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Abstract In the following we consider a 2-dimensional
system of ODE’s containing quasiperiodic terms. The
system is proposed as an extension of Mathieu-type
equations to higher dimensions, with emphasis on how
resonance between the internal frequencies leads to a
loss of stability. The 2-d system has two ‘natural’ fre-
quencies when the time dependent terms are switched
off, and it is internally driven by quasiperiodic terms in
the same frequencies. Stability charts in the parameter
space are generated first using numerical simulations
and Floquet theory. While some instability regions are
easy to anticipate, there are some surprises: within in-
stability zones small islands of stability develop, and
unusual ‘arcs’ of instability arise also. The transition
curves are analyzed using the method of harmonic bal-
ance, and we find we can use this method to easily
predict the ‘resonance curves’ from which bands of in-
stability emanate. In addition, the method of multiple
scales is used to examine the islands of stability near
the 1:1 resonance.

Keywords 2-d Mathieu · quasiperiodic · Floquet ·
harmonic balance · multiple scales

1 Introduction

The study of systems of ode’s with periodic coefficients
arises naturally in many branches of applied mathemat-
ics. Aside from being interesting in their own right, in
applications such systems arise when considering the or-
bital stability of a periodic solution to some dynamical
system (see, for example, Betounes [1]). The archetypal
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equation for this class is the Mathieu equation,

ẍ + (δ + ε cos t)x = 0 (1)

where a dot denotes differentiation w.r.t. time. This
equation, though linear, is sufficiently complicated by
its explicit time dependence that closed form solutions
do not exist. Instead, the common method of attack is
to consider the stability of the origin using Floquet the-
ory (or other methods). The (δ, ε) parameter space is
clearly divided into regions of stability/instability (see
Jordan and Smith [5] for a detailed discussion). The ap-
pearance of these instability zones is intuitively under-
stood in the following way: consider the time-dependent
term in (1) as a perturbation. When ε = 0, x has pe-
riodic solutions with frequency

√
δ (the ‘natural’ fre-

quency of the system). As we switch on the pertur-
bation, there will be a resonance between the ‘driving’
frequency, 1, and the natural frequency

√
δ, which leads

to instability.
There are many extensions to this equation, of which

we describe only a few. Firstly the equation can be
extended to many dimensions, by replacing x with a
vector and δ and ε with matrices. This problem was
analyzed in Hansen [4] using Floquet theory, however
(in contrast with the present work) the time dependent
terms only depended on one frequency. Secondly the
equation may be extended to contain nonlinear terms;
for example El-Dib [2] consider an extension up to cu-
bic order with each term containing subharmonics in
the periodic term, and Younesian et al [13] consider
also cubic order with two small parameters and terms
in sin and cos.

Thirdly, and most importantly for the present work,
we may develop the time dependent term to contain
two periodic terms in different frequencies, and as the
two frequencies need not be commensurable this system
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is referred to as the ‘quasiperiodic Mathieu equation’.
This type of system was developed and studied in great
detail by Rand and coworkers: in Rand and Zounes [14]
and Rand et al [8] the following quasiperiodic Mathieu
equation is examined
ẍ + [δ + ε(cos(t) + cos(ωt))]x = 0 (2)
and transition curves in the (δ, ω) parameter space are
developed. Specific resonances are examined in Rand
and Morrison [7] and Rand et al [6]. In Sah et al [9] a
form of the quasiperiodic Mathieu equation is derived
and examined in the context of the stability of motion
of a particle constrained by a set of linear springs, and
finally in Rand and Zounes [15] a nonlinear version of
the quasiperiodic Mathieu equation is studied. In these
papers a combination of numerical and analytical tech-
niques are used to examine how resonances between the
internal driving frequencies lead to a loss of stability in
solutions, and it is very much in the spirit of these pa-
pers that we present the following work.

We seek to extend consideration of quasiperiodic
Mathieu-type systems to higher dimensions. The mo-
tivation for this is clear: as mentioned previously, lin-
ear systems with (quasi)periodic coefficients often arise
when a nonlinear dynamical system is linearized around
a (quasi)periodic solution, the so-called ‘variational equa-
tions’ [1]. As most dynamical systems of interest will
have more than one degree of freedom (for example the
motion of a particle in space under the influence of a col-
lection of forces), the associated variational equations
will also have more than one degree of freedom (unless
only certain modes are being considered as in [9]). We
seek a 2-dimensional system containing more than one
frequency and a small parameter ε to enable a pertur-
bation analysis. However, it is beneficial to keep the
number of free parameters low in order to make the be-
havior clear. With this in mind, we shall consider the
following system:
ẍ + [α2 + ε cos(βt)]x + ε cos(αt)y = 0

ÿ + ε cos(βt)x + [β2 + ε cos(αt)]y = 0 (3)
which in general is of the form
d2X

dt2
+ [P0 + εP1(t)]X = 0 (4)

with X = (x, y) and

P0 =
(

α2 0
0 β2

)
, P1(t) =

(
cos(βt) cos(αt)
cos(βt) cos(αt)

)
. (5)

Here a dot denotes differentiation w.r.t. time, ε is small
and α, β ∈ R.

We can predict to some degree how solutions of this
system will behave: when ε = 0, the solutions are peri-
odic in the natural frequencies α and β. As the pertur-
bation, εP1(t)X , is switched on we would expect reso-
nance between the natural and driving frequencies, as

in the Mathieu equation (1). As the natural and driving
frequencies are the same, this means we expect insta-
bility to arise where α and β are commensurable. And
this is to a degree what we do see, with two unexpected
features. Firstly, curved ‘arcs’ of instability can be seen
which clearly do not arise from integer ratios of the pa-
rameters. Secondly, within the bands of instability small
islands of stability appear. These two features will be
addressed in more detail in what follows.

While this system may seem a little artificial, we will
show how it may arise as an approximate variational
equation. Consider the following system of nonlinear
ODE’s:

ü = −α2u − uv, v̈ = −β2v − uv. (6)

This is an example of a system which is not dissipa-
tive but nonetheless is not Hamiltonian; as such it falls
into the more general class of Louiville systems (see be-
low). The author’s direct experience with systems of
this type is in the problem of the solar sail in the cir-
cular restricted 3-body problem (see for example the
author and McInnes [10]), although other applications
exist.

The origin of (6) is a fixed point, and letting u =
ũ + x, v = ṽ + y we have the linear system

d2X

dt2
=

(
−α2 − v −u

−v −β2 − u

)
u=ũ,v=ṽ

X (7)

where X = (x, y). Letting (ũ, ṽ) = (0, 0) we find two
linear oscillators which we write as ε cos(αt), ε cos(βt)
(letting the amplitudes be equal and setting the phases
to zero), and then letting ũ = ε cos(αt), ṽ = ε cos(βt)
we get system (3) above. Note that the autonomous
system (6) is not Hamiltonian and therefore (7) is not
symmetric; neither, for the same reason, is P1(t) in
(3). Whether or not the system under consideration is
Hamiltonian only becomes an issue in dimension 2 and
above; in one dimension we can always find a (time
dependent) Hamiltonian, a fact taken advantage of in
Yeşiltaş and Şimşek [12].

Note also that (u, v) = (ε cos(αt), ε cos(βt)) is not a
solution to (6), rather a solution to the linearized sys-
tem (7). As such (3) is not a true variational equation,
rather an approximation to one. We make this approxi-
mation, rather than seek more accurate solutions to (6),
so as to enable an analytical rather than purely numer-
ical treatment. The Mathieu equation itself can be seen
in this light, as an approximate variational equation to
the system

ü = −u − u3.

The fact that (3) is only approximately a variational
equation will be of relevance in what follows.
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The rest of the paper is laid out as follows: In Sec-
tion 2 we numerically integrate system (3) to examine
the stability properties of various values of α and β.
As computers can only handle finite precision we must
choose rational values of α and β and therefore (3) is
periodic, rather than quasiperiodic (a more appropriate
term might be multiply-periodic). As the system is pe-
riodic, albeit of possibly very long period, we may use
Floquet theory to enhance the numerical integration.
We are able to generate stability charts in the (α, β) pa-
rameter space for various values of ε and we discuss the
main features of same. The fact that we have lost the
true quasiperiodic nature of the system in this section
is made up for by the following: every irrational number
has rational numbers arbitrarily close to it which thus
give a very good approximation; the numerically gener-
ated stability charts allow us to isolate the interesting
features of the system which informs later analysis; and
the remaining analysis in the paper holds for arbitrary
α and β and thus recaptures the quasiperiodic nature
of the system.

In Section 3 we use the method of harmonic balance
to find the transition curves in parameter space. Writ-
ing solutions in terms of truncated Fourier series we
approximate the transition curves by the vanishing of
the Hill’s determinant. As the truncation size becomes
large the matrices of vanishing determinant also become
large making this method cumbersome. Also, there are
convergence issues with the infinite Hill’s determinant
appropriate to (3) which we will elaborate on. How-
ever, we show that we can use the method of harmonic
balance to quickly find approximations to transition
curves by understanding the following mechanism of
instability: when ε = 0 there are certain ‘resonance
curves’ in parameter space (for the Mathieu equation
(1) these are simply the points δ = n2/4 for n ∈ Z).
As ε grows, these curves widen into bands of instabil-
ity. The method of harmonic balance allows us to find
these resonance curves quickly, and we demonstrate the
usefulness of this technique on a second system closely
related to (3).

In Section 4 we use the method of multiple scales
to examine in detail the fine structure near the α ≈ β
resonance. From Section 1 we can see small islands of
stability arising in the middle of a large band of in-
stability, and we examine this feature more closely. We
separate out the ‘slow flow’ using three time variables,
and find we can analytically predict the appearance of
these pockets of stability. Finally we give some discus-
sion and suggestions for future work.

2 Numerical integration

We wish to fix the values of the parameters (α, β, ε)
and numerically integrate the system (3) to examine
the stability of the origin. In deciding what range of
values to choose for the parameters, we note that (3)
has the following scale invariance: consider the system

ẍ + [(mα)2 + m2ε cos(mβt)]x + m2ε cos(mαt)y = 0

ÿ + m2ε cos(mβt)x + [(mβ)2 + m2ε cos(mαt)]y = 0 (8)

By defining a new time coordinate t′ = mt we recover
the original system (3). Thus the following parameter
values are equivalent as regards stability:

(α, β, ε), (mα, mβ, m2ε).

This means we need only consider α and β on the unit
square (for example), and the stability of other values
of α and β are found by varying the value of ε. For
example, the stability of system (3) when α = 3, β =
2, ε = 0.1 is the same as when α = 3/4, β = 1/2, ε =
0.0125.

As mentioned in the introduction, to integrate nu-
merically we must use finite precision values of α and
β and thus the system is (multiply-)periodic. As such,
we may take advantage of Floquet theory.

Writing (3) as a first order system, the fundamental
matrix Φ(t) solves the following initial value problem
(see, for example, Yakubovich and Starzhinskii [11] for
a detailed treatment of Floquet theory)
dΦ(t)

dt
= A(t)Φ(t), Φ(0) = I (9)

where

A(t) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−[α2 + ε cos(βt)] −ε cos(αt) 0 0
−ε cos(βt) −[β2 + ε cos(αt)] 0 0

⎞
⎟⎟⎠ (10)

and A(t + T ) = A(t) for some fundamental period T .
The stability of the solutions to this system are deter-
mined by the monodromy matrix1, given by Φ(T ), since
it can be shown that(

x(T )
y(T )

)
= Φ(T )

(
x(0)
y(0)

)
.

More precisely, stability is determined by the eigenval-
ues of Φ(T ), the so-called (characteristic) multipliers
λi. If |λi| ≤ 1 the solutions remain bounded, implying
stability, and if any |λi| > 1 the solution is unbounded.

From the structure of (10) we can make some com-
ments about the multipliers:

1 In some of the literature, A(t) is known as the monodromy
matrix and Φ(T ) as the matrizant, propagator or characteristic
matrix.
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(a) (b) (c) (d)

Fig. 1 Possible positions of multipliers in the complex plane with respect to the unit circle for a t-invariant system of order 4.

1. Louiville’s theorem [5] gives

det[Φ(T )] = λ1λ2λ3λ4 = exp

(∫ T

0

Tr{A(t)}dt

)
= 1.

This however does not mean that the eigenvalues
must appear in reciprocal pairs, merely that all four
multiplied together must be 1.

2. That they must appear in reciprocal pairs comes
from the t-invariant nature of the system [11]. These
are systems with the property

A(−t)G + GA(t) = 0 (11)

for some non-singular constant matrix G. Since A(t)
is even, i.e. A(−t) = A(t), this holds with

G =
(

I 0
0 −I

)
, (12)

the entries understood to be 2 × 2 matrices. In this
case, we can show

Φ(T )−1 = G.Φ(T ).G−1, (13)

in other words, the monodromy matrix and its in-
verse are similar and thus have the same eigenvalues;
thus if λi is a multiplier then so is 1/λi.
As Φ(T ) is real, complex eigenvalues must appear in
conjugate pairs, and since they must also be recip-
rocals this means complex eigenvalues must be on
the unit circle (with one rare exception, see point
4 below). Therefore, complex multipliers represent
stability, and real multipliers instability.

3. If the system (3) were a variational equation, that is
a (nonlinear autonomous) system linearized around
a periodic solution, we would expect a unit eigen-
value (see chap. 7 of Betounes [1]) and therefore
(from the previous point) 2 unit eigenvalues. This
would make life easier, as stability would be ensured
if

Tr{Φ(T )} ≤ 4 (14)

and thus we would not need to calculate the multi-
pliers themselves. Unfortunately we cannot say this

is the case (see the Introduction), and so there is no
guarantee of unit eigenvalues. As the system can be
viewed as an approximation to a variational equa-
tion then we would expect (for small ε) to have two
multipliers close to, but not equal to, one.

4. There are a number of possibilities for the positions
of the multipliers in the complex plane, shown in
Figure 1. The most common is for the set

1 + e,
1

1 + e
, a + bi, a − bi (15)

with e ∈ R
+ and a2 + b2 = 1 (since λ̄ = 1/λ). We

may describe this as ‘saddle-centre’ (Figure 1(b)).
Stability is given by ‘centre-centre’ configurations
(Figure 1(c)), however we must also accept the pos-
sibility that the multipliers may not be on the unit
circle (Figure 1(d)). This is possible when the eigen-
values of the centre-centre configuration come to-
gether and then bifurcate off the unit circle (a Krein
collision). Note, the intermediate stage here means
the eigenvalues are equal and this is a degenerate
case; this will not be pursued further.

Based on these considerations, we will calculate the
multipliers of the monodromy matrix and find their
norms; if the norm is less than some cut-off value we
say the system is stable, otherwise unstable.

We focus on (α, β) = (0, 1)×(0, 1) (as we may do due
to the scale invariance of the system, mentioned previ-
ously). Splitting this interval into n equal segments, we
let α = i/n and β = j/n for i, j = 1, . . . , n. The funda-
mental period of system (10) is given by

T =
2πn

GCD[i, j]

where GCD is the greatest common divisor. We then
integrate the system (9) for T units of time, evaluate
Φ(T ), and calculate its eigenvalues.

The most important issue with regards accuracy is
the long integration time. If i and j do not have a com-
mon divisor, than T = 2πn, which is large for n large.
We may halve this integration time by taking advantage
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Fig. 2 Stability diagram for system (3) with ε = 0.1 and the α, β unit square divided into an 800× 800 grid. White represents points
where the norm of the maximum multiplier is greater than 1.025 (and therefore the system is unstable), and black where the norm is
less than 1.025 (the system being stable). The dashed circle shows the region of parameter space where the solutions in Figure 3 are
taken from.
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Fig. 3 Long-time solutions for very close together points in α, β parameter space. On the left is the solution for α = 435/800, β =
425/800; this point is in the stability island indicated in Figure 2. On the right is the solution for α = 436/800, β = 425/800; this
solution is outside the stability island. The integration times here are 1600π, and in both columns we present the x- and y-solution
versus time and the x-y solution. The initial conditions for both are x(0) = 1, y(0) = 1, ẋ(0) = 0, ẏ(0) = 0.
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of the t-invariant nature of the system (see above). If
A(t) is such that (11) holds, then we may show that

Φ(T ) = G.Φ(T/2)−1.G.Φ(T/2)

since G = G−1. Hence we need only integrate over one
half period to calculate Φ(T ). This improves the accu-
racy greatly, with one caveat: we must invert Φ(T/2).
However, since Louiville’s theorem holds for all t, this
means the determinant of Φ(T/2) should be one, and
thus inverting may be done accurately.

In fact, we may use the condition det[Φ(t)] = 1 to
monitor the accuracy of the integration, however this
proves very costly with regards integration time. In-
deed, for some values of α, β and ε we would expect
the solution to be grossly unstable. Monitoring the ac-
curacy of such solutions is inefficient as our concern is
the stability-instability divide, rather than how large
these very large multipliers may be. As such, we are
satisfied that if det[Φ(t)] grows very large this is due to
the huge growth in very unstable combinations of α and
β; we will not waste effort with the accuracy of these
solutions.

In Figure 2 we give the stability diagram for system
(3) with ε = 0.1. Here, we set n = 800 and thus divide
the α, β unit square parameter space into 8002 data
points. For each we calculate the maximum multiplier
norm, with white regions being where the max norm is
larger than 1.025, black regions where the max norm is
less than 1.025. We may make some observations:

– The most striking features are the large, linear bands
of instability. These are aligned along lines of con-
stant slope in the parameter space, in other words
where α/β =constant. These are clearly the domi-
nant, low order resonances between α and β, and the
lower the order of resonance the wider the band of
instability. There are also higher order resonances,
and these are of narrower width. This behavior is
very much what we would expect, based on the clas-
sical Mathieu equation and its variations.

– There are two interesting and unexpected features.
The first is the large ‘arc’ of instability seen in the
corners. This curved band of instability is not pre-
dicted by simple resonance between α and β.

– Second and perhaps more interesting are the small
islands of stability which appear in the large α ≈ β

resonance band. We would fully expect the bands of
instability to grow with ε, and this we do observe.
However, for small pockets of stability to develop
when surrounding them is very large regions of in-
stability is most unexpected. These islands are pre-
carious: we show in Figure 3 the solution for two
very nearby points in parameter space, one inside a
small island of stability and one outside.

– The corresponding plot for other values of ε can be
inferred from Figure 2 in the following way. Larger
values of ε generate stability charts which ‘zoom
in’ towards the origin of Figure 2, smaller values
‘zoom out’; this is due to the scale invariance of the
system as described at the beginning of this section.
For example, the stability chart for α, β on the unit
square and ε = 0.4 is the same as the lower left
quadrant of the same chart for ε = 0.1, since the
parameter values (α, β, ε) = (1/2, 1/2, 0.1) have the
same stability properties as (1, 1, 0.4). This is why
there is a cluster of unstable points near the origin:
moving towards the origin is equivalent to increasing
ε; the resonance bands widen and overlap. As we
decrease ε, regions beyond the unit square in Figure
2 are drawn in; since the resonance bands narrow as
we move away from the origin this is equivalent to
saying they narrow as ε is decreased, as expected,
and the chart is increasingly made up primarily of
stable points. The exception is the α ≈ β resonance
band; it does not appear to taper as we move along
it away from the origin. Some insight into this is
gained in Section 4.

While the plots generated using numerical integra-
tion are informative, they give us no feel for why certain
bands of instability develop or which are dominant. Nor
do they give us an analytic expression for the values at
which the system bifurcates from stable to unstable.
In the next two sections, we use analytical techniques
which do just this, and what’s more recapture the true
quasiperiodic nature of the original system.

3 Transition curves using the method of
harmonic balance

In Floquet theory, t-invariant systems must have multi-
pliers on the unit circle or real line (with the rare excep-
tion of Figure 1(d)). As the system passes from stable
to unstable, the multipliers must pass through the point
(1, 0) or (−1, 0) in the complex plane. These multipli-
ers represent solutions which have the same period, or
twice the period, of the original system. This means so-
lutions transiting from stable to unstable have a known
frequency and thus can be written as a Fourier series.
For this series to be a solution to the system puts a
constraint on the parameters involved, and this in turn
tells us the transition curves in parameter space.

In quasiperiodic systems, such as the one under con-
sideration in this paper, which we give again as

ẍ + [α2 + ε cos(βt)]x + ε cos(αt)y = 0

ÿ + ε cos(βt)x + [β2 + ε cos(αt)]y = 0, (16)
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Floquet theory does not hold. However, based on the
discussion above we can use the following ansatz: solu-
tions on transition curves from regions of stability to
instability in parameter space have the same quasiperi-
odic nature as the system itself. This was justified and
used by Rand et al in [14,8], and while lacking in rigor-
ous theoretical proof we find this assertion works well
in predicting the transition curves in parameter space.

Since any quasiperiodic function can be written as
an infinite Fourier series in its frequencies (see, for ex-
ample, Goldstein et al [3]), we write the solutions to
system (16) in the following form,
(

x

y

)
=

∞∑
n=−∞

∞∑
m=−∞

(
Anm

Bnm

)
exp

[
it

2
(nα + mβ)

]
,

(17)

where the 2 appears in the exponent to account for
solutions with twice the period of the system (corre-
sponding to the −1 multiplier). We substitute (17) into
(16), use the identity cos(θt) = 1

2 (eiθt+e−iθt), and shift
indices to cancel out the exponential terms. What re-
mains are the following two recurrence relations:
(

α2 − (nα + mβ)2

4

)
Anm

+
ε

2
(An,m−2 + An,m+2 + Bn−2,m + Bn+2,m) = 0,

(18)(
β2 − (nα + mβ)2

4

)
Bnm

+
ε

2
(An,m−2 + An,m+2 + Bn−2,m + Bn+2,m) = 0,

(19)

with n, m = −∞, . . . ,∞. This is a set of linear, homo-
geneous equations in Anm, Bnm of the form

Cx = 0,

and for non-trivial solutions to exist we require det(C) =
0; these are the well know infinite Hill’s determinants.
In practice, we truncate at some order N so as n, m =
−N, . . . , N . Truncating at larger values of N will pro-
duce more accurate determinants, provided the deter-
minant converges. However, close inspection of the re-
currence relations (18,19) reveals that this is an issue
for the system in question.

Writing the coefficient of Anm in (18) as γnm and
dividing across gives the following:

Anm +
ε

2γnm
(An,m−2 + . . .) = 0 (20)

with a similar expression for (19). In most systems, as
N → ∞ the ‘off-diagonal’ terms here grow progressively

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

2 : 1

5 : 2

3 : 1

4 : 1

α

β

Fig. 4 Some transition curves on the unit square for ε = 0.1
using the method of harmonic balance. The curves are where the
determinant of the coefficient matrix C vanishes.

smaller, ensuring convergence. However, we see that if
we let, for example, n = 2, m = 0 then

γ20 = 0.

Thus the infinite determinant does not converge. This
is a problem particular to systems with a driving fre-
quency that is equal to a natural frequency.

As a way around this problem we notice that a so-
lution with period 2T also has period 4T , and indeed
6T, 8T, . . . and so on. Thus we may write
(

x

y

)
=

∞∑
n=−∞

∞∑
m=−∞

(
Anm

Bnm

)
exp

[
it

2M
(nα + mβ)

]
,

(21)

where M = 1, 2, 3, . . .. In this case we see

γnm =
(

α2 − (nα + mβ)2

(2M)2

)

and the singular term does not appear in the Hill de-
terminant until N = 2M . Thus we may work up to
order N = 2M − 1 and calculate the determinant. It
will be a function of the parameters (α, β, ε) and by
setting it equal to zero we may therefore find analytic
approximations to the transition curves in parameter
space.

For example, with M = 3 we generate the matrix
appropriate to 5th order, find its determinant, and set
it equal to zero. Factorizing the determinant we see it
contains terms like the following:

(4α2 − β2 + ε)(4α2 − β2 − ε) = 0,

(9α4 − 82α2β2 + 9β4 − 64e2) ×
(9α4 − 82α2β2 + 9β4 − 16e2) = 0.
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The first two clearly indicate a band of instability with
width O(ε) around the 2:1 resonance curve, which grows
to either side of the resonance as ε grows. The second
two terms indicate a band of width O(ε2) around the 3:1
resonance curve, which grows away from the resonance
as ε grows. This implies that stability for resonant val-
ues of α and β is not as straightforward as we would
initially expect: for α/β = a/b with a, b integers the
band of instability may move away from the resonance
curve as ε grows and thus commensurable values of α, β

will in fact be stable.
We give the zeroes of some of the main factors of

the determinant in Figure 4. We can see in the figure
some of the main features we expect from our numerical
simulations, however some features are notable absent;
foremost among these is the 1:1 resonance. Going to
higher orders will capture more of the transition curves,
however the dimension of the problem quickly becomes
very large. If we truncate the series at N = 2M − 1
we must find the determinant of a 2(2N + 1)2 square
matrix, which for the example described above (M =
3) is 242 × 242. Calculating the determinant can be
facilitated in the following way: these large matrices
are very sparse as is usual for recurrence relations. We
may separate out 2M submatrices, each describing the
T, 2T, . . . , 2MT solutions, as in

C = C1C2 . . . C2M ,

and set the determinants of each to zero. However, the
improvements in accuracy from increasing M do not
justify the increasingly cumbersome and lengthy ma-
trices. Thus for this system it is worthwhile to study
the resonances of greatest import individually; this we
do in the next section.

*******

Aside from these complications, we note that the
method of harmonic balance can be used very quickly
and directly to predict, in broad terms, the locations
of the bands of instability. As mentioned previously, we
may understand the mechanism of instability so: reso-
nance curves in the (α, β) parameter space grow with ε

into bands of instability due to resonance between the
natural and driving frequencies. Predicting the location
of said resonance curves will give approximately the re-
gions of parameter space which will become unstable.
As these resonance curves are the bands of instability
in the limit of ε → 0, we may simply let ε = 0 in the
recurrence relations given in (18,19). This leads to the
following definition of the resonance curves:(

α2 − (nα + mβ)2

4

)
=

(
β2 − (nα + mβ)2

4

)
= 0,

(22)

0 0.2 0.4 0.6 0.8 1
Α

0

0.2

0.4

0.6

0.8

1

Β

Fig. 5 Resonance curves in the α, β plane for the system (24),
with |n|, |m| ≤ 2.

or

α =
±mβ

2 ± n
, β =

±nα

2 ± m
(23)

for n, m = −∞, . . . ,∞, unless n(m) = ±2 in which case
β(α) = 0. These are precisely the straight lines in the
α, β plane where the frequencies are in ratio.

As an illustration of how useful this technique can be
we can examine the following problem, closely related
to (16),

ẍ + [α + ε cos(βt)]x + ε cos(αt)y = 0

ÿ + ε cos(βt)x + [β + ε cos(αt)]y = 0. (24)

The time dependent terms here are of the same form as
in (16), and thus we write solutions on the transition
curves as in (17). Now the recurrence relations, in the
limit of ε → 0, yield the following resonance curves:
(

α − (nα + mβ)2

4

)
=

(
β − (nα + mβ)2

4

)
= 0, (25)

for n, m = −∞, . . . ,∞ (we see that in this case there
is no issue with convergence of the infinite Hill’s de-
terminants, as the driving frequencies do not equal the
natural frequencies). The resonance curves for the first
few values of n, m are given in Figure 5, which can be
compared with numerically generated stability charts
(using methods already discussed in Section 2) for non-
zero ε as shown in Figure 6. We see that the resonance
curves as predicted by (25) give a good approximation
to the location of the bands of instability in parameter
space, with very little effort.
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Fig. 6 Stability diagram for system (24) with ε = 0.1 and the α, β unit square divided into an 800×800 grid. White represents points
where the norm of the maximum multiplier is greater than 1.025, and black where the norm is less than 1.025. We see the strong
correspondence between bands of instability in this plot and the resonance curves in Figure 5.

In fact, we may generalize this technique to arrive
at the following proposition:

Proposition: For the system

d2X

dt2
+ (P0 + εP1(t))X = 0 (26)

with X ∈ R
n, P0 = diag(λ2

1, λ
2
2, . . . , λ

2
n) and P1(t) of

the form

P1(t) =

⎛
⎜⎝

cos(ω1t) . . . cos(ωnt)
...

...
...

cos(ω1t) . . . cos(ωnt)

⎞
⎟⎠ ,

bands of instability will grow with ε from resonance
curves given by

λ2
j −

(n.ω)2

4
= 0, j = 1, . . . , n,

where n is a vector of length n whose elements are all
integers in the range −∞, . . . ,∞, that is n ∈ Z

n.

Proof: On transition curves, the solution has the same
quasiperiodic structure as P1(t) and so we can write it
as a Fourier series of the form

X(t) =
∑
n

An exp
[
it

2
(n.ω)

]

where An is an n-dimensional vector of Fourier coeffi-
cients. Subbing this into (26) we find

− (n.ω)2

4

∑
n

An exp
[
it

2
(n.ω)

]

+ (P0 + εP1(t))
∑
n

An exp
[
it

2
(n.ω)

]
= 0.

The term in ε in this equation is complicated and
would involve shifting indices were we looking for the
infinite Hill’s determinant to determine the transition
curves; however we seek only the resonance curves which
are found by letting ε = 0. Canceling the exponentials
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leaves
∑
n

(
− (n.ω)

4
An + P0An

)
= 0

and since P0 = diag(λ2
i ) for i = 1, . . . , n this leaves us

with the n equations

λ2
j −

(n.ω)2

4
= 0, n ∈ Z

n.

Now we may simply plot these curves for some elements
of n as in Figure 5.

We note this method predicts the resonance points
for the Mathieu equation (1) to be δ−n2/4 = 0, and the
resonance curves for the quasiperiodic Mathieu equa-
tion (2) to be δ − (n + mω)2/4 = 0 (as in [14]), with
n, m ∈ Z.

4 The multiple scales method near the 1:1
resonance

Based on the previous section we see that the method
of harmonic balance is unable to describe behavior near
the 1 : 1 resonance, that is close to α = β. We use
instead the method of multiple scales, which is a per-
turbative technique that allows us to derive analytic
representations near resonant values of α and β.

The typical way to proceed is to expand α, β, x and
y in powers of ε, then define different time scales and
separate out the behaviour on slower time scales. We
could let

α = α0 + εα1 + ε2α2, β = α0 + εβ1 + ε2β2

so α and β only differ at first order. Then, the dif-
ferential equations would contain terms involving α0t+
α1εt+α2ε

2t which suggests we define three time scales,

t, τ = εt, T = ε2t

(T here is not to be confused with the fundamental
period T from Section 2). Note the ε2 time scale is
necessary as there are no secular terms at first order.
Now we may expand x and y in powers of ε where each
term is a function of these three times, i.e.

x = x0(t, τ, T ) + εx1(t, τ, T ) + ε2x2(t, τ, T ) + . . . (27)

and similarly for y. Subbing into the differential equa-
tions and collecting powers of ε we find a set of equa-
tions with inhomogeneous terms involving partial deriva-
tives of lower order solutions. Removing secular terms

gives differential equations in the slow-time dependence
of low order terms. However, we find that the crucial
system of equations only describes flow on the ‘very’
slow time T , and is independent of α1 and β1 (see the
Appendix for details).

Therefore, it is sufficient to define

α = α, β = α + ε2β2. (28)

Now there is only one slow time, T = ε2t, however we
are still expanding x and y in powers of ε (rather than
ε2). To second order we find the following system of
equations:

ε0 :
∂2x0

∂t2
+ α2x0 = 0,

∂2y0

∂t2
+ α2y0 = 0,

ε1 :
∂2x1

∂t2
+ α2x1 = −x0 cos(αt + β2T ) − y0 cos(αt),

∂2y1

∂t2
+ α2y1 = −y0 cos(αt + β2T ) − y0 cos(αt),

ε2 :
∂2x2

∂t2
+ α2x2 = −2

∂2x0

∂t∂T
− x1 cos(αt + β2T )

− y1 cos(αt),

∂2y2

∂t2
+ α2y2 = −2

∂2y0

∂t∂T
− y1 cos(αt + β2T )

− y1 cos(αt) − 2αβ2y0,

where x0 = x0(t, T ) and so on. Solving one at a time,
we find at zero order:

x0 = A(T ) cos(αt) + B(T ) sin(αt), (29a)

y0 = C(T ) cos(αt) + D(T ) sin(αt). (29b)

There are no secular terms on the right hand side at
first order so we find

x1 = a(T ) cos(αt)+b(T ) sin(αt)+
A

6α2
cos(2αt+β2T )+. . .

and a similar expression for y1. Now when we look at
second order, we see there are secular terms in the right
hand side (that is, terms involving cos(αt) and sin(αt)).
Setting these terms to zero results in four linear dif-
ferential equations in the slow time dependence of x0

and y0, that is the four functions A(T ), B(T ), C(T ) and
D(T ) defined in (29). Letting Y = (A, B, C, D) we may
write these four equations as dY/dT = Q(T )Y where

Q =

⎛
⎜⎜⎝

− sin(β2T ) + 3 sin(2β2T ) −2 + cos(β2T ) + 3 cos(2β2T ) 7 sin(β2T ) 1 + cos(β2T )
2 + 5 cos(β2T ) + 3 cos(2β2T ) −7 sin(β2T ) − 3 sin(2β2T ) 5 + 5 cos(β2T ) sin(β2T )
− sin(β2T ) + 3 sin(2β2T ) −2 + cos(β2T ) + 3 cos(2β2T ) 7 sin(β2T ) 1 + 24α3β2 + cos(β2T )

2 + 5 cos(β2T ) + 3 cos(2β2T ) −7 sin(β2T ) − 3 sin(2β2T ) 5 − 24α3β2 + 5 cos(β2T ) sin(β2T )

⎞
⎟⎟⎠
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Fig. 7 The largest multiplier of system (30) for μ small.

The stability of this system will determine the sta-
bility of the original system.

This system is still Louiville (Tr(Q) = 0) and t-
invariant (as defined in (11) with G = diag(1,−1, 1,−1)).
A nice simplification happens if we define a new time
coordinate t∗ = β2T , and we may write the system in
the form
dX

dt∗
= [A + μ(A0 + A1 cos(t∗) + A2 cos(2t∗)

+B1 sin(t∗) + B2 sin(2t∗))] X (30)

where μ = 1/(24α3β2) and the constant coefficient ma-
trices are given by

A =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , A0 =

⎛
⎜⎜⎝

0 −2 0 1
2 0 5 0
0 −2 0 1
2 0 5 0

⎞
⎟⎟⎠ ,

with A1, A2, B1, B2 in the Appendix. This is a one pa-
rameter 2π-periodic system, with the μ parameter mul-
tiplying terms very much like a Fourier series. It is
straightforward to analyze the stability of this system
using the methods already outlined, and we show the
maximum multiplier in Figure 7.

The appearance of a small region of stability can
be understood in the following way. In system (30),
when μ = 0 the system has natural frequency 1. As
we switch on μ, the driving frequency is also 1 and res-
onance causes the system to be unstable. However, as μ

grows, the natural frequencies are now the eigenvalues
of A+μA0, which become sufficiently distinct from the
driving frequency for stability to resume. This is tran-
sient however and as the ‘perturbation’ μ grows the sys-
tem becomes unstable again. This window of stability
occurs for

(μ− =) 0.18106 � μ � 0.189 (= μ+),

which tells us the values of β2 where stability occurs
and this in turn gives us the following band of stability

0.25 0.5 0.75 1
Α

0.25

0.5

0.75

1

Β

Fig. 8 The multiple scales prediction for a band of stability over-
laid onto the stability chart generated numerically in Section 2.

in (α, β) parameter space

α ± ε2

(
1

24α3μ+

)
< β < α ± ε2

(
1

24α3μ−

)

This result is in excellent agreement with the numerical
results generated earlier, as shown in Figure 8, at least
for values of α, β over 0.5. As discussed previously, this
is because small values of α, β are equivalent to large
values of ε and the multiple scales method would not
be expected to work well in this regime. Note that the
symmetric nature of the system is recovered by the ex-
pansion

β = β, α = β + ε2α2, (31)

analogous to (28), which results in the same stability
region as in Figure 8 reflected about the line α = β.

5 Conclusions

In this paper we have begun to analyze the rich dynami-
cal structure of two dimensional systems with quasiperi-
odic coefficients. Through a combination of numerical
and perturbative techniques we are able to predict and
determine the transition curves in parameter space which
demarcate the regions leading to stable and unstable
solutions. In particular, we find that using the method
of harmonic balance we can quickly approximate the
resonance curves in parameter space from which bands
of instability emanate, with the caveat that the band
of instability may spread out on either side of the res-
onance curve or move to its side. The multiple scales
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method has proven to be particularly informative, if a
little cumbersome, for examining the vicinity of specific
resonances.

There are three obvious issues which need to be un-
derstood further with regards the particular system un-
der consideration in this work. The first is the ‘arcs’
of instability which are commented on in §2 and can
be seen in Figure 2. These arcs do not arise in the
harmonic balance analysis, nor do they correspond to
a linear relationship between the frequencies and thus
the method of multiple scales would be inappropriate.
The exact mechanism which leads to the development
of these arcs is not understood, and is worthy of further
investigation.

The second issue is the possible resonances between
first order terms in the expansion of α, β as described
in the Appendix. Perhaps these could explain why the
multiple scales method predicts a continuous band of
stability near the 1:1 resonance, whereas numerically
we observe a broken series of islands of stability (see
Figure 2 and 8). Finally, all bands of instability visible
in Figure 2 taper as we increase α and β, as predicted
by the harmonic balance method, with the exception
of the large region of instability surrounding the 1:1
resonance. While the multiple scales analysis could be
interpreted as telling us that the true band of instability
around α = β is in fact very narrow and exists between
the predicted bands of stability, as shown in Figure 8,
it still leaves an open question as to the origin of this
large region of instability.

There are numerous extensions to the system in
question, however it would be wise to keep the number
of free parameters small to enable an informative anal-
ysis. For example, a general form could consist of two
natural frequencies and four driving frequencies. While
this would undoubtedly lead to exceedingly rich sta-
bility properties, six free parameters would be difficult
to present in a clear fashion. A ‘detuning’ parameter
in the driving frequencies would instead lead to three
parameters and would provide an interesting extension.
There are of course other extensions involving nonlinear
terms, more dimensions and so on. Finally, there are
numerous applications involving quasiperiodic oscilla-
tions about fixed points whose analysis would benefit
from the present work.

6 Appendix

As is typical in multiple scales analysis, the equations
at high orders are quite lengthy and involve very many
terms; as such we will only give an overview to justify
ignoring first order terms in α, β to arrive at (28).

Let us write

α = α0 + εα1 + ε2α2, β = α0 + εβ1 + ε2β2

and expand x, y in the three time scales t, τ and T , as in
(27). The second time derivative becomes (up to second
order in ε)

d2

dt2
=

∂2

∂t2
+ ε

(
2

∂2

∂t∂τ

)
+ ε2

(
2

∂2

∂t∂T
+

∂2

∂τ2

)
,

leading to the following system of equations in x:

ε0 :
∂2x0

∂t2
+ α2

0x0 = 0

ε1 :
∂2x1

∂t2
+ 2

∂2x0

∂t∂τ
+ α2

0x1 + 2α0α1x0

+ x0 cos(α0t + β1τ + β2T )

+ y0 cos(α0t + α1τ + α2T ) = 0

ε2 :
∂2x2

∂t2
+ 2

∂2x1

∂t∂τ
+ 2

∂2x0

∂t∂T
+

∂2x0

∂t2

+ α0x2 + 2α0α1x1 + (α2
1 + 2α0α2)x0

+ x1 cos(α0t + β1τ + β2T )

+ y1 cos(α0t + α1τ + α2T ) = 0

For the corresponding system in y, simply swap x

with y, and α1, α2 with β1, β2. We examine the equa-
tions one order at a time. At zero order, the solutions
are

x0 = a(τ, T ) cos(α0t) + b(τ, T ) sin(α0t),

y0 = c(τ, T ) cos(α0t) + d(τ, T ) sin(α0t).

At first order, which we write as

∂2x1

∂t2
+ α0x1 = inhomogeneous terms,

the right hand side includes

2α0 sin(α0t)
(

∂a

∂τ
− α1b

)
+ 2α0 cos(α0t)

(
− ∂b

∂τ
− α1a

)

in the x-equation, and similarly for c, d in the y-equation.
Setting these secular terms equal to zero gives us the
τ -dependence at zero order, i.e.

a(τ, T ) = A(T ) cos(α1τ) + A′(T ) sin(α1τ),

b(τ, T ) = B(T ) cos(α1τ) + B′(T ) sin(α1τ),

and similarly for c, d. The solution at first order will
then involve the homogeneous solution

x1 = P (τ, T ) cos(α0t) + Q(τ, T ) sin(α0t), (32a)

y1 = R(τ, T ) cos(α0t) + S(τ, T ) sin(α0t), (32b)
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and the inhomogeneous solution, made up of sin and
cos terms with arguments

(α0 ± α0)t + (α1/β1)τ + (α2/β2)T

which we will not list in full (by αi/βi we mean linear
combinations of the form k1αi + k2βi with k ∈ Z and
|k1| + |k2| ≤ 3).

At second order, which again we write as

∂2x2

∂t2
+ α0x2 = inhomogeneous terms,

we use the zero and first order solutions to calculate
the right hand side and look for secular terms, that
is terms multiplying cos(α0t), sin(α0t). The full expres-
sion for the right hand side is very lengthy and compli-
cated, and involves multiplying many cos and sin terms
of different arguments together, however we are only
interested in those with α0 in the t-dependence and so
can ignore those containing 2α0 or 3α0. This gives us
four equations: the coefficients of cos(α0t), sin(α0t) in
the x-equation, and the same for the y-equation, which
must be set equal to zero to prevent resonance in x2, y2.
These four equations are of the form

−2α0
∂Q

∂τ
− 2α0α1P + f1(t, τ, T ) = 0, (33a)

2α0
∂P

∂τ
− 2α0α1Q + f2(t, τ, T ) = 0, (33b)

and again in R, S and f3, f4 with α1 replaced by β1.
These define the τ -dependence of P, Q, R, S (from the
first order solutions x1, y1 in (32)), and we see these will
be oscillatory if we remove the cos(α1τ),sin(α1τ) terms
in f1, f2, and the cos(β1τ),sin(β1τ) terms in f3, f4. This
leads to eight equations involving the eight functions
describing the T -dependence of the zero order solutions,
that is

A, A′, B, B′, C, C′, D, D′

and their derivatives with respect to T . We may write
this as a first order system dZ/dT = Λ(T )Z, where Λ

has block form

Λ(T ) =
(

Λ1 Λ2(T )
Λ3(T ) Λ4

)
,

with Λ being Louiville (vanishing trace) and t-invariant,
as defined in (11) with

G = diag(1,−1,−1, 1, 1,−1,−1, 1).

The stability of our original system now hangs on the
stability of this one, and crucially the parameters α1, β1

do not appear in the matrix Λ. Thus the difference be-
tween α and β at first order is irrelevant and we may
set α1 = β1 = 0.

We note that there are a number of possible reso-
nances in the first order terms in α, β which we have
ignored. The fi functions described above contain terms
like, for example,

cos(2α1τ + β1τ + α2T − β2T ). (34)

In general, this will not be secular in equations (33). If
however it was the case that β1 = −α1 then this would
be secular. There are six combinations which lead to
additional secular terms, they are

α1 = ±β1, α1 = ±3β1, 3α1 = ±β1.

Each would need to be considered in turn, and would
lead to a different coefficient matrix Λ given above. We
will not pursue this issue further in the present work.

Finally, we give the coefficient matrices from (30),

A1 =

⎛
⎜⎜⎝

0 1 0 1
5 0 5 0
0 1 0 1
5 0 5 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 3 0 0
3 0 0 0
0 3 0 0
3 0 0 0

⎞
⎟⎟⎠ ,

B1 =

⎛
⎜⎜⎝

−1 0 7 0
0 −7 0 1
−1 0 7 0
0 −7 0 1

⎞
⎟⎟⎠ , B2 =

⎛
⎜⎜⎝

3 0 0 0
0 −3 0 0
3 0 0 0
0 −3 0 0

⎞
⎟⎟⎠ .
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