas.

Lemma 2 (Michel Pierre) Let T > 0 and let Z the solution of

     Z t -∆(A(t, x)Z) ≤ 0 (t, x) ∈ (0, T ) × Ω, ∂Z ∂n (t, x) = 0 (t, x) ∈ (0, T ) × ∂Ω, Z(0, x) = Z 0 (x) x ∈ Ω. Assume that 0 < d < A(t, x) < D where (d, D) ∈ (0, +∞) 2 . Then, there exists C = C(T, d, D, Ω) such that Z L 2 (Q T ) ≤ C Z 0 L 2 (Ω) .
For a general version of this lemma, see [11, proposition 6.1] or [3, theorem 3.1].

Lemma 3 Let (p, q) such that 1 ≤ p ≤ q ≤ +∞, d > 0 and S d (t) the semigroup generated in L p (Ω) by -d∆ with homogeneous Neumann boundary condition. Then

S d (t)Y q ≤ (C(Ω)m(t)) -N 2 ( 1 p -1 q ) Y p , for all Y ∈ L p (Ω), t > 0 ( 45 
)
where m(t) = min(1, t).

For a proof of this lemma see for instance [START_REF] Rothe | Global solutions of reaction-diffusion systems[END_REF]Lemma 3,p. 25] or [1, Theorem 3.2.9, p. 90].

We now go back to the proof of theorem 3.

By applying lemma 2 to the system (S) where Z = u + v + 2w and A = d 1 u + d 2 v + 2d 3 w u + v + 2w , we have u, v, w ∈ L 2 (Q T ). More precisely, there exists C 32 such that • In the case where the diffusion coefficients are not equal (i.e. d i = d j for all 1 ≤ i = j ≤ 3), global existence of classical solutions for (S) or blow-up is still an open question when

u L 2 (Q T ) , v L 2 (Q T ) , w L 2 (Q T ) ≤ C 32 . (46) 
N + 6 N + 2 ≤ γ ≤ α + β.
Our guess is that system (S) admits a classical global solution for all N + 6 N + 2 ≤ γ < α + β and that there is a finite time blow-up when γ = α + β and the dimension N is large.

β.

  For the sake of clarity, we decided to focus in this work on the question of global existence in time of solutions in the case of homogeneous Neumann boundary conditions. So, we shall prove global existence of classical solutions to system (S) in the following cases : * α + β < γ ; * (d 1 = d 3 or d 2 = d 3 ) and for any (α, β, γ) ; * d 1 = d 2 and for any (α, β, γ) such that α + β = γ ; * 1 < γ < N + 6 N + 2 and for any (α, β).

  (i) If d 1 = d 3 or d 2 = d 3 , then system (S) admits a global classical solution for any (α, β, γ). (ii) If d 1 = d 2 , then the system (S) admits a global classical solution for any (α, β, γ) such that α + β = γ. Proof : (i) Assume that d 1 = d 3 = d, we have (u + w) t -d∆(u + w) = 0 ; ∂(u + w) ∂n = 0 ; (u + w)(0, x) = u 0 (x) + w 0 (x).

Theorem 3

 3 Assume that 0 ≤ u 0 , v 0 , w 0 ≤ M where M > 0. If 1 ≤ γ < N + 6 N + 2, then the system (S) admits a global classical solution for any (α, β) ∈ [1, +∞) 2 .

  Now, we have thanks to the estimate (45) with p > 1 and q = +∞ u(t) ∞ ≤ u 0 ∞ + C 33 All our results are still true if we replace homogeneous Neumann boundary conditions by homogeneous Dirichlet boundary conditions, it suffices to replace lemma 3 by the following one.Lemma 4 Let (p, q) such that 1 ≤ p ≤ q ≤ +∞, d > 0 and S d (t) the semigroup generated in L p (Ω) by -d∆ with homogeneous Dirichlet boundary. ThenS d (t)Y q ≤ (4πt) ) Y p , for all Y ∈ L p (Ω), t > 0. (55)For a proof of this lemma, see for instance[START_REF] Quittner | Souplet : Superlinear Parabolic Problems : Blow-up, Global Existence and Steady States, Advanced Texts[END_REF] Proposition 48.4, p. 441].

	3 Conclusion											
	• -N 2 ( 1 p -1									
							t	(t -s)	-N 2p	w γ (s) p ds.			(47)
							0								
	By applying Hölder's inequality, we obtain									
	0	t	(t -s)	-N 2p	w(s) γ	p ds ≤	-Np ′ 2p	ds	1/p ′	0	t	w γ (s) p p ds	1/p	.	(48)

t 0 (t -s) q
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We first remark that the integral t 0 (t -s) -N 2(p-1) ds converges when p > N + 2 2 and we have 1) dy.

On the other hand, lemma 1 implies that t 0 w γ (s) p p ds

If u L pγ (Qt) ≤ 1 then the proof ends up. Otherwise there exists C 35 such that

Since

, it follows that (47) can be written

If p(γ -1) < 2, by choosing ε ∈ (0, min(p, 2 -p(γ -1)), we deduce from ( 46) and (51) that there exists

Note that the above condition p(γ -1)

We establish in the same way that there exists C 38 such that

Finally, for (E 3 ), we deduce from ( 52) and ( 53) that there exists C 39 such that

This concludes the proof in the case 1 < γ < N + 6 N + 2 .

Remark : Our conjecture is that γ * = N + 6 N + 2 is not optimal. In fact, when N = 1 one can prove that the result of theorem 3 still holds for γ * = 7/2.