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Introduction

As a kind of characteristic of nonlinear systems, chaos is a bounded unstable dynamic behavior that exhibits sensitive dependence on initial conditions and includes infinite unstable periodic motions. Chaos has been investigated and studied in mathematical and physical communities in the last few decades because of its grate applications in many fields such as secure communication, data encryption, flow dynamics and biomedical engineering [START_REF] Chen | Chaos Control: Theory and Applications[END_REF]. The research efforts have devoted to the chaos control and chaos synchronization problems in many dynamical systems [START_REF] Yamada | Stability theory of synchroized motion in coupled-oscillator systems[END_REF][START_REF] Pecora | Synchronization in chaotic systems[END_REF][START_REF] Ott | Controling chaos[END_REF][START_REF] Aziz-Alaoui | Synchronization of chaos[END_REF].

On the other hand, the development of models based on fractional order differential systems has recently gained popularity in the investigation of dynamical systems. Fractional derivatives provide an excellent instrument for the description of memory and hereditary properties of various materials and processes. The main reason for using the integer-order models was the absence of solution methods for fractional differential equations. The advantages or the real objects of the fractional order systems [START_REF] Petráš | A note on the fractional-order Chua's system[END_REF] are that we have more degrees of freedom in the model and that a "memory" is included in the model.

Recently, studying fractional order systems has become an active research area. The chaotic dynamics of fractional order systems began to attract much attention in recent years. It has been shown that fractional order systems, as generalizations of many well-known systems, can also behave chaotically, such as the fractional Duffing system [START_REF] Ge | Chaos in a fractional order modified Duffing system[END_REF], the fractional Chua system [START_REF] Petráš | A note on the fractional-order Chua's system[END_REF][START_REF] Hartley | Chaos in a fractional order Chua's system[END_REF], the fractional Rössler system [START_REF] Li | Chaos and hyperchaos in fractional order Rössler equations[END_REF], the fractional Chen system [START_REF] Li | Chaos in Chen's system with a fractional order[END_REF][START_REF] Li | Chaos in the fractional order Chen system and its control[END_REF][START_REF] Lu | A note on the fractional-order Chen system[END_REF], the fractional Lorenz system [START_REF] Grigorenko | Chaotic dynamics of the fractional Lorenz system[END_REF], the fractional Arneodo's system [START_REF] Arneodo | Asymptotic chaos[END_REF][START_REF] Lu | Chaotic dynamics and synchronization of fractional-order Arneodos systems[END_REF], the fractional Lü system [START_REF] Deng | Chaos synchronization of the fractional Lü system[END_REF], the fractional Newton-Leipnik [START_REF] Sheu | Chaos in the Newton-Leipnik system with fractional order[END_REF] and the fractional Chen-Lee system [START_REF] Tam | Parametric study of the fractional-order Chen-Lee system[END_REF]. In [START_REF] Hartley | Chaos in a fractional order Chua's system[END_REF][START_REF] Li | Chaos and hyperchaos in fractional order Rössler equations[END_REF][START_REF] Li | Chaos in Chen's system with a fractional order[END_REF][START_REF] Li | Chaos in the fractional order Chen system and its control[END_REF] it has been shown that some fractional order systems can produce chaotic attractors with order less than 3.

Meanwhile, chaotic dynamics of fractional order systems began to attract much attention in recent years.

A challenging problem is the control and synchronization of chaotic systems. Recent studies show that chaotic fractional order systems can also be synchronized [START_REF] Li | Synchronization in fractional-order differential systems[END_REF]- [START_REF] Zhu | Chaos and synchronization of the fractional-order Chua's system[END_REF]. In many literatures, synchronization among fractional order systems is only investigated through numerical simulations that are based on the stability criteria of linear fractional order systems, such as the work presented in [START_REF] Sheu | Chaos in a new system with fractional order[END_REF]- [START_REF] Zhu | Chaos synchronization of the fractional-order Chen's system[END_REF], or based on Laplace transform theory, such as the work presented in [START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF]- [START_REF] Zhu | Chaos and synchronization of the fractional-order Chua's system[END_REF].

In the present paper, we study the synchronization of fractional order chaotic systems with different fractional orders via nonlinear control. By taking the fractional version of Chen system (which belongs to the double scroll attractor family) and Rössler system (which belongs to the one scroll attractor family) as examples, we show that fractional order systems with different fractional orders can be synchronized. Based on stability results of fractional order systems, using the drive-response concept, an adaptive feedback control is constructed to achieve synchronization between two 3D fractional order systems that have nonidentical orders. The synchronization controllers are investigated theoretically and then, numerical simulations are presented to verify the theoretical analysis.

Basic concepts

There are several definitions of a fractional derivative of order α > 0 [START_REF] Oldham | The Fractional Calculus[END_REF]- [START_REF] Caputo | Linear models of dissipation whose Q is almost frequency independent, Part II[END_REF]. The two most commonly used are Riemann-Liouville and Caputo definitions. Each definition uses Riemann-Liouville fractional integration and derivatives of whole order. The difference between the two definitions is in the order of evaluation. Riemann-Liouville fractional integral operator of order α ≥ 0 of the function f (t) is defined as,

J α f (t) = 1 Γ(α) t 0 (t -τ ) α-1 f (τ )dτ, t > 0. (1)
Some properties of the operator J α can be found, for example, in [START_REF] Podlubny | Fractional Differential Equations[END_REF][START_REF] Gorenflo | Fractional calculus: Integral and differential equations of fractional order[END_REF]. We recall only the following, for μ ≥ -1, α, β ≥ 0 and γ > -1, we have,

J α J β f (t) = J α+β f (t), J α t γ = Γ(γ + 1) Γ(α + γ + 1) t α+γ .
The Laplace transform of Riemann-Liouville fractional integral satisfies,

L{J α f (t)} = s -α L{f (t)}. (2) 
In this study, Caputo definition is used and the fractional derivative of f (t) is defined as,

D α f (t) = J m-α D m f (t), D α f (t) = 1 Γ(m -α) t 0 f (m) (τ ) (t -τ ) α-m+1 dτ, (3) for m -1 < α ≤ m, m ∈ IN, t > 0.
Caputo's definition has the advantage of dealing properly with initial value problems in which the initial conditions are given in terms of the field variables with their integer order which is the case in most physical processes. Fortunately, the Laplace transform of Caputo fractional derivative satisfies,

L{D α f (t)} = s α L{f (t)} - m-1 k=0 f (k) (0 + )s α-1-k , (4)
where m -1 < α ≤ m. The Laplace transform of Caputo fractional derivative requires the knowledge of the (bounded) initial values of the function and of its integer derivatives of order k = 1, 2, • • • , m -1.

Stability analysis of fractional systems

Stability analysis of fractional order systems, which is of main interest in control theory, has been thoroughly investigated where necessary and sufficient conditions have been derived [START_REF] Matignon | Stability results of fractional differential equations with applications to control processing[END_REF]- [START_REF] Tavazoei | A note on the stability of fractional order systems[END_REF] (see also references therein). In this section, we recall the main stability results. For this object, we consider the following n dimensional fractional order system,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d α 1 x1 dt α 1 = f1(x1, x2, • • • , xn), d α 2 x2 dt α 2 = f2(x1, x2, • • • , xn), . . . d αn xn dt αn = fn(x1, x2, • • • , xn), ( 5 
)
where α i is a rational number between 0 and 1 and

d α i dt α i is the Caputo fractional derivative of order α i , for i = 1, 2, • • • , n. Assume that α i = k i /m i , (k i , m i ) = 1, k i , m i ∈ IN , for i = 1, 2, • • • , n.
Let m be the least common multiple of the denominators m i 's of α i 's.

First, if the system (5) is a linear system, that is

[f 1 (x), f 2 (x), • • • , f n (x)] T = [a ij ] n
i,j=1 x = Ax, where x ∈ IR n , then we have the following results:

• If α = α 1 = α 2 = • • • = α n ,
then the fractional order system (5) is asymptotically stable iff |arg(spec(A))| > απ/2. In this case the components of the state decay towards 0 like t -α [START_REF] Matignon | Stability results of fractional differential equations with applications to control processing[END_REF].

• If α i 's are rational numbers between 0 and 1, then the system ( 5) is asymptotically stable if all roots λ of the equation

det diag(λ mα1 , λ mα2 , • • • , λ mαn ) -A = 0 satisfy |arg(λ)| > γπ/2, where γ = 1/m [39].
Second, if function f i has second continuous partial derivatives in a ball centered at an equilibrium point

x * = (x 1 , x 2 , • • • , x n ), that is f i (x 1 , x 2 , • • • , x n ) = 0, for i = 1, 2, • • • , n
, then we have the following results:

• If α = α 1 = α 2 = • • • = α n , then the equilib- rium point x * of system (5) is asymptotically stable if |arg(spec(J| x * ))| > απ/2,
where the matrix J is the Jacobian matrix of the system (5) that is defined as J = [ ∂fi ∂xj ] n i,j=1 [START_REF] El-Sayed | Equilibrium points, stability and numerical solutions of fractionalorder predator-prey and rabies models[END_REF].

• If α i 's are rational numbers between 0 and 1, then the equilibrium point x * of system ( 5) is asymptotically stable if all roots λ of the equa-

tion det diag(λ mα1 , λ mα2 , • • • , λ mαn ) -J| x * = 0 satisfy |arg(λ)| > γπ/2, where γ = 1/m [41].
Fractional order systems are, at least, as stable as their integer order counterpart, because systems with memory are typically more stable than their memoryless counterpart [START_REF] El-Sayed | Equilibrium points, stability and numerical solutions of fractionalorder predator-prey and rabies models[END_REF]. The previous stability results play an important role in studying the existence of chaotic attractors and the synchronization of fractional order systems.

fractional Chen system

Chen and Ueta [START_REF] Chen | Yet another chaotic attractor[END_REF] introduced, in 1999, the Chen system which is similar but not topologically equivalent to Lorenz system. It is a chaotic system with a double scroll attractor. The fractional version of Chen system reads as,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d α 1 x dt α 1 = a(y -x), d α 2 y dt α 2 = (c -a)x -xz + cy, d α 3 z dt α 3 = xy -bz, ( 6 
)
where 0 < α 1 , α 2 , α 3 ≤ 1. Integer order Chen system displays chaotic attractors, for example, when (a, b, c) = [START_REF] Hilfer | Applications of Fractional Calculus in Physics[END_REF][START_REF] Pecora | Synchronization in chaotic systems[END_REF][START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF]. Simulations are performed to obtain chaotic behavior of fractional order Chen system for different fractional orders α, when (a, b, c) = [START_REF] Hilfer | Applications of Fractional Calculus in Physics[END_REF][START_REF] Pecora | Synchronization in chaotic systems[END_REF][START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF]. For example, chaotic attractors are found in [START_REF] Yan | On chaos synchronization of fractional differential equations[END_REF] when α = (0.95, 0.95, 0.95). In [START_REF] Li | Chaos in the fractional order Chen system and its control[END_REF] chaotic behaviors are found when α = (0.9, 0.9, 0.9). Moreover, in [START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF] and [START_REF] Tavazoei | Chaotic attractors in incommensurate fractional order systems[END_REF], it is found that for the parameters α = (0.985, 0.99, 0.98) and α = (0.8, 1, 0.9), respectively, fractional order Chen system can display chaotic attractors. 

The Jacobian matrix of system ( 6), evaluated at the equilibrium point x * = (x * , y * , z * ), is

J C = ⎛ ⎜ ⎝ -35 35 0 -7 -z * 28 -x * y * x * -3 ⎞ ⎟ ⎠ (8) 
Now, according to stability results and the results presented in [START_REF] Tavazoei | Chaotic attractors in incommensurate fractional order systems[END_REF], a necessary condition for fractional Chen system to exhibit chaotic attractors similar to its integer order counterpart is:

min i {|arg(λ i )|} ≤ γπ/2, ( 9 
)
where γ = 1/m and λ i 's are the roots of the equation det diag(λ mα1 , λ mα2 , λ mα3 ) -J C | x * = 0, for every equilibrium point x * . Otherwise, one of these equilibrium points becomes asymptotically stable and attracts the nearby trajectories. (

) 10 
According to [START_REF] Li | Chaos and hyperchaos in fractional order Rössler equations[END_REF], the equilibrium points P 2 and P 3 are asymptotically stable if,

α < 2 π tan -1 14.88464 4.21398 = 0.82436. ( 11 
)
Therefore, system (6) has the necessary condition α > 0.82436 for exhibiting double scroll chaotic attractor.

For α = (1, 0.9, 0.9) and according to the last two equilibrium points P 2 and P 3 , the equation [START_REF] Lu | A note on the fractional-order Chen system[END_REF] and so we get,

det diag(λ mα1 , λ mα2 , λ mα3 ) -J C | x * = 0 becomes, λ 28 -25λ 19 + 35λ 18 -21λ 10 + 105λ 9 + 4410 = 0,
min i {|arg(λ i )|} = 0.12458 < π/20. ( 13 
)
Hence, system (6) satisfies the necessary condition for exhibiting a double scroll attractor when α = (1, 0.9, 0.9). Using similar analysis we can confirm that fractional Chen system (6) satisfies the necessary condition (9) for exhibiting a double scroll attractor when α = (0.95, 0.95, 0.95), α = (0.9, 0.9, 0.9), α = (0.985, 0.99, 0.98) and α = (0.8, 1, 0.9), in case of (a, b, c) = [START_REF] Hilfer | Applications of Fractional Calculus in Physics[END_REF][START_REF] Pecora | Synchronization in chaotic systems[END_REF][START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF].

In order to observe synchronization behavior in two coupled chaotic fractional order Chen systems with different fractional orders, we build the master and the slave fractional order Chen systems as,

M : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d α 1 xm dt α 1 = a(ym -xm), d α 2 ym dt α 2 = (c -a)xm -xmzm + cym, d α 3 zm dt α 3 = xmym -bzm, ( 14 
)
S : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d β 1 xs dt β 1 = a(ys -xs) + u1(t), d β 2 ys dt β 2 = (c -a)xs -xszs + cys + u2(t), d β 3 zs dt β 3 = xsys -bzs + u3(t), ( 15 
)
where α i ≥ β i , for i = 1, 2, 3, subscripts m and s stand for the master system and slave system, respectively, and u(t) = (u 1 (t), u 2 (t), u 3 (t)) is the nonlinear controller to be designed. Our aim is to determine the controller u(t) for the global synchronization of the non-identical fractional order Chen systems ( 14) and [START_REF] Lu | Chaotic dynamics and synchronization of fractional-order Arneodos systems[END_REF]. For this purpose, we define the synchronization error as,

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ e1(t) = xs(t) -xm(t), e2(t) = ys(t) -ym(t), e3(t) = zs(t) -zm(t). ( 16 
)
Now, we design the controller u(t) = (u 1 (t), u 2 (t), u 3 (t)) as follows,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ u1 = a(J α 1 -β 1 -1)[ys -xs] + k1J α 1 -β 1 [xs -xm], u2 = xszs -J α 2 -β 2 [xmzm] + (J α 2 -β 2 -1) [(c -a)xs + cys] + k2J α 2 -β 2 [ys -ym], u3 = J α 3 -β 3 [xmym] -xsys -b(J α 3 -β 3 -1) [zs] + k3J α 3 -β 3 [zs -zm], ( 17 
)
where J γ is the Riemann-Liouville fractional integral operator of order γ, defined in (1), k = (k 1 , k 2 , k 3 ) is the coupling matrix. The constants k 1 , k 2 and k 3 will be determined such that e(t) -→ 0 as t -→ +∞.

Applying Laplace transform to systems ( 14), ( 15) and ( 17), letting

X(s) = L((x(t)), Y (s) = L(y(t)), Z(s) = L(z(t)), E 1 (s) = L((e(t)), E 2 (s) = L((e 2 (t)), E 3 (s) = L((e 3 (t))
, and using formulas ( 2) and ( 4), we obtain,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ s α 1 Xm(s) = s α 1 -1 xm(0) + a(Ym -Xm), s α 2 Ym(s) = s α 2 -1 ym(0) + (c -a)Xm -L{xmzm} + cYm, s α 3 Zm(s) = s α 3 -1 zm(0) + L{xmym} -bZm, ( 18 
) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ s β 1 Xs(s) = s β 1 -1 xs(0) + a(Ys -Xs) + U1, s β 2 Ys(s) = s β 2 -1 ys(0) + (c -a)Xs -L{xszs} + cYs + U2, s β 3 Zs(s) = s β 3 -1 zs(0) + L{xsys} -bZs + U3, ( 19 
) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ U1 = a(s β 1 -α 1 -1)(Ys -Xs) + k1s β 1 -α 1 (Xs -Xm), U2 = L{xszs} -s β 2 -α 2 L{xmzm} + (s β 2 -α 2 -1) ((c -a)Xs + cYs) + k2s β 2 -α 2 (Ys -Ym), U3 = s β 3 -α 3 L{xmym} -L{xsys} -b(s β 3 -α 3 -1) (Zs) + k3s β 3 -α 3 (Zs -Zm). ( 20 
)
Multiplying the first equation in ( 19) by s α1-β1 , the second equation by s α2-β2 and the third equation by s α3-β3 then, from the definition of the error functions ( 16), we get,

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ s α 1 E1(s) = s α 1 -1 e1(0) + a(E2 -E1) + k1E1, s α 2 E2(s) = s α 2 -1 e2(0) + (c -a)E1 + cE2 + k2E2, s α 3 E3(s) = s α 3 -1 e3(0) -bE3 + k3E3. ( 21 
)
Applying the inverse Laplace transform, using formula (4), to system (21), we obtain the following linear fractional order system,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d α 1 e1 dt α 1 = a(e2 -e1) + k1e1, d α 2 e2 dt α 2 = (c -a)e1 + ce2 + k2e2, d α 3 e3 dt α 3 = -be3 + k3e3. ( 22 
)
In case of α i = β i , for i = 1, 2, 3, then the controller u(t), defined in [START_REF] Sheu | Chaos in the Newton-Leipnik system with fractional order[END_REF], reduces to

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ u1 = k1[xs -xm], u2 = xszs -xmzm + k2[ys -ym], u3 = xmym -xsys + k3[zs -zm]. ( 23 
)
The Jacobian matrix for the error system ( 22) is

J = ⎛ ⎜ ⎝ -a + k1 a 0 c -a c+ k2 0 0 0 -b + k3 ⎞ ⎟ ⎠ , (24) 
and so, the characteristic equation det diag(λ r1 , λ r2 , λ r3 ) -J = 0 can be written as,

((λ r 1 + a -k1)(λ r 2 -c -k2) + a(a -c))(λ r 3 + b -k3) = 0, ( 25 
)
where r i = mα i , for i = 1, 2, 3. According to the stability results, the drive system ( 14) and the response system [START_REF] Lu | Chaotic dynamics and synchronization of fractional-order Arneodos systems[END_REF] are synchronized ( e(t) -→ 0 as t -→ +∞) if all roots λ of Eq. ( 25) satisfy |arg(λ)| > γπ/2, where γ = 1/m. Now, in case of α 1 = α 2 = α 3 = α and (a, b, c) = (35, 3, 28), then Eq. ( 25) reduces to, ((λ+35-k 1 )(λ-28-k 2 )+245)(λ+3-k 3 ) = 0, [START_REF] Li | The synchronization of three fractional differential systems[END_REF] and so, systems ( 14) and ( 15) are synchronized if k 1 , k 2 and k 3 satisfy the laws,

⎧ ⎨ ⎩ k1 + k2 -7 ∓ w < 0, i f A= w ∈ IR w k 1 +k 2 -7 < tan(απ/2), if A = iw ∈ iIR (27) k3 < 3, ( 28 
)
where A = (7-k1 -k2) 2 27) and [START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF].

Therefore, under the controller,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ u1 = 35(J 0.05 -1)[ys -xs] + k1J 0.05 [xs -xm], u2 = xszs -J 0.05 [xmzm] + (J 0.05 -1) [-7xs + 28ys] + k2J 0.05 [ys -ym], u3 = J 0.05 [xmym] -xsys -3(J 0.05 -1) [zs] + k3J 0.05 [zs -zm], ( 29 
)
the drive system ( 14) and the response system (15) are synchronized. The error functions evolution, in this case, is shown in Fig. 1. From Fig. 1, it is obvious that the components of the error system [START_REF] Zhou | Chaos control and synchronization in a fractional neuron network system[END_REF] decay towards zero as t -→ +∞. So, we can numerically conclude that the designed controller can effectively control the chaotic fractional order Chen systems ( 14) and ( 15) with non-identical orders to achieve synchronization.

Example 2 If we take (a, b, c) = [START_REF] Hilfer | Applications of Fractional Calculus in Physics[END_REF][START_REF] Pecora | Synchronization in chaotic systems[END_REF][START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF], α = (1, 0.9, 0.9), β = (0.9, 0.9, 0.9), k 1 = 35, k 2 = -28 and k 3 = 2, then Eq. ( 25) reduces to,

(λ 19 + 245)(λ 9 + 1) = 0. ( 30 
)
Simply, we can show that all roots of Eq. ( 30) lie in the region |arg(λ)| > π/20. Therefore, under the controller

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ u1 = 35(J 0.1 -1)[ys -xs] + k1J 0.1 [xs -xm], u2 = xszs -xmzm + k2(ys -ym), u3 = xmym -xsys + k3(zs -zm), ( 31 
)
the drive system ( 14) and the response system [START_REF] Lu | Chaotic dynamics and synchronization of fractional-order Arneodos systems[END_REF] are synchronized. The error functions evolution, in this case, is shown in Fig. 2. It is clear, from Fig. 2, that the components of the error system [START_REF] Zhou | Chaos control and synchronization in a fractional neuron network system[END_REF] decay towards zero as t -→ +∞.

fractional Rössler system

Now, we consider Rössler system [START_REF] Rössler | An equation for continuous chaos[END_REF], which is a nonlinear system that can exhibit one scroll chaotic attractor. Its fractional version reads as,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d α1 x dt α1 = -(y + z), d α2 y dt α2 = x + ay, d α3 z dt α3 = z(x -c) + b, ( 32 
)
where α = (α 1 , α 2 , α 3 ) is subject to 0 < α 1 , α 2 , α 3 ≤ 1. Integer Rössler system, when α = (1, 1, 1), is chaotic, for example, when (a, b, c) = (0.2, 0.2, 5). Simulations are performed to obtain chaotic behavior of fractional order Rössler system and the results demonstrate that chaos indeed exists with order less than 3. For example, chaotic attractors are found in [START_REF] Li | Chaos and hyperchaos in fractional order Rössler equations[END_REF] when α = (0.9, 0.9, 0.9) and (a, b, c) = (0.4, 0.2, 10). Also, in [START_REF] Peng | Synchronization of fractional order chaotic systems[END_REF], it is found that for the parameters α = (1, 1, 0.8) and (a, b, c) = (0.2, 0.2, 5) fractional order Rössler system can display chaotic behaviors.

For example, fractional Rössler system, when (a, b, c) = (0.2, 0.2, 5), has two equilibrium points, P1 : (0.00801, -0.04006, 0.04006), P2 : (4.99199, -24.95994, 24.95994). [START_REF] Oldham | The Fractional Calculus[END_REF] The Jacobian matrix of system [START_REF] Zhu | Chaos and synchronization of the fractional-order Chua's system[END_REF], evaluated at the equilibrium point x * = (x * , y * , z * ), is

J R = ⎛ ⎜ ⎝ 0 -1 -1 1 0.2 0 z * 0 x * -5 ⎞ ⎟ ⎠ (34) 
Now, according to stability results and the results presented in [START_REF] Tavazoei | Chaotic attractors in incommensurate fractional order systems[END_REF], a necessary condition for fractional Rössler system to exhibit chaotic attractor similar to its integer order counterpart is:

min i {|arg(λ i )|} ≤ γπ/2, (35) 
where γ = 1/m and λ i 's are the roots of the equation det diag(λ mα1 , λ mα2 , λ mα3 ) -J R | x * = 0, for every equilibrium point x * . Otherwise, one of these equilibrium points becomes asymptotically stable and attracts the nearby trajectories.

For α = (1, 1, 0.8) and according to the first equilibrium point P 1 , the equation det diag(λ mα1 , λ mα2 , λ mα3 ) -J R | x * = 0 becomes, λ 14 + 4.99199λ 10 -0.2λ 9 -0.95833λ 5 + λ 4 + 4.98397 = 0, [START_REF] Gorenflo | Fractional calculus: Integral and differential equations of fractional order[END_REF] and so we get,

min i {|arg(λ i )|} = 0.29486 < π/10. ( 37 
)
Hence, system (32) satisfies the necessary condition for exhibiting a one scroll attractor when α = (1, 1, 0.8) and (a, b, c) = (0.2, 0.2, 5). For α = (0.9, 0.9, 0.9) and (a, b, c) = (0.4, 0.2, 10), then the equilibrium point (0.00801, -0.02002, 0.02002) of system (32) has the following eigenvalues λ 1 = -9.99001, λ 2,3 = 0.199008 ∓ 0.979690 i, and so, |arg(λ 2,3 )| = 1.370390 < (0.9)π/2. Therefore, system (32) satisfies the necessary condition for exhibiting one scroll attractor when α = (0.9, 0.9, 0.9) and (a, b, c) = (0.4, 0.2, 10).

In order to observe synchronization behavior in two coupled chaotic fractional order Rössler systems with different fractional orders, we build the master and the slave fractional order Rössler systems as,

M : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d α 1 xm dt α 1 = -(ym + zm), d α 2 ym dt α 2 = xm + aym, d α 3 zm dt α 3 = zm(xm -c) + b, (38) 
S :

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d β 1 xs dt β 1 = -(ys + zs) + u1(t), d β 2 ys dt β 2 = xs + ays + u2(t), d β 3 zs dt β 3 = zs(xs -c) + u3(t) + b, ( 39 
)
where α i ≥ β i , for i = 1, 2, 3, subscripts m and s stand for the master system and slave system, respectively, and u(t) = (u 1 (t), u 2 (t), u 3 (t)) is the nonlinear controller to be designed. Our aim is to determine the controller u(t) for the global synchronization of non-identical fractional order Rössler systems [START_REF] Matignon | Stability results of fractional differential equations with applications to control processing[END_REF] and [START_REF] Deng | Stability analysis of linear fractional differential system with multiple time delays[END_REF]. For this purpose, we design the controller u(t) as follows,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ u1 = (J α 1 -β 1 -1)[-xs -zs] + k1J α 1 -β 1 [xs -xm], u2 = (J α 2 -β 2 -1)[xs + ays] +k2J α 2 -β 2 [ys -ym], u3 = J α 3 -β 3 [xmzm] -xszs -c(J α 3 -β 3 -1)[zs] -b + b t α 3 -β 3 Γ(1+α 3 -β 3 ) + k3J α 3 -β 3 [zs -zm], ( 40 
)
where J γ is the Riemann-Liouville fractional integral operator of order γ, defined in (1), k = (k 1 , k 2 , k 3 ) is the coupling matrix. Following the same analysis presented in the previous section, if we apply Laplace transform to systems [START_REF] Matignon | Stability results of fractional differential equations with applications to control processing[END_REF], ( 39) and ( 40), using formulas ( 2) and ( 4), we obtain,

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ s α 1 E1(s) = s α 1 -1 e1(0) -(E1 + E3) + k1E1, s α 2 E2(s) = s α 2 -1 e2(0) + E1 + aE2 + k2E2, s α 3 E3(s) = s α 3 -1 e3(0) -cE3 + k3E3. ( 41 
)
Applying the inverse Laplace transform, using formula (4), to system (41), we obtain the following linear fractional order system,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d α 1 e1 dt α 1 = -(e1 + e3) + k1e1, d α 2 e2 dt α 2 = e1 + ae2 + k2e2, d α 3 e3 dt α 3 = -ce3 + k3e3. ( 42 
)
In case of α i = β i , for i = 1, 2, 3, then the controller u(t), defined in [START_REF] El-Sayed | Equilibrium points, stability and numerical solutions of fractionalorder predator-prey and rabies models[END_REF], reduces to

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ u1 = k1[xs -xm], u2 = k2[ys -ym], u3 = xmzm -xszs + k3[zs -zm]. (43) 
The Jacobian matrix for the error system ( 42) is

J = ⎛ ⎜ ⎝ -1 + k1 0 -1 1 a + k2 0 0 0 -c + k3 ⎞ ⎟ ⎠ , (44) 
and so, the characteristic equation det diag(λ r1 , λ r2 , λ r3 ) -J = 0 can be written as,

(λ r 1 + 1 -k1)(λ r 2 -a -k2)(λ r 3 + c -k3) = 0, ( 45 
)
where r i = mα i , for i = 1, 2, 3. According to the stability results, the drive system [START_REF] Matignon | Stability results of fractional differential equations with applications to control processing[END_REF] and the response system (39) are synchronized ( e(t) -→ 0 as t -→ +∞) if all roots λ of Eq. (45) satisfy |arg(λ)| > γπ/2, where γ = 1/m. Now, in case of α 1 = α 2 = α 3 = α, then Eq. (45) reduces to,

(λ + 1 -k 1 )(λ -a -k 2 )(λ + c -k 3 ) = 0, (46) 
and so, systems [START_REF] Matignon | Stability results of fractional differential equations with applications to control processing[END_REF] and ( 39) are synchronized if k 1 , k 2 and k 3 satisfy the law,

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ k 1 < 1, k 2 < -a, k 3 < c. ( 47 
)
Example 3 Taking (a, b, c) = (0.4, 0.2, 10), α = (1, 1, 1) and β = (0.9, 0.9, 0.9). If we select k 1 = 0.5, k 2 = -1 and k 3 = 8, then they satisfy the law (47).

Therefore, under the controller,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ u1 = (J 0.1 -1)[-xs -zs] + k1J 0.1 [xs -xm], u2 = (J 0.1 -1)[xs + ays] + k2J 0.1 [ys -ym], u3 = J 0.1 [xmzm] -xszs -c(J 0.1 -1)[zs] -0.2 + 0.2 t 0.1 Γ(1.1) + k3J 0.1 [zs -zm], (48) 
the drive system (38) and the response system (39) are synchronized. The error functions evolution, in this case, is shown in Fig. 3. From Fig. 3, it is obvious that the components of the error system (42) decay towards zero as t -→ +∞. So, we can numerically conclude that the designed controller can effectively control the chaotic fractional order Rössler systems ( 38) and ( 39) with non-identical orders to achieve synchronization. (50)

the drive system (38) and the response system (39) are synchronized. The error functions evolution, in this case, is shown in Fig. 4. It is clear, from Fig. 4, that the components of the error system (42) decay towards zero as t -→ +∞.

Conclusion

In the present paper, we study the control and synchronization problems of non-identical chaotic fractional order systems. We present theoretical results for drive-response synchronization between fractional order systems with different fractional orders, based on stability results of fractional order systems and Laplace transform theory, such as the fractional extension of Chen and Rössler systems. The designed adaptive nonlinear controller that applied to the response system affects the system dynamics to realize synchronization. The controller is designed such that the components of the error system decay towards zero as the time variable, t, tends to infinity. The numerical simulations show the effectiveness and the feasibility of the proposed scheme. Finally, the recent appearance of fractional order systems as models in many fields makes it necessary to investigate the issues of chaos, control and synchronization of such systems and we hope that this work is a step in this direction. 14) and [START_REF] Lu | Chaotic dynamics and synchronization of fractional-order Arneodos systems[END_REF], when (a, b, c) = [START_REF] Hilfer | Applications of Fractional Calculus in Physics[END_REF][START_REF] Pecora | Synchronization in chaotic systems[END_REF][START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF], α = (1, 0.9, 0.9), β = (0.9, 0.9, 0.9) and (k1, k2, k3) = (35, -28, 2). β = (0.9, 0.9, 0.9) and (k1, k2, k3) = (0.5, -1, 8). 

  Fractional Chen system (6), when (a, b, c) =[START_REF] Hilfer | Applications of Fractional Calculus in Physics[END_REF][START_REF] Pecora | Synchronization in chaotic systems[END_REF][START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF], has three equilibrium points,

4 Now, if α 1 =

 41 α 2 = α 3 = α, then the eigenvalues of the equilibrium points are, ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ P1 : λ1 = -30.83587, λ2 = 23.83587, λ3 = -3, P2 : λ1 = -18.42796, λ2,3 = 4.21398 ± 14.88464 i, P3 : λ1 = -18.42796, λ2,3 = 4.21398 ± 14.88464 i.
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 421 245-(35-k1 )(28+k2)) 1/Example Taking (a, b, c) = (35, 3, 28), α = (1, 1, 1) and β = (0.95, 0.95, 0.95). If we select k 1 = 20, k 2 = -15 and k 3 = 2, then they satisfy the laws (

Example 4

 4 If we take (a, b, c) = (0.2, 0.2, 5), α = (1, 1, 0.8), β = (1, 1, 0.8), k 1 = 0, k 2 = -1.2 and k 3 = 3, then Eq. (45) reduces to, (λ 5 + 1)(λ 5 + 1)(λ 4 + 2) = 0. (49) Simply, we can show that all roots of Eq. (49) lie in the region |arg(λ)| > π/10. Therefore, under the controller ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ u1 = k1[xsxm], u2 = k2[ysym], u3 = xmzmxszs + k3[zszm],

e 1 , e 2 , e 3 Figure 1 :

 131 Figure 1: Synchronization of fractional Chen systems (14) and (15), when (a, b, c) = (35, 3, 28), α = (1, 1, 1), β = (0.95, 0.95, 0.95) and (k1, k2, k3) = (20, -15, 2).

e 1 , e 2 , e 3 Figure 2 :

 132 Figure 2: Synchronization of fractional Chen systems (14) and[START_REF] Lu | Chaotic dynamics and synchronization of fractional-order Arneodos systems[END_REF], when (a, b, c) =[START_REF] Hilfer | Applications of Fractional Calculus in Physics[END_REF][START_REF] Pecora | Synchronization in chaotic systems[END_REF][START_REF] Wang | Extending synchronization scheme to chaotic fractional-order Chen systems[END_REF], α = (1, 0.9, 0.9),

e 1 ,

 1 e 2 , e 3

Figure 3 :

 3 Figure 3: Synchronization of fractional Rössler systems (38) and (39), when (a, b, c) = (0.4, 0.2, 10), α = (1, 1, 1),

e 1 , e 2 , e 3 Figure 4 :

 134 Figure 4: Synchronization of fractional Rössler systems (38) and (39), when (a, b, c) = (0.2, 0.2, 5), α = (1, 1, 0.8), β = (1, 1, 0.8) and (k1, k2, k3) = (0, -1.2, 3).
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