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Mechanical properties and impedance model for the branching network of the 
sapping system in the leaf of Hydrangea Macrophylla  
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Abstract: An electrical analogue model has been developed based on main leaf hydraulics 
characteristics and intrinsic geometry. The simulations show good qualitative agreements with 
specialized literature reports. The constant-phase behavior and the variation with ambient 
temperature of the frequency response of the leaf impedance are assessed by means of simulation 
studies. 
Keywords: fractal; impedance; constant-phase behavior; power-law; leaf; frequency domain; 
hydraulics; mechanics 
 
Nomenclature 

δ Womersley parameter = /R ωρ μ  
'
10ε  phase angle of the complex number from Bessel functions of order 0 and 1 (rad) 
μ dynamic viscosity (kg/m-s) 
θ circular coordinate  
ρ  sap density (kg/m³) 
ω circular frequency (rad/s) 
cx capacity per distance unit (l-m/kPa) 

*c  the complex velocity of wave propagation 
f frequency  (Hz) 
gx conductance per distance unit (l-m/kPa) 
i imaginary unit = 1−  
lx inductance per distance unit (kPa-m-s²/l) 
p pressure (kPa) 
q flow (l/s) 
r radial coordinate 
rx resistance per distance unit (kPa-m-s/l) 
t time (s) 
u, v, w velocity components in the radial, circular and axial directions, respectively 
z axial coordinate 
y ratio of radial position to radius =r/R 
Ce compliance (l/kPa) 
J Bessel function  
ℓ airway length (m) 
Le inertance (kPa-s²/l) 
M modulus for pressure gradient (kPa) 

'
10M  modulus of the complex number from Bessel functions or order 0 and 1 

P pressure (kPa) 
Q flow (l/s) 
Re resistance (kPa-s/l) 
R airway inner radius (m) 
Z impedance (kPa-s/l) 
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1. Introduction 
 
Branching transport networks in biology are designed such that they are energetically optimal, a 
crucial condition in species survival [6]. Such networks are then constructed by vessels in a 
bifurcating structure, for instance the circulatory [7, 12] or the respiratory systems [8, 10, 12]. The 
relationship between the parent and daughter branch will then follow a relation as a function of a 
bifurcation exponent, showing the property of self-organized critically. At the network level, based 
on a fractal pattern, this exponent will reflect the overall fluid dynamics efficiency and energy 
dissipation during transport [8]. This interesting theory may be extended to other networks, such as 
those of sap tubes in plants, where one may also recognize the presence of the branching pattern 
[13]. 
 
In a plant, the leaf is metabolically very active, functioning as the site of photosynthesis, which 
determines the primary processes occurring within the plant. Leaves are also a major site of 
carbohydrate and mineral storage. Consequently, the mineral status of the leaves not only 
influences the efficacy of photosynthesis, but also reflects the nutrient status of the plant and 
therefore its fruitfulness [14, 19]. Although other organs within the plant may act in a similar 
manner, the leaf is the most readily available source of tissue for analysis. 

Plant biologists spent many decades trying to understand the mechanisms behind the transport of 
nutrients through sap tubes in the phloem [4, 5, 14]. Proponents of mass transport believed the 
gradient of solute concentration along sap tubes would create a gradient of turgor pressure. The 
pressure gradient could be quite small, namely 0.020 MPa per meter, but still be enough to drive 
the flow of nutrients [14]. Therefore, one may consider laminar flow conditions and apply some 
well-known theoretical studies for analysis [10,17,18].  

In this contribution, a model is developed for the branching tubular structure of the leaf by means 
of its electrical impedance analogue. In order to achieve this goal, a theoretical analysis will 
determine the conditions in which the model is conceived. The final aim is to determine whether, 
or not, the branching, repetitive structure of the leaf may lead to dynamical properties of non-
integer order impedance models in the frequency domain. A similar observation has been 
previously reported in [11], strengthening our argument in carrying this study. 

Bearing these ideas in mind the structure of the paper is as follows. Section two introduces the 
theoretical basis of fluid dynamics and its electrical equivalent, and the description of the leaf 
under study. Section three presents the numerical results yielded by the proposed methodology and 
discusses the system dynamics. Finally, section four summarizes the main conclusions. 
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2. MATERIALS AND METHODS 
 
2.1 The Navier-Stokes equations  
 
The nutrient in the leaf-tubes is treated as Newtonian, with constant viscosity μ=0.0015 kg/m-s and 
density ρ=1027 kg/m³ (saltwater). Applying the Navier-Stokes (N-S) partial differential equations 
of the fluid dynamical stability in polar-cylindrical coordinates system [17], we have: 
 

2
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for the radial coordinate r, and: 
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            (2) 

for the circular coordinate θ and: 
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                                 (3) 

in the axial coordinate z, where u, v, w are Euler fluid velocity components in the radial, circular 
and axial directions, respectively; p is the pressure and F denote external forces. Due to axial 
symmetry of the flow, the circular component of the velocity is equal to zero, v=0. Similarly, the 
radial and the axial components of the velocity are function of the radial and axial coordinates as in: 

2 2

2 2

( , , ) ( , , ) ( , , ) ( , , )0, 0, 0, 0u r z t u r z t w r z t w r z t
θ θ θ θ

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
. Considering null external forces F and 

dividing by the density ρ (we consider here only those plants whose sap in the leaf is 
incompressible, with low pressure drop variations, 4 kPa, that is, 4% of atmospheric pressure), we 
have the radial and axial components defining the momentum equations as: 
 

2 2

2 2 2

1 1u u u p u u uu w
t r z r r r r z r

μ
ρ ρ

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂
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             (4) 
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From the continuity equation (mass balance) we have: 
 

1 0u u v w
r r r zθ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

                                                             (6) 

or, for an axi-symmetric case: 
 

0u u w
r r z

∂ ∂
+ + =
∂ ∂

                                                                        (7) 

 
At this moment, we defined through (4), (5) and (7) the components of the velocity, in the radial 
direction u(r,z,t) and the axial direction w(r,z,t), and the pressure of the fluid p(r,z,t). The 

dimensionless coordinate ,0 1ry y
R

= ≤ ≤  , which denotes the ratio of the radial position with 

respect to the axis of the tube and the inner tube radius R is introduced and using the relation: 
1,    r R

y r y r r R y
∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂
 

the set of three equations defined before can be re-written as: 
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                                                                        (10) 

 
Consider further the following simplification assumptions: 

 the radial velocity component is small, as well as the ratio u/R and the term in the radial 
direction; 

 the terms ( , , ) 1u r z t
R

<<  and 
2

2

( , , )u r z t y
R z

∂
<<

∂
 in the axial direction are negligible. 

Consequently, the following system results: 
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The most simple scenario is to assume a constant flow rate in a rigid pipeline (without branching 
airways taken into account), that is, the Poiseuille flow. In the case of fully developed, laminar 
flow in a rigid tube, the radial velocity is zero. Moreover, if the flow is also supposed continuous, 

the variations with respect to time are also zero. The continuity equation (13) reduces to 0w
z

∂
=

∂
 

and (12) becomes: 
2

2 2 2

1 1 1p w w
z yR y R y

μ
ρ ρ

⎡ ⎤∂ ∂ ∂
= +⎢ ⎥∂ ∂ ∂⎣ ⎦

, or equivalently 
2 1R p wy

z y y yμ
⎡ ⎤∂ ∂ ∂

= ⎢ ⎥∂ ∂ ∂⎣ ⎦
 and the 

solution is given by 
2 2

( ) ln( )
4

R p yw y A y B
zμ

⎛ ⎞∂
= + + ⎜ ⎟∂⎝ ⎠

, with A and B to be determined from 

boundary conditions. These conditions are defined on the tube wall for r=±R, w(R,z,t)=0 
component of velocity in the axial direction are equal to zero and from y=0 (axis of the tube), w(y) 
converges to a finite value. For y=±1 (tube wall) we have w=0 (no slip condition), and results that 

2

4
R pB

zμ
∂

= −
∂

. Finally, the solution is given by: 

( )
2

2( ) 1
4
R pw y y

zμ
∂⎛ ⎞= − −⎜ ⎟∂⎝ ⎠

                                                      (14) 

which is the equation of a parabola with the top at y=0 (axis of the airway) and the maximum value 
given by: 

2

max 4
R pw

zμ
∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠

                                                                  (15) 

 
while the velocity is w=0 at the wall of the pipeline, corresponding to y=±1. The total flow is 
obtained by: 
 

1

0

2  ( ) Q yR w y Rdyπ= ∫                                                          (16) 

from which we have: 
4 4

8 128
R p D pQ

z z
π π
μ μ

∂ ∂⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
                                          (17) 

 

with D=2R. The averaged velocity is given by 
2

2 8
Q R pW
R zπ μ

∂⎛ ⎞= = −⎜ ⎟∂⎝ ⎠
 and is half the maximal 

velocity (15). 
The pressure gradient along the length of a plant is related to the width of the sap tubes as well as 
the viscosity of the solution. We can use an equation to calculate expected pressure gradients and 
compare these results with those of mass transport. The Poiseuille equation assumes that the 
pressure gradient dP/dℓ  (MPa/m), created by differences in carbon concentration between phloem 
cells, depends on the width of those cells and the viscosity of the solution. A useful form of this 
equation is: 
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5
2

8 10dP w
d R

μ −=                                                           (18) 

where μ is the viscosity of the solution (around 0.015 poise), w is the axial velocity (m/s), and R is 
the radius of the tube (m). 

 
2.2. Oscillating laminar flow conditions 
 
If we consider the flow in a circular pipeline, as a result of the varying pressure-gradient, we have: 
 

( ) ( )Re cosi tp Me M t
z

ω ω−Φ∂ ⎡ ⎤− = = −Φ⎣ ⎦∂
 

 
where ω is the circular frequency (rad/s), f the frequency (Hz), M the modulus and Φ is the phase 
angle (rad) of the pressure gradient at time t=0; i is the imaginary unit 1i = −  and [ ]Re ...  denotes 
the real part of the complex function. Given the pressure gradient is periodic, it follows that also 
the pressure ( , , )p y z t  and the other velocity components ( , , ); ( , , )u y z t w y z t  will also be periodic, 
with the same frequency. The variables can therefore be written in a similar form as the pressure 
gradient, yielding: 

*

*

*
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1
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zi t
c

zi t
c
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c
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ω
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=

=
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                                                           (19) 

with c* the complex velocity of wave propagation in the axial direction, and p1(y), u1(y) and w1(y), 
y=r/R are eigen amplitude functions satisfying the boundary conditions on the tube wall r=±R, 
w(R,z,t)=0, resulting that w1(R,z,t)=0 and u1(±1)=0. The solution will consist of the modulus as a 
function of the dimensionless parameter y, and the phase as a function of time and the longitudinal 
coordinate z. Based on previously reported work [10], further simplifications lead to the following 
system of differential equations: 

( )3/ 2 *1
1 13/ 2

2
* *

zi t
ci R Au C J i y y e

c i c

ωω δ
μ δ ρ

⎛ ⎞−⎜ ⎟
⎝ ⎠⎧ ⎫

= +⎨ ⎬
⎩ ⎭

                                (20) 

( )3/ 2 *1
1 0 *

zi t
cAw C J i y e

c

ω
δ

ρ

⎛ ⎞−⎜ ⎟
⎝ ⎠⎧ ⎫

= +⎨ ⎬
⎩ ⎭

                                                    (21) 

*
1

zi t
cp A e

ω⎛ ⎞−⎜ ⎟
⎝ ⎠=                                                                                    (22) 

with /Rδ ωρ μ=  the Womersley parameter. The value of C1 results from the kinematic limit 

(velocity), 
( )

1
1 3/ 2

0

1
*

AC
c J iρ δ

= − . The pressure can be re-written as a function of the pressure 
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difference between two points: ( )*
1*

zi t i tcdp i A e Me
dz c

ω ωω ⎛ ⎞−⎜ ⎟ −Φ⎝ ⎠− = = , such that 

* 2
1

*zi t i t
c cA e Me

πω ω

ω

⎛ ⎞ ⎛ ⎞− −Φ−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= . It follows that (20-22) can be re-written in function of the pressure 

gradient: 

( ) ( )3/ 2 *
1 13/ 2 * 2 *

zi t i tci R Ryu C J i y e Me
i c c

ω ωω δ
δ ρ

⎛ ⎞−⎜ ⎟ −Φ⎝ ⎠= +                       (20’) 

( )3/ 2 * 2
1 0

zi t i t
c Mw C J i y e e

πω ω
δ

ωρ

⎛ ⎞ ⎛ ⎞− −Φ−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= +                                      (21’) 

( )i tdp Me
dz

ω −Φ− =                                                                               (22’) 

The three equations (20’-22’) form the solutions of the system of differential equations given by 
linearization of the N-S equations and the continuity equation in the conditions of an axi-
symmetrical flow; circular pipeline; negligible gravity forces. 
 
 
2.3. Analysis for rigid tubes 
 
To determine the value of C1 in (21’) is necessary to employ the “no-slip” condition (velocity w=0 
at the tube wall, thus at y=±1) [9,10]. Introducing the value for C1 in (21’) results in the axial 
velocity profile: 
 

( )
( )

3/ 2
0 2

3/ 2
0

( ) 1
i tJ i yMw y e

J i

πωδ

ωρ δ

⎛ ⎞−Φ−⎜ ⎟
⎝ ⎠

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

                                                   (23) 

with J0 the Bessel function of first kind and order zero [1]. Using the transformations from 
complex values to modulus-phase values, (23) can be re-written as: 
 

0 0
2' ( ) ' ( )

2 2
0 02( ) ' ( ) ' ( )

i t y i t yM MRw y M y e M y e
π πω ε ω ε

ωρ μδ

⎛ ⎞ ⎛ ⎞−Φ− + −Φ− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =

                    
 (24) 

 
and the real part of (24) is given by: 
 

( )
2

0 02( ) ' ( )sin ' ( )MRw y M y t yω ε
μδ

= −Φ +                                 (25) 

 
Integrating (24) and following the same reasoning as for the velocity, we obtain that 
 

( )
( )

3/ 22
1 2

3/ 2 3/ 2
0

2
1

i tJ iRQ Me
J i i

πωδπ
ωρ δ δ

⎛ ⎞−Φ−⎜ ⎟
⎝ ⎠

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

                                                 (26) 
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The averaged velocity can be found by dividing Q to the surface, 2Rπ . In a similar fashion as for 
(24), the modulus and phase can be found as: 
 

10 10
2 4' '

2 2
10 102' '

i t i tR M R MQ M e M e
π πω ε ω επ π

ωρ μδ

⎛ ⎞ ⎛ ⎞−Φ− + −Φ− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =                         (27) 

 
or the corresponding real part given by: 
 

( ) ( )
2 4

10 10 10 102' sin ' ' sin 'R M R MQ M t M tπ πω ε ω ε
ωρ μδ

= −Φ + = −Φ +       (28) 

 

In relation to the Poiseuille-flow, for 0δ →  (or ω=0 for stationary flow) we have that 10
2

' 1
8

M
δ

=  

and 10' 90ε = ° , such that (28) becomes ( )42
cos( )

128
R

Q M t
π

ω
μ

= −Φ  or ( )42
128

R pQ
π

μ
Δ

= , with Δp 

the pressure gradient and ℓ the length of the tube. In case of the leaf tubes, we always have 1δ < , 
thus the simplifying assumptions are acceptable. 
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Figure 1: photocopy of the leaf under analysis (left) and notations for each branch in terms of its 
impedance, from 1 to 38 (right). 
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lxdx rxdx

cxdx
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dx

gxdx

lxdx rxdx
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cxdx

0-ℓ
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Figure 2: Infinitesimal distance dx over the general representation of the transmission line 
 
 
 
 
 
2.4. Electrical analogue model 
 
Suppose the infinitesimal distance dx of a transmission line as depicted in figure 2 [16]. We have 
the distance-dependent parameters: lx (induction/m), rx (resistance/m), gx (conductance/m) and cx 
(capacity/m). These elements are modeled as discrete resistance (rxdx), conductance (gxdx), 
induction (lxdx) and capacity (cxdx). In the present study, we do not consider conductance or 
capacity parameters. 
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Table 1: Measured values from the photocopied leaf structure for Hydrangea Macrophylla, for the 
tube radius and length. Notice the colors matching with the schematic overview from figure 1. One 
may observe the fact that central tubes tend to have the same ratio, whereas a similar observation 
ca be made for the left and right tubes. 
 
TUBE Z Radius (m)*10e-6 Radius ratio Radius ratio Length(m)*10e-6 Length ratio Length ratio
Level 1 center 1 0,25 0,05

right 2 0,125 0,025
right 3 0,1 0,8 0,025 1,00
right 4 0,075 0,75 0,025 1,00

Level 1 center 5 0,225 0,90 0,01 0,20
Level 2 left 6 0,1 0,045
Level 3 left 7 0,1 1 0,015 0,33
Level 4 left 8 0,075 0,75 0,035 2,33
Level 1 center 9 0,225 1,00 0,015 1,50
Level 2 right 10 0,125 0,04
Level 3 right 11 0,1 0,8 0,02 0,50
Level 4 right 12 0,075 0,75 0,01 0,50
Level 1 center 13 0,2 0,89 0,01 0,67
Level 2 left 14 0,1 0,05
Level 3 left 15 0,1 1 0,015 0,30
Level 4 left 16 0,075 0,75 0,025 1,67
Level 1 center 17 0,2 1,00 0,03 3,00
Level 2 right 18 0,125 0,03
Level 3 right 19 0,1 0,8 0,025 0,83
Level 4 right 20 0,075 0,75 0,035 1,40
Level 1 center 21 0,175 0,88 0,01 0,33
Level 2 left 22 0,1 0,04
Level 3 left 23 0,075 0,75 0,025 0,63
Level 4 left 24 0,05 0,666666667 0,03 1,20
Level 1 center 25 0,15 0,86 0,03 3,00
Level 2 right 26 0,1 0,055
Level 3 right 27 0,05 0,5 0,015 0,27
Level 1 center 28 0,125 0,83 0,02 0,67
Level 2 left 29 0,1 0,03
Level 3 left 30 0,1 1 0,015 0,50
Level 1 center 31 0,125 1,00 0,025 1,25
Level 2 right 32 0,125 0,035
Level 1 center 33 0,125 1,00 0,01 0,40
Level 2 right 34 0,1 0,03
Level 1 center 35 0,125 1,00 0,012 1,20
Level 2 left 36 0,075 0,025
Level 2 center 37 0,075 0,03 2,50
Level 3 center 38 0,05 0,025 0,83  

 
 
 
We consider the analogy: the voltage represents the pressure p(x,t), the current represents the sap-
flow q(x,t) and we apply the transmission line theory [3,10]. We shall make use of the complex 
notation: 
 

( ) ( )( , ) ( ) , ( , ) ( ) QP i ti tp x t P x e q x t Q x e ω ϕω ϕ −−= =                                           (29) 
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where x is the longitudinal coordinate (m), t is the time (s), and 2 fω π=  is the angular frequency 
(rads-1). The pressure difference between two points on the transmission line denoted as x and xdx 
is due to losses over the resistance and inductance, as given by: 
 

( ) ( ) x x
qp x dx p x r dx q l dx
t

∂
+ − = − ⋅ −

∂
                                            (30) 

After division with dx (assumed to be constant) and knowing that in the limit 0dx → , we have 
that: 

2 2

²

x x

x x

p qr q l
x t

p q qr l
x x x t

∂ ∂
= − −

∂ ∂
∂ ∂ ∂

= − −
∂ ∂ ∂ ∂

                                                        (31) 

Introducing (29) in (31) we obtain respectively: 

( )

( )²
²

x x

x x

P r i l Q ZQ
x
P Q Qr i l Z

x x x

ω

ω

∂
= − + = −

∂
∂ ∂ ∂

= − + = −
∂ ∂ ∂

                                       (32) 

From these equations we have that the tube impedance is given by x x

P
xZ r i l

Q
ω

∂−
∂= = + . From (22’) 

and (27) we have the following relation for the impedance: 
'
10'

10 ' '2
10 10' 4 ' 4 '

10 10 10

² ² sin( ) cos( )
²

i
iiZ e e i

R M R M R M

π ε
εωρ μδ μδ ε ε

π π π

⎛ ⎞− −⎜ ⎟− ⎝ ⎠= = = +  

and by equivalence of the two relations we have that: 

( )'
104 '

10

² sinxr R M
μδ ε

π
=                                                       (33) 

and '
104 '

10

² cos( )xl R M
μδω ε

π
= , recalling that R ωρδ

μ
=  we obtain that: 

'
10

'
10

cos( )
²xl R M

ερ
π

=                                                              (34) 

One can estimate that over the length  of an airway tube (thus x = ), we have the corresponding 
properties: 

( )'
104 '

10

² sine xR r
R M
μδ ε

π
= =                                                    (35) 

'
10

'
10

cos( )
²e xL l

R M
ερ

π
= =                                                           (36) 

with values from Table 1, corresponding for each tube segment. 
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3. RESULTS AND DISCUSSION 
 

The viscosity-temperature relation can be expressed as a power law function, whereas 
/E kTAe νμ = with ν the kinematic viscosity, k Boltzmann's constant, T the temperature, and A and E 

arbitrary constants [4,5,19]. The variations we have considered from literature are given in table 2. 

 

Table 2: Variations in the viscosity parameter with ambient temperature, as from [5,19]. 
 

Temperature (°C) Viscosity (kg m/s) 
0 0.014 
15 0.040 
20 0.150 
30 0.610 
35 0.820 
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Figure 3: the variations in the mechanical parameters: resistance and inertance, with each tube 
segment and with temperature (via viscosity parameter). 
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Figure 4: Bode plot for the leaf input impedance, depending on temperature (via viscosity 
parameter): for 0°C (continuous bolded line); 15°C (dashed line); 20°C (dotted line); 30°C (dash-
dotted line) and 35°C (continuous thin line). 
 
 
The variation of the mechanical parameters resistance and inductance within consequent branches, 
with ambient temperature (via the viscosity parameter) is depicted in figure 3. It can be observed 
that the resistance increases within the branches of consecutive levels, whereas remains constant 
within branches of same level. This can be done by relating figure 3 with data from Table 1. The 
variability of the resistance values (standard deviations from the mean values) decreases with 
temperature. The mass inertia, denoted by inertance, increases with temperature, suggesting that 
more nutrient intake is performed at higher temperatures. This is in accordance with other studies, 
on total leaf conductance, supporting the idea of leaf activity with ambient temperature (e.g., 
photosynthesis, water content). 
 
An important element in the leaf impedance is the presence of stomata, which allow 
photosynthesis by gas exchange and diffusion, a concept quite similar to the human respiratory 
system [8,10]. The gas exchange can be viewed as an elastic loss, modeled thus by a capacitance C 
conductance G in parallel with the series RL element. However, in order to compute the values for 
the G parameter, one needs the complex elastic modulus (i.e., bulk and shear modulus). The elastic 
modulus will depend on the presence of turgor and water content in the tissue cells, which in turn 
depends on environmental conditions [15]. Since the values vary significantly in function of the 
lignum percent in the leaf, which varies also with the species, it is important that one quantifies the 
correct value when simulation studies are intended. In this preliminary study, due to the 
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unavailability of rheological data for our species Hydrangea Macrophylla, we will limit our model 
to the RL series impedance. The modeling errors introduced by the absence of capacitance or 
conductance parameters, are corrected by assuming a loss in the impedance of a tube of 10 percent. 
The reason for this consideration is twofold: i) the inter-connective tissue between the main tubes, 
such as those visible in figure 1, and ii) the transpiration process of the leaf. The inter-connective 
tissue will account for some shunt effect, given that part of the sap from the main tubes (denoted 
by Z1 to Z38) will be trapped between the main streams. The transpiration process will then be 
directly related to some losses present in each impedance term. Therefore, we assume a 10 percent 
loss from the tube impedance as due to these effects [4,14]. 
 
The simulation of the total input impedance is done in function of all the other impedances; i.e. the 
total input impedance (thus at the beginning of the networking) is Z1. In figure 4, we have plotted 
the input impedances for various values of viscosity as a function of the ambient temperature. It is 
interesting to observe the merely constant-phase behavior, suggesting a relation between the fractal 
geometry of the leaf network of sap tubes and the frequency response. It is also clear that the 
frequency response varies as a (nonlinear) function of the viscosity, which in turn depends in a 
power law relation on temperature. Our conclusion is in agreement with previous studies involving 
frequency response of leaf conductance, revealing a quasi-linear dependence with temperature 
[4,5]. The constant-phase behavior occurs within a limited ambient temperature interval, i.e. at 0°C 
and 35°C is almost non-existent, while it is most pronounced at 15°C. The values of the phase 
constancy changes as well, from about 60° phase at 15°C to about 30° phase at 20°C and 30°C. 
This would indirectly suggest some optimality condition for the leaf sap exchange in function of 
the ambient conditions (here, ambient temperature).  
 
A previous study involving frequency domain analysis of leaves over wide frequency range 
assumes a resistance in parallel with a capacitance, but takes not into account the nonlinear 
dependence with temperature (via the viscosity parameter) [2]. Although the authors acknowledge 
the presence of a fractional order dependence on frequency, they do not refer to the constant-phase 
behavior in Bode plot equivalent, but in complex impedance representation. Moreover, their 
observations are originated by dielectric properties, from dielectric spectroscopy measures, and not 
from intrinsic geometrical values.  
 
The original contribution of this study is therefore the assessment of a constant-phase behavior 
arising from the intrinsic geometry of the leaf network of sap tubes, and a preliminary electrical 
ladder network equivalent of basic leaf hydraulics. The main limitation of the present model is that 
it does not incorporate the diffusion and transpiration phenomena involved in the photosynthesis. 
Also, elasticity of the leaf tissue is neglected, thus assuming rigid tubes.  
 
Although simplified, the model we present here can be of great interest to study the total 
impedance of the plat under fractal geometry conditions. It has been recently reported that the 
morphology of the plant (thus including the leaf itself) can be expressed as allometric relationships, 
characterized by power laws; the latter being directly related to the appearance of fractional order 
impedance [13]. Under certain optimal conditions (e.g., symmetry and homogeneity) the hydraulic 

resistance to flow in xylem elements can be described by the Poiseuille equation ( )42
128

R pQ
π

μ
Δ

= . 

This implies that if the viscosity is constant, resistance will increase linearly with the tube length, 
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but inversely with a power of the radius. The authors from [13], show that an allometric relation 
for whole-plant morphology and mass exist. This then would suggest the presence of fractal 
geometry and fractal orders of impedance, which is then in agreement with our results. 
 
 
 
4. CONCLUSIONS 
 
An electrical analogue model has been developed based on main leaf hydraulics characteristics and 
intrinsic geometry. The simulations show good qualitative agreements with specialized literature 
reports. The constant-phase behavior and the variation with ambient temperature of the frequency 
response of the leaf impedance are assessed by means of simulation studies.  
 
In fact, while the frequency response of the hydraulic model has visible variation with the ambient 
temperature, it reveals a constant-phase behavior at ambient temperatures which are compatible 
with optimal conditions for the leaf and in general, for the plant itself. The model presented here 
characterizes one leaf, which can be viewed as the equivalent of an element in a system, i.e. plant 
parenchyma. The global dynamics of the plant, including the roots and several layers of leaves, 
need to be further evaluated. The authors believe that the phase-constancy characteristic will play a 
key role in the overall dynamics of the plant’s input impedance. A next step in completing the 
model is the inclusion of the specific rheological properties for the Hydrangea Macrophylla, such 
as complex elastic modulus and lignum percent. The final objective is to provide insight in 
constant-phase behavior with fractal structure of the entire plant. 
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