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Control using Proportional and/or Derivative feedback (PD-control) is applied on a piecewise linear beam system with a flushing one-sided spring element for steady-state vibration amplitude mitigation. Two control objectives are formulated: 1) minimize the transversal vibration amplitude of the midpoint of the beam at the frequency where the first harmonic resonance occurs, 2) achieve this in a larger (low) excitation frequency range, where the lowest nonlinear normal mode dominates the response. Experimentally realizable combinations of PD-control are evaluated for both control objectives. Eventually objective 1) is realized by applying Proportional control only, whereas Derivative control is selected to realize objective 2). The vibration reduction that is achieved in simulations and validated by experiments is very significant for both objectives. Current results obtained with active PD-control are compared with earlier results obtained using a passive Dynamic Vibration Absorber.

Introduction

In many situations in structural dynamics, avoidance of resonances is required to prevent malfunctioning, fatigue, or direct breakdown of the structure. First of all, the mechanical design of the structure should be optimized in order to avoid resonances. However, despite high efforts in the design stage, the occurrence of resonances can not always be avoided, or the level of the occurring vibration amplitudes still may be too high. In these cases, depending on the specific requirements for the problem under consideration, passive, semi-active, or active control may be applied to mitigate the vibration levels. Passive control in general is robust and is achieved by adding mechanical elements to the structure. Examples are dynamic vibration absorbers and constrained layer dampers [START_REF] Den Hartog | Mechanical vibrations[END_REF][START_REF] Hunt | Dynamic vibration absorbers[END_REF][START_REF] Korenev | Dynamic vibration absorbers[END_REF][START_REF] Mead | Passive vibration control[END_REF]. In semi-active control, the parameter values of certain structural elements are controlled as a function of time [START_REF] Preumont | Vibration control of active structures -an introduction[END_REF]. In active control [START_REF] Franklin | Feedback control of dynamic systems, 5 th edition[END_REF][START_REF] Gawronski | Advanced structural dynamics and active control of structures[END_REF][START_REF] Meirovitch | Dynamics and Control of Structures[END_REF][START_REF] Preumont | Active Control of Structures[END_REF], actuators are used to apply time dependent loads on the structure to attenuate the vibration levels. The references mentioned above focus on linear structures with linear control. This paper focuses on active control for steady-state vibration mitigation of a periodically excited, archetype piecewise linear system, consisting of a linear beam, which is supported by a one-sided linear elastic spring. The uncontrolled steady-state behavior of this type of system was studied numerically as well as experimentally in [START_REF] Van De Vorst | Experimental Verification of the Steady-State Behaviour of a beam System with Discontinuous Support[END_REF]. The steady-state behavior observed in this system is representative for the behavior observed in many piecewise linear systems met in engineering practice, which shows the relevance of this work. Five practical examples of these systems are: 1) a mooring buoy near an oil platform, to which a ship is attached via a cable, which periodically slackens due to sea wave excitation [START_REF] Thompson | Elimination of subharmonic resonances of compliant marine structures[END_REF], 2) folded solar array panels, which are attached to a satellite during launch, and which are separated from each other by one-sided spring elements [START_REF] Fey | Sine sweep and steady-state response of simplified solar array models with nonlinear elements[END_REF], 3) bridge hangers in a suspension bridge [START_REF] De Freitas | Erosion of the safe basin for the transversal oscillations of a suspension bridge[END_REF], 4) a piecewise linear pantograph current collector suspension system [START_REF] Drugge | The nonlinear behaviour of a pantograph current collector suspension[END_REF][START_REF] Jerrelind | Nonlinear Dynamics of Parts in Engineering Systems[END_REF], and 5) a bump stop in a wheel suspension system [START_REF] Stensson | The nonlinear behavior of a MacPherson strut wheel suspension[END_REF].
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Depending on the amount of nonlinearity and damping, the steady-state behavior of controlled and uncontrolled piecewise linear systems may be highly varying [START_REF] Van De Vorst | Experimental Verification of the Steady-State Behaviour of a beam System with Discontinuous Support[END_REF][START_REF] Thompson | Elimination of subharmonic resonances of compliant marine structures[END_REF][START_REF] Fey | Long Term Structural Dynamics of mechanical Systems with Local Nonlinearities[END_REF][START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF][START_REF] Jiang | Nonlinear normal modes for vibratory systems under harmonic excitation[END_REF][START_REF] Luo | Global chaos in a periodically forced, linear system with a dead zone restoring force[END_REF][START_REF] Wiercigroch | Measurement of chaotic vibration in a symmetrically piecewise linear oscillator[END_REF][START_REF] Ervin | Experiments on a beam-rigid body structure repetitively impacting a rod[END_REF]. In general, next to harmonic resonances, also super-and subharmonic resonances may occur. Moreover, in usually small excitation frequency intervals, also quasi-periodic or chaotic responses/resonances may exist.

Resonance peaks are straight up for the case, that the one-sided spring flushes to the remainder of the system in the static equilibrium position [START_REF] Van De Vorst | Experimental Verification of the Steady-State Behaviour of a beam System with Discontinuous Support[END_REF][START_REF] Thompson | Elimination of subharmonic resonances of compliant marine structures[END_REF][START_REF] Fey | Long Term Structural Dynamics of mechanical Systems with Local Nonlinearities[END_REF][START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF]. However, in piecewise linear systems, resonance peaks may also show hardening behavior [START_REF] Fey | Sine sweep and steady-state response of simplified solar array models with nonlinear elements[END_REF][START_REF] Natsiavas | Periodic response and stability of oscillators with symmetric trilinear restoring force[END_REF][START_REF] Shukla | Classification of periodic orbits for systems with backlash[END_REF], due to bridging of the backlash between system and the one-sided spring, or softening behavior [START_REF] Fey | Sine sweep and steady-state response of simplified solar array models with nonlinear elements[END_REF][START_REF] Natsiavas | Periodic response and stability of oscillators with symmetric trilinear restoring force[END_REF], due to loss of initial pretension between the system and the one-sided spring.

The objective of this paper is to investigate, to what extent relatively simple Proportional and/or Derivative feedback control (PD-control) can be applied, in order to reduce steady-state vibrations/resonances in a piecewise linear beam system, where a one-sided spring flushes to a linear beam in the static equilibrium position. In this paper, the steady-state vibrations in the uncontrolled system will be caused by a disturbing harmonic excitation force. Two different control objectives will be considered. The first objective will be to suppress the 1 st harmonic resonance peak at the corresponding resonance frequency. The second objective will be to reduce the vibration levels of the system in a wider frequency range. In this frequency range, the first nonlinear normal mode should still be dominant, however. This requirement in fact justifies attempting the PD-control approach. The two control objectives will be formulated in more detail later. The same two control objectives were also posed in [START_REF] Bonsel | Application of a dynamic vibration absorber to a piecewise linear system[END_REF] with respect to the same piecewise linear beam system. In [START_REF] Bonsel | Application of a dynamic vibration absorber to a piecewise linear system[END_REF], the objectives were successfully realized by means of a passive linear Dynamic Vibration Absorber (DVA).

Obviously, application of more advanced (nonlinear) controllers and observers may result in increased vibration reduction, but may also result in increased costs, increased complexity, and lower reliability. In [START_REF] Doris | Output-feedback design for non-smooth mechanical systems: Control synthesis and experiments[END_REF][START_REF] Doris | Observer designs for experimental non-smooth and discontinuous systems[END_REF], for a similar piecewise linear system, resonance/vibration attenuation is real-NODY9613_source 4/30 ized in a wider frequency band, using an observer-based state feedback controller. In [START_REF] Heertjes | Partial feedback linearization on a harmonically excited beam with a one-sided spring[END_REF][START_REF] Heertjes | Controlling the nonlinear dynamics of a beam system[END_REF], again for a similar, periodically excited, piecewise linear beam system, partial feedback linearization was used. However, in [START_REF] Heertjes | Partial feedback linearization on a harmonically excited beam with a one-sided spring[END_REF][START_REF] Heertjes | Controlling the nonlinear dynamics of a beam system[END_REF], the control objective was different compared to the control objectives of the current paper. For a specific excitation frequency, the uncontrolled piecewise linear system shows a stable ½ subharmonic resonance coexisting with an unstable harmonic solution with low amplitude. In [START_REF] Heertjes | Partial feedback linearization on a harmonically excited beam with a one-sided spring[END_REF][START_REF] Heertjes | Controlling the nonlinear dynamics of a beam system[END_REF], the control objective was to control the ½ subharmonic solution to the harmonic solution and to stabilize this solution.

This paper is organized as follows. First, in the next section the experimental setup of the piecewise linear beam system will be introduced. The steady-state behavior of the uncontrolled system will be discussed in section 3. In section 4 the motivation to use PD-control will be discussed further, two control objectives will be formulated, PD-controller constraints will be discussed, and the PD controller design approach will be presented. Section 5 will discuss the simulation model of the system. In section 6, first the separate effect of proportional feedback and secondly the separate effect of derivative feedback on the steady-state behavior of the closed loop system will be investigated.

Experimental and numerical results will be compared. Based on the insights obtained, in section 7 two PD-control settings will be determined in order to realize the two control objectives as good as possible. In section 8, results obtained in this paper and results obtained in [START_REF] Bonsel | Application of a dynamic vibration absorber to a piecewise linear system[END_REF] using a DVA will be compared. Finally, in section 9 conclusions will be drawn.

Experimental setup

Fig. 1 shows the schematic representation of the experimental setup of the system in the horizontal plane. The influence of gravity is negligible. The setup exists of a steel main beam (a), which is supported at each end by a leaf spring (b). In the middle of the beam a one-sided leaf spring (c) is placed flushing to the main beam (a) and making the system piecewise linear. This means that the one-sided spring neither introduces backlash nor pretension in the static equilibrium situation. The backlash, which is seen in Fig. 1, is shown for sketching purposes only, to make clear that the leaf NODY9613_source 5/30 spring is indeed a one-sided spring. The contact force between spring (c) and the main beam will become non-zero for a displacement of the midpoint of beam (a) in the negative y-direction, see Fig. 1. The amount of nonlinearity in the piecewise linear system may be indicated by the ratio of the stiffness of the one-sided spring and the transversal linear stiffness of the main beam (a), halfway its length. Here, this ratio equals

7 . 2 = α [-].
The system is transversally excited by a disturbing harmonic force generated by an eccentrically rotating mass mechanism, which is attached to the middle of beam (a) and driven by an electric synchronous motor. The excitation frequency ( )

π ω 2 = f
will be varied between 10 and 60 [Hz].

Fig. 1 Schematic representation of the experimental setup

The actuator, which exerts the PD-control force to the system, is placed as near as possible (0.2 m) to the midpoint of the beam. The operation of this actuator is based on the principle that a force is generated, when a current flows through a coil, which is placed in a permanent magnetic field. The midpoint transversal displacement and acceleration are measured using an LVDT and an accelerometer, respectively. The measured signals are processed by a data acquisition system, which determines an appropriate current amplifier input. Subsequently, the amplified input is offered to the NODY9613_source 6/30 digital PD-controller. In order to determine the PD control force of the actuator, next to the displacement signal, actually the velocity signal is needed. The velocity signal is obtained by filtering the measured acceleration signal by a first order, high pass, analog filter (filter frequency: 7.2 Hz), and subsequent analog integration of the filtered acceleration signal over time. This high pass filter is used to avoid drift. Then, the analog velocity signal is digitized and a second order, low pass, Butterworth filter (filter frequency: 170 Hz) is applied to suppress high-frequency noise. As a sideeffect, this will also delete deterministic high-frequency components in the velocity signal.

3 Steady-state behavior of the uncontrolled system In Fig. 2 the steady-state response of the uncontrolled system is shown. In this figure the quantity 'max disp' of a steady-state solution of the transversal displacement of the beam midpoint ( ) t y mid , defined by: max disp ( ) ( )

t y t y mid mid min max - = , (1) 
is determined for excitation frequencies f ranging from 10 to 60 [Hz]. Note that a value of max disp close to zero does not necessarily mean, that the overall vibration level of the beam is close to zero, because the beam may be vibrating in a shape with a node near or in the midpoint of the beam.

Fig. 2 shows both simulation results and experimental results. Simulation results are based on a numerical model, which will be introduced in section 5, and are given for the uncontrolled system without actuator as well as the uncontrolled system with passive actuator dynamics. In the former case, stable periodic solutions are indicated with dashed lines. In the latter case, the stable periodic solutions are indicated with solid lines. In both cases, unstable periodic solutions are indicated with black dots. For clarity, the uncontrolled system with passive actuator dynamics is the system in-NODY9613_source 7/30 cluding the inertia, damping, and elastic properties of the actuator. The actuator control force, however, is still equal to zero.

Calculation of branches of periodic solutions and their stability and detection of bifurcation points on these branches is based on theory and numerical methods described in for example [START_REF] Fey | Long Term Structural Dynamics of mechanical Systems with Local Nonlinearities[END_REF][START_REF] Parker | Practical numerical algorithms for chaotic systems[END_REF][START_REF] Thomsen | Vibrations and stability, Advanced theory, analysis, and tools[END_REF].

Although the forces occurring in the system are continuous, the current system has a discontinuity in the stiffness. In numerical simulations this should be accounted for, for example by means of event detection, to guarantee accurate dynamic responses [START_REF] Leine | Dynamics and bifurcations of non-smooth mechanical systems[END_REF][START_REF] Wiercigroch | Modelling of dynamical systems with motion dependent discontinuities[END_REF].

Experimental results, indicated by circles, are only included for the uncontrolled system with passive actuator dynamics. A good correspondence can be observed between experimental and simulation results. 

PD-control: motivation, control objectives, constraints and design

Apart from the fact that it is easy to implement, the motivation to attempt a PD-control approach to mitigate vibration the level in this piecewise linear system originates from the observation that, in the frequency range of interest ), actually only the lowest nonlinear normal mode [START_REF] Jiang | Nonlinear normal modes for vibratory systems under harmonic excitation[END_REF][START_REF] Touzé | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures[END_REF][START_REF] Vakakis | Nonlinear normal modes and their applications in vibration theory: an overview[END_REF] is dominant. It is important to realize this. Namely, for linear multi degree of freedom systems, it is well-known that a single PD-controller in principle is capable of controlling only one single normal mode. Therefore, in the case of the current piecewise linear system, the best one may hope for is that the PD-controller can control, more or less, one single nonlinear normal mode. In [START_REF] Bonsel | Application of a dynamic vibration absorber to a piecewise linear system[END_REF], a passive linear Dynamic Vibration Absorber was capable to mitigate the vibration level in this piecewise linear system in the frequency range 10-60 [Hz], being the dominant frequency range of the first nonlinear normal mode. This may be seen as an indication that the PD-controller can be successfully applied here too. In section 5, the eigenmode of the system without the onesided spring, which is closely related to the first nonlinear normal mode, will be shown.

As announced in the introduction already, now two separate control objectives are formulated:

Control objective 1

Minimize 'max disp' defined by Eq. ( 1) at the first harmonic resonance frequency of 21.2 [Hz] of the uncontrolled piecewise linear beam system with passive actuator dynamics, see Fig. 2.
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Control objective 2

Reduce 'max disp' defined by Eq. ( 1) in the frequency range 10-60 [Hz]. No mathematical optimization criterion will be used to realize this objective. Here, the performance of the PD-control action is evaluated by visual inspection (tuning) of multiple amplitude-frequency plots such as Fig. 2.

In this visual inspection mainly will be focused on the success of the suppression of the harmonic and subharmonic resonance peaks, which are present in the uncontrolled situation. Obviously, simultaneously the appearance of new resonance peaks in the frequency range 10-60 [Hz] is prohibited. This visual inspection will be carried out for all experimentally realizable settings of the two PD control parameters p k and d k , which will be introduced later.

It is emphasized again that vibration reduction of the midpoint of the beam does not guarantee overall vibration reduction of the beam because for the controlled situation this midpoint may behave as a node, while the rest of the beam is still vibrating at high vibration levels. For every combination of the control parameters p k and d k it will be checked afterwards, if the latter situation, which obviously is undesirable with respect to overall vibration reduction, does not occur.

Obviously, the beam midpoint would have been the ideal controller position, because this is the position:

1) where the disturbing harmonic excitation of the system takes place,

2) for which the control objectives are formulated,

3) where the one-sided spring exerts its force to the beam, and 4) where the dominant nonlinear normal mode shows a maximal transversal displacement.

Actually, a controller located at the beam midpoint position, which could counterbalance the harmonic excitation force, would cancel all beam vibrations. However, in many practical situations it is not possible to apply the control force on the ideal location. This is also the case in our experi-NODY9613_source 10/30 mental set-up, where the control force is applied 0.2 [m] from the midpoint of the beam, which is the position as near as possible to the beam midpoint from a practical point of view.

The digital PD-controller, which makes use of the measured transversal displacement and the measured transversal acceleration of the midpoint of the beam (recall that the acceleration is filtered and integrated over time), determines the magnitude of the PD-control force c F , which should be equal to:

mid d mid p c y k y k F - - = (2)
where mid y and mid y are respectively the beam's midpoint transversal displacement and velocity. To realize each separate control objective, in section 7 two different set-points of the PD-controller will be determined by evaluating the steady-state response for a large number of PD-controller setpoints satisfying the constraints given by Eq. ( 3). Prior to this, first the simulation model of the system with and without control will be discussed in the next section and the effects of separate Paction and separate D-action on the system's behavior will be determined in section 6.

Simulation model

In order to avoid unacceptably high CPU-times, a reduced 4 degrees of freedom model has been derived, which accurately approximates the dynamic behavior of the piecewise linear system with PD-control in the frequency interval of interest (10-60 [Hz]):

F x y K x D x M mid = + + ) ( , (4) 
where: 

[ ] T act mid p p y y x 3 2 = , (5) 
T M T M o T = , T D T D o T = , T K T K o T l = , o T F T F = , (6) 
⎩ ⎨ ⎧ ≤ + > = 0 0 ) ( mid os l mid l mid y if K K y if K y K , and (7 
(
)

0 2 2 = + - k o o k K M f ϕ π , ( 10 
)
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The two residual flexibility modes are static correction modes, which guarantee unaffected static load behavior for the reduced model.

Fig. 3 shows the lowest four eigenmodes given by Eq. ( 10), with the corresponding eigenfrequencies. In the experimental set-up, the 1 st eigenmode is suppressed by the drive shaft of the excitation mechanism, so it does not need to be included in the reduced model. The 4 th eigenfrequency exceeds the frequency range of interest to a large extent. Note that the passive actuator dynamics slightly disturb the (anti-)symmetry of eigenmodes with respect to the beam midpoint. The lowest eigenfrequency of the one-sided spring, see Fig. 1, is much higher than the frequency range of interest ). Therefore, the inertia of the one-sided spring may be neglected. In 

0 = u [V].
In the numerical analysis, the transversal velocity signal of the midpoint of the beam is directly available in contrast to the experimental situation. The low-pass Butterworth filter, which is used in the experiments in order to reduce high frequency noise, see the end of Section 2, is also applied to this velocity signal in the simulations. As a result, also in the numerical analysis the deterministic high-frequency components in the velocity signal are removed to mimic the experimental situation.

Note that the nonlinear normal mode, closely related to the second eigenmode of the linear system with eigenfrequency resonance frequency of an undamped, piecewise linear, single degree of freedom system, which is derived in [START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF] for the case of flush:

lin pwl f f α α + + + = 1 1 1 2 . ( 11 
)
In Eq. [START_REF] Thompson | Elimination of subharmonic resonances of compliant marine structures[END_REF] α is the ratio between the stiffness of the one-sided spring and the stiffness of the linear spring and lin f is the eigenfrequency of the linear, single degree of freedom, mass-spring system. As stated before, in our case the ratio between the stiffness of the one-sided spring and the transversal stiffness of the beam, halfway the length of the beam, is 

Effects of separate P-action and separate D-action

In this section, the effects of separate P-control and separate D-control on the steady-state behavior of the piecewise linear beam system will be investigated. With the insights obtained in this way, combined PD-control in section 7 can be understood better.

First, the effect of P-action on the response of the piecewise linear system is investigated ( However, negative values may also be applied and in fact will be used in section 7. In the experiments, which were all started from rest, a slow frequency sweep up did not reveal other stable steady-state solutions than a slow frequency sweep down, for the considered frequency range. Obviously, this does not mean that other stable steady-state solutions, which may have a periodic, quasi-periodic, or chaotic nature, may not (co)exist. For example, by using other initial conditions, or by applying a sudden disturbance to the system, other coexisting stable steady-state solutions may be found.

0 = d k [Ns/m]).

PD-control: results

In this Section, keeping in mind the effects of using separate P-action and separate D-action, as discussed in Section 6, the effect of combined P-and D-action on the system's steady-state behavior will be studied. Obviously, the control objectives will be subjected to the constraints given by Eq.

(3). The results for control objective 1 and control objective 2 will be discussed in respectively Subsections 7.1 and 7.2. In addition, Subsection 7.3 will discuss some numerical results for the case of collocated control: the control force will be exerted in the middle of the beam. This is done in order to investigate, for both control objectives, how the results will change, if the location of the controller force is changed somewhat. 

Control objective 2

When the results of all considered combinations of P-and D-action are visually compared (these results are not presented here), it appears that actually only D-action is needed to maximize overall displacement reduction in the range 10-60 [Hz]. Very large P-action could shift all resonances to frequencies above 60 [Hz] but the required p k is outside the constraint interval given by Eq. (3).

For the required p k the amplified measurement noise would result in an unstable system.
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The circles in Fig. 8 show the experimental results for the experimentally maximum applicable D-

action ( p k =0 [N/m], d k =600 [Ns/m]).
Both the harmonic and the ½ subharmonic resonance peaks are reduced. The largest vibration reduction of a factor 20 is observed at the harmonic resonance peak. The difference between the simulation results and the experimental results in Fig. 8 is due to the noise in the 'measured' velocity signal (actually the integrated measured transversal acceleration of the beam midpoint). This results in a limited accuracy of the applied control force. Better correspondence between experimental and simulation results is obtained for lower D-action at the cost of somewhat larger max disp values.

In a very small frequency range near 54 [Hz], the vibration level actually increases somewhat for the controlled situation compared to the uncontrolled situation as presented in Fig. 2. This can be NODY9613_source 21/30 understood when realizing that the control force increases the excitation of the second nonlinear normal mode, which is very closely related to the 3rd linear eigenmode, which is shown in Fig. 3 and has an eigenfrequency of

54 3 = f [Hz].
It is only due to the passive dynamics of the actuator in the uncontrolled situation that this eigenmode has a node, which not exactly coincides with the beam midpoint. Without the passive dynamics of the actuator, the piecewise linear spring would not have any influence on the eigenmode at 54 [Hz]: the second nonlinear normal mode would convert to a linear eigenmode.

As stated before, the vibration reduction, which is realized for the transversal displacement of the midpoint of the beam, does not guarantee vibration reduction for transversal displacements of other positions on the beam. However, by visual inspection it was verified that also on other beam positions reduction of transversal vibrations is achieved, except for excitation frequencies near the second harmonic resonance peak, i.e. near 54 [Hz].

Collocated control

In the case of collocated control the transversal displacement and acceleration are again measured in the middle of the beam as before. The control force, however, is now also exerted in the middle of the beam, instead of 0.2 m outside the middle of the beam as before. For collocated control, Fig. 9 and Fig. 10 show the results for respectively control objective 1 control objective 2. These figures are to be compared with the results shown earlier in respectively Fig. 6 and Fig. 8. Ns/m. Indeed, some negative P control is needed to decrease the effective stiffness of the system, in order to find a maximum max disp value again at 21.2 Hz. This can also be seen when comparing the frequencies, where the first harmonic resonance peak occurs in the uncontrolled situation, for the noncollocated case in Fig. 8 and for the collocated case in Fig. 10. After zooming in, it can be ob- When comparing the results of Fig. 8 and Fig. 10 with respect to control objective 2, two differences between the simulations with control (solid lines) can be seen. The first difference occurs near 54 Hz. In the non-collocated case (Fig. 8), the harmonic resonance of the second nonlinear normal mode is clearly visible. This resonance is completely absent in the collocated case (Fig. 10).

This is due to the fact that in the collocated case, the second nonlinear normal mode actually becomes a linear eigenmode, which has a node at the beam midpoint, due to symmetry in the structure. Therefore, this eigenmode will not be excited by the PD controller force. This eigenmode is nearly equal to the third eigenmode visible in Fig. 3 for the non-collocated case. The second difference is that in the collocated case no ½ subharmonic solutions occur anymore, see the solid line in Fig. 10, whereas these still were present in a small frequency range near 38 Hz for the noncollocated case, see the solid line in Fig. 8.
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Note that, apart from the minor differences mentioned above, the global behavior of the controlled system in the frequency range 10-60 Hz hardly changes by repositioning of the PD controller.

Comparison with passive control

In [START_REF] De Freitas | Erosion of the safe basin for the transversal oscillations of a suspension bridge[END_REF], passive vibration control of the same piecewise linear beam system was applied by attaching a linear Dynamic Vibration Absorber (DVA) to the beam instead of the PD-controller. The DVA was attached to the beam at exactly the same position as the PD-controller. The eigenfrequency of this DVA, which basically is a single degree of freedom mass-spring-damper system, was tuned to the first harmonic resonance frequency of the piecewise linear system. In [START_REF] De Freitas | Erosion of the safe basin for the transversal oscillations of a suspension bridge[END_REF], the same two control objectives were formulated as in this paper. The undamped DVA was applied to reduce the vibration amplitude at the first harmonic resonance (control objective 1), whereas the With respect to control objective 1, it can be seen that the undamped DVA (Fig. 11) realizes a larger vibration reduction at the harmonic resonance frequency than P-control (Fig. 7). When Fig. 7 is compared with Fig. 11, a clear qualitative difference can be noticed. In Fig. 7 (P-control) the minimum at 21.2 Hz is found at the period doubling bifurcation point between the first harmonic resonance peak and the ½ subharmonic resonance peak. In Fig. 11 the minimum at 21.2 Hz is found at the anti-resonance between two harmonic resonance peaks indicated by the two 1's. This difference can be explained by comparing the natures of the active P-controller and the passive, undamped Dynamic Vibration Absorber (DVA). The P-controller only changes the effective stiffness of the controlled structure, and therefore, it basically shifts the resonance frequencies, see Section 6. The undamped DVA is a mass-spring system, which, in contrast to the active controller, adds an extra degree of freedom and, therefore, an extra harmonic resonance to the system. If the eigenfrequency of the undamped DVA is tuned to the first harmonic resonance frequency of the system without DVA, for the system with DVA at this frequency an anti-resonance results, which is located in between two nearby harmonic resonance peaks. This is completely comparable to the case of an undamped DVA applied to a linear single degree of freedom system as studied in [START_REF] Den Hartog | Mechanical vibrations[END_REF]. With respect to control objective 2, the results obtained with D-control (Fig. 8) are apparently superior to the results realized by the damped DVA (Fig. 12). Also here, the natures of the active Dcontroller and the passive, damped DVA are different. The D-controller only changes the effective damping of the controlled structure, see Section 6, and, therefore, it basically reduces the resonance amplitudes. Also in the case of the damped DVA, which is a mass-damper-spring system, an extra degree of freedom is added to the system. The damping constant of the damped DVA should be chosen such, that the maximum value of the amplitudes of the two nearby harmonic resonances is minimized. The solid line in Fig. 12 represents this situation. In the experiments a non-optimal damping constant was used (circles in Fig. 12) resulting in higher amplitude values for the two nearby harmonic resonances. In both the actively controlled case and in the passively controlled case, amplitude reduction of the harmonic resonance peaks also results in amplitude reduction of the related ½ subharmonic resonances.

Conclusions and recommendations

This paper shows that a linear PD-controller can be used very effectively for vibration reduction of piecewise linear systems, for the considered case of flush with a moderate amount of nonlinearity.

Simulation results have been validated by experimental results and in almost all cases a good correspondence has been obtained. The effects of P-action and D-action have been investigated separately. Proportional feedback mainly shifts the frequencies where (sub)harmonic resonances occur.

In this paper negative P-action has been used very effectively to decrease the vibration level at the frequency, where the first harmonic resonance peak occurs in the uncontrolled system, by shifting this resonance peak to a lower frequency. Application of D-action results in substantial reduction of the resonance amplitudes in the whole frequency range of interest, ranging from 10 to 60 [Hz].

For the case of flush considered in this paper, the results indicate that the effect of PD-control applied on a piecewise linear system to a large extent is comparable to the effect of PD-control applied on a linear system.
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The performances of the active PD-controller and the passive DVA have been compared for the cases considered. With respect to the first control objective, the undamped DVA was superior to the active P-controller. With respect to the second control objective, the active D-controller performed better than the damped DVA. However, a general objective trade-off between PD-control and tuned DVA for effectiveness in vibration reduction is difficult to make, because many factor will have to be taken into account: costs, controller weight, controller power, ease of implementation, control objectives, etcetera. In general, the importance of certain issues may differ from situation to situation.

The vibration reduction, which is realized for the transversal displacement of the midpoint of the beam, does not guarantee vibration reduction for transversal displacements of other positions on the beam. However, by visual inspection it was verified that also on other beam positions vibration reduction is achieved, except for excitation frequencies near the second harmonic resonance peak.

A direction for future research will be the issue of the uniqueness of the steady-state solutions found for the controlled cases, because a proof of uniqueness would further increase the value of the results obtained in this paper. Theory for proving uniqueness of periodic solutions has been developed in [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF] and may be applied to the periodic solutions found for the piecewise linear system studied in the current paper.
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 2 Fig. 2:Response of the uncontrolled system

F 3 ϕ 2 ϕ , with corresponding eigenfrequency 2 2 p

 3222 M , D , and l K represent respectively the reduced mass, reduced damping and reduced stiffness matrix, derived by dynamic reduction of the original linear finite element model. Matrices o M , o D and o K are respectively the mass, damping and stiffness matrix of the original finite element model, containing the inertial, damping and elastic properties of the main beam plus end supports, the passive actuator dynamics, and the periodic excitation mechanism. Columns F and o are respectively the reduced column and the original column with external forces. Both columns contain two non-zero elements representing the harmonic excitation force and the control force.The original displacement field q of the unreduced finite element model is related to the column with reduced degrees of freedom x by means of the following approximation based on the Ritz reduction matrix T :Tx q = . (9)The Ritz reduction matrix T is based on 4 modes, which are derived from the original undamped finite element model without the one-sided spring, namely: the 2 nd eigenmode 2 ϕ and the 3 rd ei- genmode , and two residual flexibility modes[START_REF] Fey | Long Term Structural Dynamics of mechanical Systems with Local Nonlinearities[END_REF][START_REF] Craig | Fundamentals of Structural Dynamics[END_REF], which are defined for mid y and act y , the transversal displacements of respectively the beam midpoint and the actuator position. The 2 nd eigenmode , and the 3 rd eigenmode, with corresponding eigenfrequency: 54 3 = f[Hz] and generalized degree of freedom 3 p , are solutions of the undamped eigenvalue problem:( )

Fig. 3

 3 Fig. 3 First 4 eigenmodes (black solid lines) following from Eq. (10). Dashed lines indicate the undeformed structure. The midpoint position is indicated by ; the actuator position is indicated by Δ. For presentational reasons horizontal and vertical directions are sometimes scaled differently

[

  Hz], dominates the response near the first harmonic resonance peak at 21.2 [Hz] in Fig. 2. In fact, it dominates almost the whole frequency range of 10-60 Hz. This peak occurs at 21.2 [Hz] instead of 16.2 [Hz] due to the presence of the one-sided spring. The value of 21.2 [Hz] can be checked in good approximation by using the following expression for the NODY9613_source 15/30

[

  Hz], which is, as expected, slightly above the experimentally observed resonance frequency of 21.2 [Hz] for our weakly damped beam system.

Fig. 4

 4 shows max disp, see Eq. (1), in the excitation frequency range 10-60 [Hz] for several values of p k . Stable simulation results are validated by experimental results (circles). For larger gains, discrepancies between numerical and experimental results increase somewhat because the influence of the measurement noise in the feed-back loop increases. Increasing p k shifts the resonances to higher frequencies because 'stiffness' is added to the system.
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 45 Fig. 4 Max disp in the range 10-60 [Hz] for varying p k [N/m]. Surface: simulation results, unstable numeri-

Fig. 5

 5 Fig. 5 shows the effect of only D-action (

Fig. 6 [

 6 Fig.6shows a contour plot of max disp in [mm], see Eq. (1), of simulated stable periodic solutions,

Fig. 7

 7 Fig. 7 shows the results for set-point M 2 in a wider frequency range. The controlled response shows that, due to the negative proportional feedback, the first harmonic and ½ subharmonic resonances
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 67 Fig. 6 max disp in [mm] for p k , d k combinations

Fig. 8

 8 Fig. 8 Vibration reduction in the range 10-60 [Hz]. Solid line: simulation results, circles: experimental results

Fig. 9 9 (k

 99 Fig. 9 Collocated control: max disp in [mm] for p k , d k combinations

  in the uncontrolled situation (dashed lines) the first harmonic resonance peak has increased a little bit from 21.2 Hz to 21.75 Hz.

Fig. 10

 10 Fig. 10 Vibration reduction in the range 10-60 [Hz]. Solid line: simulation results collocated control (set-

damped

  DVA was used to realize vibration reduction over the frequency range 10-60 [Hz] (control objective 2). The amplitudes of periodic solutions, which are obtained by passive vibration reduction, are shown for control objective 1 in Fig. 11 and for control objective 2 in Fig. 12.

1 Fig. 11

 111 Fig. 11 Suppression of the first harmonic resonance peak near 19 [Hz] using an undamped DVA. Solid lines: simulation results DVA, circles: experimental results DVA. Dashed lines: simulation results without DVA

Fig. 12

 12 Fig. 12 Vibration reduction in the frequency range 10-60 [Hz] using a damped DVA. Solid lines: simulation results DVA, circles: experimental results DVA. Dashed lines: simulation results without DVA