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The paper is devoted to the study of pilot induced oscillations in the landing transition between the approach task and flare to touch-down. These oscillations are proved to appear in a longitudinal flight model when the delay in pilot's reactions exceeds a certain threshold for which the stability of equilibria is lost and a Hopf bifurcation appears. The formulae needed to compute the Lyapunov coefficient and an approximation of the solution are developed for the delay differential equations that model the pilot-vehicle interaction in landing task. These are applied for a concrete model.

§1. Introduction

The so-called Pilot Induced Oscillations (PIO) phenomena are now recognized to belong to a certain subclass of Aircraft Pilot Coupling (APC) (see [START_REF]Flight Control Design -Best Practices[END_REF]). The oscillatory APC event is defined as "inadvertent, unwanted aircraft motion that is associated with anomalous interactions between the aircraft and the pilot" ( [START_REF]Aviation Safety and Pilot Control -Understanding and Preventing Unfavorable Pilot-Vehicle Interactions[END_REF]). In what follows a generic model (see [START_REF] Forssel | The Aero-Data Model In a Research Environment (ADMIRE) for Flight Control Robustness Evolution[END_REF]) will be considered that outlines the interaction between effective aircraft dynamics and pilot's characteristics in the longitudinal motion since PIO are dominant in terminal flight conditions. Famous PIO in landing phase were reported for YF22, Saab Grippen, C-17A, Airbus A321, Boeing 777 aircraft, some of which are using advanced highly augmentation flight control systems. Yet, the Hopf bifurcations of equilibria and the study of the stability of the resulting limit cycle taking as parameter the time delay in pilot's action were not considered until much later (see [START_REF] Mehra | Bifurcation and limit cycle analysis of nonlinear pilot[END_REF], [START_REF] Ph | Stability Analysis Through Bifurcation Theory[END_REF], [START_REF] Garteur Fm | AG12 -Analysis of nonlinear pilot-vehicle systems using modern control theory[END_REF], [START_REF] Ionit | Delay Induced Oscillations[END_REF]).

In the study of PIO based on the qualitative theory of delay differential equations, two points of view are met: one is pessimistic with respect to the use of such a model due to its inherent complexity: functional initial conditions, an infinite number of roots for the characteristic equation, etc. A second point of view, more optimistic, hopes to use such models in order to choose closed-loop system's parameters such that the bifurcating value be high with respect to certain requirements (see [START_REF] Ionit | Delay Induced Oscillations[END_REF]).

The time-delay model that will be studied below is a conventional one and can be seen as an equivalent system obtained from the high order augmentation dynamics of an airplane.

The paper is organized as follows: in Section 2 the model of the pilot-vehicle interaction in landing tasks is introduced. In Section 3 the system of equations for equilibria is analyzed in connection with Hopf bifurcation theorem in [START_REF] Hale | Theory of Functional Differential Equations[END_REF]. Section 4 is devoted to the study of the stability of the limit cycle provided by the Hopf bifurcation theorem. The first Lyapunov coefficient, as well as others constants involved in the description of the limit cycle, depend, of course, on the equilibrium point where bifurcation appears. In Section 5 a case study is presented. Some concluding remarks are given in Section 6. §2. The Pilot-Vehicle Model in the Landing Task

The ADMIRE generic model (see [START_REF] Forssel | The Aero-Data Model In a Research Environment (ADMIRE) for Flight Control Robustness Evolution[END_REF]) is a single engine aircraft with a deltacanard configuration. The coefficients in the nonlinear aerodynamic model are calculated on the basis of the Generic Aerodynamic Model (GAM). The aircraft dynamics is completed by a flight control system in order to provide stability and affordable handling qualities within the operational envelope. The longitudinal controller provides the pitch rate control and angle of attack control. It consists of two parts

u(t) = u 1 (t) + u 2 (t -τ )
where u 1 is the contribution of the flight control system with stability augmentation and u 2 is the contribution of pilot's action. So

u 1 (t) = k α α(t) + k q q(t), u 2 (t) = kθ(t -τ ).
The model for pilot's action is in the frame of classical crossover model: pure pilot gain k and pilot delay τ . The mathematical model for a longitudinal landing flight becomes

(2.1) α = m 11 α + m 12 q + c cos θ + b 1 k θ(t -τ ) q = m 21 α + m 22 q + c m 0 cos θ -c c 1 sin θ + b 2 k θ(t -τ ) θ = q.
The state vector consists of the incidence angle α, the pitch attitude θ and the pitch rate q. The coefficients are supposed constant but depend on flight conditions and aerodynamic characteristics such as mass or moment of inertia of the generic aircraft.

S 3. Hopf bifurcation of equilibria

Equilibria for (2.1) are obtained from the system (3.1)

q = 0 m 11 α + b 1 k θ + c cos θ = 0 m 21 α + b 2 k θ + c m 0 cos θ -c c 1 sin θ = 0.
Let (α 0 , 0, θ 0 ) be an equilibrium point for (2.1). Perform a translation into zero through

(3.2) α 1 = α -α 0 , q 1 = q, θ 1 = θ -θ 0 System (2.1) becomes (3.3) α1 = m 11 α 1 + m 12 q 1 + c cos θ 0 cos θ 1 - -c sin θ 0 sin θ 1 + b 1 k θ 1 (t -τ ) + c cos θ 0 q1 = m 21 α 1 + m 22 q 1 + (c m 0 cos θ 0 -c c 1 sin θ 0 ) cos θ 1 - -(c m 0 sin θ 0 + c c 1 cos θ 0 ) sin θ 1 + b 2 k θ 1 (t -τ )- -(c m 0 cos θ 0 -c c 1 sin θ 0 ) θ1 = q
The characteristic equation for the trivial equilibrium of (3. Recall from [START_REF] Hale | Theory of Functional Differential Equations[END_REF] the following theorem Theorem 3.1 ([8], Ch11, §11.1) Suppose that there exists τ c > 0 such that the characteristic equation (3.4), Δ(λ, τ c ) = 0, has a pair of simple purely imaginary roots λ 0 = iν 0 , λ0 = -iν 0 and all other roots have negative real parts. Suppose also that (3.6) Re λ 0 (τ c ) = 0.

Then a Hopf bifurcation occurs for τ = τ c , that is, for τ close to τ c every system (3.3) (thus system (2.3) too) has a periodic solution.

In order to find ν 0 and τ c we follow [START_REF] Cooke | On zeros of some transcendental equations[END_REF] and begin with the equation (P and Q are given in (3.5)). We suppose that conditions of Theorem 1 in [START_REF] Cooke | On zeros of some transcendental equations[END_REF] are fulfilled so, if ν 0 > 0 is a simple root of (3.7) it is a simple root of

|P (iy)| = |Q(iy)|.
Introduce the real and imaginary parts of P (iy) and Q(iy) through

P = P 1 + iP 2 , Q = Q 1 + iQ 2 so, P 1 (y) = Re P (iy), P 2 (y) = Im P (iy), Q 1 (y) = Re Q(iy), Q 2 (y) = Im Q(iy).
Remark that the solution of (3.1) is present in the coefficients of P .

Being a solution of (3.4) is equivalent for λ = iν 0 to

(3.8) cos τ ν 0 = - P 1 (ν 0 ) Q 1 (ν 0 ) + P 2 (ν 0 )Q 2 (ν 0 ) |Q(iν 0 )| 2 sin τ ν 0 = - P 1 (ν 0 ) Q 2 (ν 0 ) -P 2 (ν 0 ) Q 1 (ν 0 ) |Q(iν 0 )| 2
(by the first hypothesis in Theorem 1 in [START_REF] Cooke | On zeros of some transcendental equations[END_REF] and by (3.7), Q(iν 0 ) = 0). If τ c is a solution of (3.8), λ(τ c ) crosses the imaginary axis at λ = iν 0 in the direction given by (3.9) s = sgn Re dλ dτ

⏐ ⏐ ⏐ λ=iν0 = sgn F (ν 0 ).
As remarked in [START_REF] Cooke | On zeros of some transcendental equations[END_REF] the condition that ν 0 is a simple root of F (y) = 0 assures that, for τ = τ c , iν 0 is a simple root of (3.4).

A particular case of the formulae given in [START_REF] Cooke | On zeros of some transcendental equations[END_REF] implies that if (3.7) has only one positive root, this one crosses the imaginary axis, as τ increases to τ c , from left to right. So, if for τ = 0 the roots of the characteristic equation (3.4) are in the left half plane they will remain there until τ = τ c , thus equilibria given by (3.1), (α 0 , 0, θ 0 ), are stable for τ < τ c . The stability properties of the limit cycle are determined using the first Lyapunov coefficient. §4. Stability 

of limit cycles

The basic reference for the formulae to compute the first Lyapunov coefficient is [START_REF] Hassard | Theory and Applications of Hopf Bifurcations[END_REF]. Similar computations were carried on in [START_REF] Adimy | Stability of limit cycles in a pluripotent stem cell dynamics model[END_REF].

With

(4.1) μ = τ -τ c equation (3.
3) can be rewritten as

(4.2) ẋ = G μ (x t ), t ≥ 0
where x t (s) = x(t + s) and G μ is a functional that acts on the space

C := C [-μ -τ c , 0] , C 3 of continuous functions defined on [-μ -τ c , 0] with values in C 3 . G μ is defined through (4.3) G (1) μ ⎛ ⎝ ϕ 1 ϕ 2 ϕ 3 ⎞ ⎠ = m 11 ϕ 1 (0) + m 12 ϕ 2 (0) + c cos θ 0 cos ϕ 3 (0)- -c sin θ 0 sin ϕ 3 (0) + b 1 k ϕ 3 (-μ -τ c ) + a 0 G (2) μ ⎛ ⎝ ϕ 1 ϕ 2 ϕ 3 ⎞ ⎠ = m 21 ϕ 1 (0) + m 22 ϕ 2 (0) + d 1 cos ϕ 3 (0)- -d 2 sin ϕ 3 (0) + b 2 k ϕ 3 (-μ -τ c ) + b 0 G (3) μ ⎛ ⎝ ϕ 1 ϕ 2 ϕ 3 ⎞ ⎠ = ϕ 2 (0)
where (4.4)

d 1 = c m 0 cos θ 0 -c c 1 sin θ 0 , d 2 = c m 0 sin θ 0 + c c 1 cos θ 0 .
The linearized equation is given by the Fréchet derivative of G μ in zero.

L μ = G μ (0) is explicitly given by (4.5) L μ ⎛ ⎝ ϕ 1 ϕ 2 ϕ 3 ⎞ ⎠ = = ⎛ ⎝ m 11 ϕ 1 (0) + m 12 ϕ 2 (0) -(c sin θ 0 ) ϕ 3 (0) + b 1 k ϕ 3 (-μ -τ c ) m 21 ϕ 1 (0) + m 22 ϕ 2 (0) -d 2 ϕ 3 (0) + b 2 k ϕ 3 (-μ -τ c ) ϕ 2 (0) ⎞ ⎠ . Introducing (4.6) F μ := G μ -L μ equation (4.2) becomes (4.7) ẋ = L μ x t + F μ (x t ), t ≥ 0. Obviously F μ (0) = 0, F μ (0) = 0. Define as in [10], [1], X 0 (θ) = 0, -μ -τ c ≤ θ < 0 1, θ = 0
, and then define (4.8)

A μ ϕ = ϕ + X 0 (L μ ϕ -ϕ (0)) , ϕ ∈ C.
Equation (4.7) can be written as

(4.9) ẋt = A μ x t + X 0 F μ (x t ). The initial data is x(s) = ϕ(s), s ∈ [-μ -τ c , 0]
. More details on operator A μ and initial problem (4.9) can be found in [START_REF] Hale | Theory of Functional Differential Equations[END_REF], [START_REF] Hassard | Theory and Applications of Hopf Bifurcations[END_REF], [START_REF] Faria | Normal forms for retarded functional differential equations and applications to Bogadanov-Takens singularity[END_REF].

An eigenvector of A 0 with respect to λ = iν 0 is given by γ

(θ) = e i ν0 θ ⎛ ⎝ γ 1 γ 2 γ 3 ⎞ ⎠ where (4.10) γ 1 = c sin θ 0 + b 1 k e -i ν0 τc -i ν 0 m 12 m 11 -i ν 0 , γ 2 = i ν 0 , γ 3 = 1.
For ϕ ∈ C and ψ ∈ C [0, τ c + μ] , C 3 define, according to [START_REF] Hale | Theory of Functional Differential Equations[END_REF], [START_REF] Hassard | Theory and Applications of Hopf Bifurcations[END_REF], [START_REF] Faria | Normal forms for retarded functional differential equations and applications to Bogadanov-Takens singularity[END_REF], the bilinear form

(4.11) ψ, ϕ = 3 j=1 ψ j (0) ϕ j (0) - 3 j=1 -μ-τc 0 ψ j (ξ + τ c + μ) ϕ j (ξ)dξ.
With respect to (4.11) the adjoint of A μ given in (4.8) is

A * μ ⎛ ⎝ ψ 1 ψ 2 ψ 3 ⎞ ⎠ = - ⎛ ⎝ ψ 1 ψ 2 ψ 3 ⎞ ⎠ + +X * 0 ⎡ ⎣ ⎛ ⎝ m 11 ψ 1 (0) + m 21 ψ 2 (0) m 12 ψ 1 (0) + m 22 ψ 2 (0) + ψ 3 (0) -(c sin θ 0 )ψ 1 (0) + b 1 k ψ 1 (μ + τ c ) -d 1 ψ 2 (0) -b 2 k ψ 2 (μ + τ c ) ⎞ ⎠ - - ⎛ ⎝ ψ 1 (0) ψ 2 (0) ψ 3 (0) ⎞ ⎠ ⎤ ⎦ . It follows that γ * (θ) = e i ν0 θ d ⎛ ⎝ γ1 γ2 γ3 ⎞ ⎠ is an eigenvector of A * 0 for (4.12) γ1 = 1, γ2 = i ν 0 -m 11 m 12 , γ3 = -m 12 + (i ν 0 -m 22 ) (i ν 0 -m 11 ) m 21
and for every d ∈ C. We choose d such that the normalizing condition γ * , γ = 1 be satisfied, thus d • (

3 j=1 γ j γj ) 1 + τ c e -i ν0 τc = 1 so (4.13) d = ⎡ ⎣ ( 3 j=1 γ j γj ) 1 + τ c e -i ν0 τc ⎤ ⎦ -1
.

Remark that, from Δ (i ν 0 , τ c ) = 0 and from (4.11) it follows that

(4.14) γ * , γ = 0.
The vectors γ and γ * are used to define the restriction of equation (4.9) to the section C 0 of the center manifold that corresponds to ±i ν 0 and to μ = 0 (see [START_REF] Hassard | Theory and Applications of Hopf Bifurcations[END_REF], [START_REF] Adimy | Stability of limit cycles in a pluripotent stem cell dynamics model[END_REF], [START_REF] Carr | Applications of Center Manifold Theory[END_REF], [START_REF] Chafee | A bifurcation problem for a functional differential equation of finitely retarded type[END_REF]). If x t is a solution of (4.9) define, for t ≥ 0, (4.15)

z(t) = γ * , x t
z and z will be used as local coordinates on C 0 in the directions γ * and γ * respectively. (4.11) implies that

z(t) = d ⎛ ⎝ 3 j=1 γj x j (t) - 3 j=1 γj -τc 0 e -i ν0 (ξ+τc) • x j (t + ξ) dξ ⎞ ⎠ .
Define, for t ≥ 0 and s ∈ [-τ c , 0],

(4.16) w(t, s) = x t (s) -2Re [z(t) γ(s)] = ⎛ ⎝ w (1) (t, s) w (2) (t, s) w (3) (t, s) ⎞ ⎠ .
On C 0 we have w(t, s) = W [z(t), z(t), s] where

(4.17) W (z, z, s) = ⎛ ⎜ ⎝ w (1) 20 (s) w (2) 20 (s) w (3) 20 (s) 
⎞ ⎟ ⎠ z 2 2 + ⎛ ⎜ ⎝ w (1) 11 (s) w (2) 11 (s) w (3) 11 (s) 
⎞ ⎟ ⎠ z z + ⎛ ⎜ ⎝ w (1) 02 (s) w (2) 02 (s) w (3) 02 (s) 
⎞ ⎟ ⎠ z2 2 + . . .
For real x t , w is real so w 02 = w20 . From (4.14) and (4.15) it follows that γ * , w = γ * , x tγ * , γ * , x t γ + γ * , γ * , x t γ = 0. On the section C 0 , (4.18)

ż(t) = γ * , A 0 x t + X 0 [F 0 (x t )] = i ν 0 z(t) + γ * , F 0 [x(t)] (4.16) = = i ν 0 z(t) + γ * , F 0 [w(t, 0) + 2Rez(t) γ(0)] = = i ν 0 z(t) + γ * (0) T • f 0 (z(t), z(t)) := := i ν 0 z(t) + g [z(t), z(t)]
where dot means the scalar product in C 3 , T means transposed and f 0 (z, z) is given by the Taylor expansion of (3.3) around zero. Namely

f 1 (α 1 , q 1 , θ 1 ) = m 11 α 1 + m 12 q 1 + (c cos θ 0 ) • 1 - θ 2 1 2! + θ 4 1 4! -. . . - -(c sin θ 0 ) • θ 1 - θ 3 1 3! + . . . + a 0 + k b 1 θ 1 (t -τ c ) f 2 (α 1 , q 1 , θ 1 ) = m 21 α 1 + m 22 q 1 + d 1 • 1 - θ 2 1 2! + θ 4 1 4! -. . . - -d 2 • θ 1 - θ 3 1 3! + . . . + b 0 + k b 2 θ 1 (t -τ c ) (4.18
) is called the normal form obtained by restricting the flow to the center manifold. The Liapunov coefficients are computed using the coefficients of the Taylor expansion of g around (0, 0). Define (4.21)

L 1 (0) = i 2ν 0 g 20 g 11 -2|g 11 | 2 - 1 3 |g 02 | 2 + 1 2 g 21
The first Lyapunov coefficient is

(4.22) l 1 (0) = ReL 1 (0)
So, for l 1 (0), we need g 20 , g 11 and g 21 . It follows straightly from (4.20) that 

d dt w(t, •) = d dt x t (•) -d dt [z(t)γ(•) + z(t)γ(•)] = = A 0 w(t, •) + X 0 F 0 [w(t, •) + 2Re (z(t)γ(•))] - -2Re [g(z(t), z(t))γ(•)] = = A 0 w(t, •) + H [z(t), z(t), •]
where, for s ∈ [-τ c , 0] we define

(4.26) H(z, z, s) = -2Re [g(z, z)γ(s)] + X 0 (s)F 0 [W (z, z, s) + 2Re [zγ(s)]] Thus, for s ∈ [-τ c , 0) H(z, z, s) = -2Re [g(z, z)γ(s)] = H 20 (s) z 2 2 + H 11 (s)z z + H 02 (s) z2 2 + . . . with (4.27) H 20 (s) = -g 20 γ(s) -ḡ02 γ(s) = -2Re [g 20 γ(s)] H 11 (s) = -2Re [g 11 γ(s)] H 02 (s) = H 20 (s)
. By (4.25) and (4.17)

(4.28) A 0 w(t, s) + H [z(t), z(t), s] = d dt w(t, s) = = d dt w 20 (s) z 2 (t) 2 + w 11 (s)z(t)z(t) + w 02 (s) z2 (t) 2 + . . . = = w 20 (s)z(t) ż(t) + w 11 (s) [ ż(t)z(t) + z(t) ż(t)] + w 02 (s)z(t) ż(t) + . . . = = w 20 (s)z [i ν 0 z + g(z, z)] + w 11 (s) [z (i ν 0 z + g(z, z)) + + z -i ν 0 z + g(z, z) + w 02 (s)z -i ν 0 z + g(z, z) (A 0 is acting on variable s).
Identifying the terms corresponding to z 2 , z z, z2 in (4.28) and recalling (4.17) we get (4.29)

(A 0 -2i ν 0 ) w 20 (s) = -H 20 (s) A 0 w 11 (s) = -H 11 (s) (A 0 + 2i ν 0 ) w 02 (s) = -H 02 (s) . So, ẇ20 = 2i ν 0 w 20 + g 20 e i ν0 s ⎛ ⎝ γ 1 i ν 0 1 ⎞ ⎠ + ḡ02 e -i ν0 s ⎛ ⎝ γ1 -i ν 0 1 ⎞ ⎠ therefore (4.30) ẇ(3) 20 (s) = 2i ν 0 w (3)
20 (s) + 2Re g 20 e i ν0 s .

Making s = 0 in (4.25) and identifying again the coefficient of z 2 one gets (4.31) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ i ν 0 w (1) 20 (0) = m 11 w (1) 20 (0) + m 12 w (2) 20 (0) -(c 1 sin θ 0 )w (3) 20 (0)+ +kb 1 w (3) 20 (-τ c ) + H (1) 20 (0) i ν 0 w (2) 20 (0) = m 21 w (1) 20 (0) + m 22 w (2) 20 (0) -d 1 w (3) 20 (0)+ +kb 2 w (3) 20 (-τ c ) + H (2) 20 (0) i ν 0 w (3) 20 (0) = w
g 20 iν 0 + ḡ20 3iν 0 e 2 i ν0 s - g 20 iν 0 e i ν0 s - ḡ20 3iν 0 e -i ν0 s Then (4.32) w (3) 20 (-τ c ) = w (3) 20 (0) + g 20 iν 0 + ḡ20 3iν 0 e -2 i ν0 τc - g 20 iν 0 e -i ν0 τc - ḡ20 3iν 0 e i ν0 τc
and this value is to be introduced in (4.31).

NODY9605_source.tex; 30/10/2009; 8:33 p. 11

Identification in (4.28) of coefficients of z z when s = 0 leads to (4.33)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ m 11 w (1)
11 (0) + m 12 w

(2)

11 (0) -(c sin θ 0 )w (3) 11 (0)+ +kb 1 w (3) 11 (-τ c ) + H (1) 11 (0) = 0 m 21 w (1) 11 (0) + m 22 w (2) 11 (0) -d 1 w (3) 11 (0)+ +kb 2 w (3) 11 (-τ c ) + H (2) 11 (0) = 0 w (2) 11 (0) + H (3) 11 (0) = 0 .
We infer from the second equation in (4.29) and from (4.27) that

ẇ11 (s) = g 11 γ(s) + ḡ11 γ(s) = g 11 e i ν0 s ⎛ ⎝ γ 1 γ 2 γ 3 ⎞ ⎠ + ḡ11 e -i ν0 s ⎛ ⎝ γ1 γ2 γ3 ⎞ ⎠ so w 11 (s) = g 11 e i ν0 s -1 i ν 0 ⎛ ⎝ γ 1 γ 2 γ 3 ⎞ ⎠ -ḡ11 e -i ν0 s -1 i ν 0 ⎛ ⎝ γ1 γ2 γ3 ⎞ ⎠ + w 11 (0).
Then, using (

(-τ c ) = g 11 e -i ν0 τc -1 i ν 0 -ḡ11 e i ν0 τc -1 i ν 0 + w 4.10), it follows that (4.34) w (3) 11 
and this value will be introduced in (4.33).

In order to solve system (4.31) to find w

(3) 20 (0) and system (4.33) to find w From definition (4.26), using (4.19), one gets

H(z, z, 0) = -2Re [g(z, z) γ(0)] + F 0 [W (z, z, 0) + 2Re [z γ(0)]] = = -2Re ⎡ ⎣ ⎛ ⎝ γ 1 γ 2 γ 3 ⎞ ⎠ 1 2 g 20 z 2 + g 11 z z + 1 2 g 02 z2 + 1 2 g 21 z 2 z + . . . ⎤ ⎦ + + ⎛ ⎝ -c cos θ0 2 w (3) (0) + z + z 2 + c sin θ0 6 w (3) (0) + z + z 3 + . . . -d1 2 w (3) (0) + z + z 2 -d2 6 w (3) (0) + z + z 3 + . . . 0 ⎞ ⎠ With w (3) (0) = w (3) 20 (0) z 2 2 + w (3)
11 (0)z z + w 

μ 2 = - l 1 (0) Re [λ (τ c )] , T 2 = - Im [L 1 (0)] + μ 2 Im [λ (τ c )] ν 0
we have Theorem 4.1 ([10]) If the Lyapunov coefficient l 1 (0) defined in (4.22) is negative, periodic solutions (limit cycles) exist, for equation (3.3), if τ > τ c , τ close to τ c , and are orbitally stable. They exist for τ < τ c and are unstable if l 1 (0) > 0. Their period increases if T 2 > 0 and decreases for T 2 < 0 (T 2 given in (4.37)).

By [START_REF] Hassard | Theory and Applications of Hopf Bifurcations[END_REF] the periodic solutions are approximated by In Figure 1, the dependence of τ c on k is depicted. The higher k is the smaller is the critical time for pilot reaction. The limit cycles are depicted in Figure 2.

(4.38) ϕ(t, μ) = 2 μ μ 2 1 2 Re ⎡ ⎣ e i ν0 t ⎛ ⎝ γ 1 γ 2 γ 3 ⎞ ⎠ ⎤ ⎦ + ⎛ ⎝ α 0 0 θ 0 ⎞ ⎠ (μ is defined in (4. 1 
For k = 4, equilibria in (2.1) are α 0 = 0, 0954029; θ 0 = -0.00789153. The solution of (3.8) is τ c = 0.552144 and ν 0 = 2.04975. It follows that Re λ 0 (τ c ) = 1.8379 so Theorem 3.1 applies.

Computations on the lines in §4 yield l 1 (0) = -1.63799 so the limit cycle provided by Theorem 3.1 is a stable one (see Figures 3a and3b). Also μ 2 = 0.891232 and T 2 = 2.07495. The qualitative analysis of the mathematical model for a longitudinal motion with flight control system revealed that high pilot gains reduce pilot's allowed time delay, that is, in highly demanding tasks the pilot's reaction must be quick enough. It follows from the analysis of the stability of equilibria that, after a certain threshold τ c , the asymptotic stability is lost and a limit cycle appears through a Hopf bifurcation. Its characteristics depend on pilot's gain k. Numerical calculations of the Lyapunov coefficient show that in some situations the limit cycle is stable (for example when k ∈ {3, 4, 5}) while in other cases is unstable (k ∈ {1, 2, 6, 7}).

Numerical simulations performed for k = 4 and τ close to τ c , τ > τ c reveal a more complex situation: for constant functions as initial data not very close to the limit cycle (see (4.38)) the solution approaches another limit cycle, encircling the one given by Hopf bifurcation theorem (see Fig. 4). This is much alike the toric bifurcation (see [START_REF] Hassard | Theory and Applications of Hopf Bifurcations[END_REF]) and deserves further study both theoretical and numerical.

12 c

 12 sin θ 0b 1 k e -λτ -m 21 λm 22 c m 0 sin θ 0 + c c 1 cos θ 0b 2 k e -λτ 0 , τ ) = P (λ) + Q(λ)e -λτ where P, Q ∈ R[X], deg P = 3 and deg Q = 1.

(3. 7 )

 7 F (y) := |P (iy)| 2 -|Q(iy)| 2 = 0

2 g

 2 c cos θ 0 ) -γ2 d d1 02 = g 20 g 11 = d γ1 (-c cos θ 0 ) -γ2 d d 1 and (4.24) g 21 = d γ1 (-c cos θ 0 ) w (3) 20 (0) + 2w

  remark that it follows from (4.9), (4.16) and (4.18) that(4.25) 

e

  2i ν0 (s-θ) Re g 20 e i ν0 θ dθ = = w(3) 20 (0)e 2 i ν0 s + e 2 i ν0 s

  we need H 20 (0) and H 11 (0).

2 ,

 2 identification of coefficients for z 2 and z z gives

  31) and (4.33) can be solved now and (4.24) gives g 21 and calculation of the Lyapunov coefficient l 1 (0) is completed. Define (4.37)

  )). §5. Case study (M = 0,25; H = 500 m)The formulae developed in paragraphs 3 and 4 are applied for a specific model based on ADMIRE (AeroData Model In a Research Environment, see[START_REF] Forssel | The Aero-Data Model In a Research Environment (ADMIRE) for Flight Control Robustness Evolution[END_REF]). Specifically m 11 = -1.3892; m 12 = 1.6688; c = 0.1161; b 1 = -0.5209; m 21 = 4.2859; m 22 = -14.4124; c 1 = 0.7153; b 2 = -6.3859; m 0 = -5.2641
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 13 Figure 1: Dependence of τ c on k

Figure 4 :

 4 Figure 4: Complex situation: two limit cycles
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w (1) (t, 0) + (z + z) γ 1 w (2) (t, 0) + (z + z)