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Introduction

Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than the required to execute a given task. In this case the inverse kinematics admits an infinite number of solutions, and a criterion to select one of them is required. Most of the research on redundancy deals with the use of these extra degrees of freedom and is referred to in the literature as the resolution of redundancy [START_REF] Dragomir | Motion analysis of a kinematically redundant seven-DOF manipulator under the singularity-consistent method[END_REF].

Many techniques for solving the kinematics of redundant manipulators that have been suggested control the end-effector indirectly, through the rates at which the joints are driven, using the pseudoinverse of the Jacobian (see, for instance, [START_REF] Keith | A Theory of Generalized Inverses Applied to Robotics[END_REF]). The pseudoinverse of the Jacobian matrix guarantees an optimal reconstruction of the desired end-effector velocity -in the least-squares sensewith the minimum-norm joint velocity. However, even though the joint velocities are instantaneously minimized, there is no guarantee that the kinematic singularities are avoided [START_REF] Baillieul | Programming and control of kinematically redundant manipulators[END_REF]. Moreover, this method has the generally undesirable property that repetitive end-effector motions do not necessarily yield repetitive joint motions. Klein and Huang [START_REF] Klein | Review of Pseudoinverse Control for Use With Kinematically Redundant Manipulators[END_REF] were the first to observe this phenomenon for the case of the pseudoinverse control of a planar three-link manipulator. A large volume of research has been produced in the last few years in this topic [START_REF] Roberts | Repeatable Generalized Inverse Control Strategies for Kinematically Redundant Manipulators[END_REF][START_REF] Klein | Repeatable Pseudoinverse Control for Planar Kinematically Redundant Manipulators[END_REF][START_REF] Zhang | Joint Angle Drift Problem of PUMA560 Robot Arm Solved by a Simplified LVI-Based Primal-Dual Neural Network[END_REF][START_REF] Zhang | Effective neural remedy for drift phenomenon of planar three-link robot arm using quadratic performance index[END_REF]. For example, Zhang et al. [START_REF] Zhang | A Dual Neural Network Applied to Drift-Free Resolution of Five-Link Planar Robot Arm[END_REF] solve the joint angle drift problem by means of a dual-neural-network based quadratic-programming approach.

Baillieul [START_REF] Baillieul | Kinematic programming alternatives for redundant manipulators[END_REF] proposed a modified Jacobian matrix called the extended jacobian matrix. The extended jacobian is a square matrix that contains the additional information necessary to optimize a certain function. The inverse kinematic solutions are obtained through the inverse of the extended jacobian. The algorithms, based on the computation of the extended jacobian matrix, have a major advantage over the pseudoinverse techniques, because they are locally cyclic [START_REF] Baker | On the Inverse Kinematics of Redundant Manipulators[END_REF]. The disadvantage of this approach is that, while mechanical singularities may be avoided, typical algorithmic singularities [START_REF] Park | A new kind of singularity in redundant manipulation: semi algorithmic singularity[END_REF] arise from the way the constraint restricts the motion of the mechanism [START_REF] Park | Characteristics of optimal solutions in kinematics resolutions of redundancy[END_REF].

One optimization method that is gaining popularity for solving complex problems in robotics is the Genetic Algorithm (GA). GAs are population-based stochastic and global search methods. Their performance is superior to that revealed by classical optimization techniques [START_REF] Goldenberg | Genetic algorithms in search optimization, and machine learning[END_REF] and has been used successfully in robot path planning.

Parker et al. [START_REF] Parker | Inverse kinematics of redundant robots using genetic algorithms[END_REF] used GAs to position the end-effector of a robot at a target location, while minimizing the largest joint displacement. This method has some shortcomings, such as the lack of precision and is affected by the values of the weights. Arakawa et al. [START_REF] Arakawa | Virus-evolutionary genetic algorithm with subpopulations: application to trajectory generation of redundant manipulator through energy optimization[END_REF] proposed a virus-evolutionary genetic algorithm, composed of a host population and a virus population with subpopulations, for the trajectory generation of redundant manipulators without collision, that optimize the total energy. The operators of crossover, mutation, virus infection and selection are executed in each subpopulation independently. Kubota et al. [START_REF] Kubota | Trajectory generation for redundant manipulator using virus evolutionary genetic algorithm[END_REF] studied a hierarchical trajectory planning method for a redundant manipulator using a virus-evolutionary GA. This method runs, simultaneously, two processes. One process calculates some manipulator collision-free positions and the other generates a collision-free trajectory by combining these intermediate positions. De la Cueva and Ramos [START_REF] De La Cueva | Cooperative genetic algorithms: a new approach to solve the path planning problem for cooperative robotic manipulators sharing the same work space[END_REF] proposed a GA for planning paths without collisions for two robots, both redundant and non-redundant, sharing the same workspace. The GA works directly over the task space adopting the direct kinematics. Each robot is associated to one population and each string of a population represents a complete robot path. Nishimura et al. [START_REF] Nishimura | A motion planning method for a hyper multi-joint manipulator using genetic algorithm[END_REF] proposed a motion planning method using an artificial potential field and a GA for a hyperredundant manipulator whose workspace includes several obstacles. The motion planning is divided into two sub problems. The first is the "Path planning" that generates a trajectory leading the tip of manipulator to the goal without collisions, using the artificial potential field concept. The second consists in the "Collision-free sequence generation" that generates a sequence of movements by which distinct parts of the manipulator can avoid collisions with the obstacles. McAvoy and Sangolola [START_REF] Mcavoy | Optimal trajectory generation for redundant planar manipulators[END_REF] proposed an approach with GAs for optimal point-to-point motion planning of kinematically redundant manipulators. Their approach combines B-spline curves, for the generation of smooth trajectories, with Gas, for obtaining the optimal solution. Peng and Wei [START_REF] Peng | A New Trajectory Planning Method of Redundant Manipulator Based on Adaptive Simulated Annealing Genetic Algorithm (ASAGA)[END_REF] presented the ASAGA trajectory planning method of redundant manipulators by combining a stochastic search algorithm (simulated annealing algorithm) and a GA. In the ASAGA the selection, crossover and mutation operators are adjusted by using an adaptive mechanism based on the fitness value. Zhang et al. [START_REF] Zhang | Optimal Motion Generation of a Flexible Macro-micro Manipulator System Using Genetic Algorithm and Neural Network[END_REF] proposed an algorithm to solve the inverse kinematics of a flexible macro-micro manipulator system which combines a GA and a neural network. Pires et al. [START_REF] Pires | Manipulator Trajectory Planning using a MOEA[END_REF] proposed a multi-objective genetic algorithm, when considering up to five simultaneous objectives, to generate manipulator trajectories and for obstacle avoidance.

Having these ideas in mind, the paper is organized as follows. Section 2 introduces the fundamentals of the kinematics of redundant manipulators. Based on these concepts, section 3 presents the new closedloop inverse kinematics algorithm with genetic algorithms (CLGA) and the open-loop genetic algorithm (OLGA). Section 4 presents the simulation results in a workspace without and with obstacles. For comparison purposes some results for the closed-loop pseudoinverse (CLP) method are also presented. Finally, section 5 draws the main conclusions.

Kinematics and dynamics of redundant manipulators

We consider a manipulator with n degrees of freedom whose joint variables are denoted by

[ ] 1 2 
, , ,

T n q q q = q … . We assume that the class of tasks we are interested in can be described by m

variables, [ ] 1 2 
, , ,

T m x x x = x … , m n
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Differential kinematics of robot manipulators was introduced by Whitney [START_REF] Whitney | Resolved motion rate control of manipulators and human prostheses[END_REF] that proposed the use of differential relationships to solve for the joint motion from the Cartesian trajectory of the endeffector. Differentiating (1) with respect to time yields:

( ) = x J q q (2)
where

m ∈ x » , n ∈ q » and ( ) ( ) m n f × = ∂ ∂ ∈ J q q q »
. Hence, it is possible to calculate a path ( ) t q in terms of a prescribed trajectory ( )

t x
in the operational space. Equation (2) can be inverted to provide a solution in terms of the joint velocities:

( ) # = q J q x (3)
where # J is the Moore-Penrose generalized inverse of the Jacobian J [START_REF] Keith | A Theory of Generalized Inverses Applied to Robotics[END_REF][START_REF] Siciliano | Kinematic Control of Redundant Robot Manipulators: A Tutorial[END_REF].

Robot trajectory control

The Jacobian of a n-link planar manipulator (i.e., 2 m = ) has a simple recursive nature according with the expressions:
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In the closed-loop pseudoinverse (CLP) method the joint positions can be computed through the time integration of the expression:

( ) # Δ = Δ q J q x ( 5 
)
where

ref Δ - x = x
x and ref x is the vector of reference position in the operational space.

Nevertheless, in a previous study, addressing the CLP method [START_REF] Marcos | Complex Dynamics in the Trajectory Control of Redundant Manipulators[END_REF], it was concluded that this method leads to unpredictable, not repeatable, arm configurations and reveals properties resembling those that occur in chaotic systems. Genetic algorithms (GAs) are a method for solving both constrained and unconstrained optimization problems, based on the mechanics of natural genetics and selection, that was first introduced by Holland [START_REF] Holland | Adaptation in natural and artificial systems[END_REF]. A GA allows a population composed of many individuals to evolve under specified selection rules to a state that maximizes the fitness or the cost function. The GA modifies repeatedly the population of individuals (possible solutions). At each step, the genetic algorithm selects individuals at random, from the current population, to be parents, and uses them to produce the offspring for the next generation. Over successive generations, the population evolves towards an optimal solution. The GAs can be applied to solve a variety of optimization problems that are not well suited for standard optimization algorithms, including problems in which the objective function is discontinuous, not differentiable, stochastic, or highly nonlinear.

Bearing these facts in mind, in this paper we propose a new method that combines the CLP with a GA, namely the closed-loop inverse kinematics algorithm with genetic algorithms (CLGA).

In order to find an initial joint configuration of the manipulator is used another GA, adopting the direct kinematics, which is denoted as OLGA.

In both cases the optimal configuration is the one that minimizes the fitness function according to some specified criteria.

The CLGA formulation

The CLGA adopts the closed-loop structure without requiring the calculation of the pseudoinverse.

The CLGA uses an extended Jacobian matrix, n n * × ∈ J » , and an extended vector, n *

Δ ∈

x » , as a way to limit the joint configurations for a given end-effector position.

The definition of * J and * Δx take the form:
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where the matrix elements ik j and

i x Δ , 1, , i m n = + … and 1, , k n =
, are values generated by the GA, satisfying the additional imposed constraints.

Representation and operators in the CLGA

An initial population of strings, with dimension P n N = , is constructed at random and the search is then carried out among this population. Each chromosome (string) is implemented by a matrix of ( ) ( )

1 V n n m n = -× +
values (genes), with dk j and ⎦ . For the generation T , the i th chromosome of the population is represented as:
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The three different operators used in the genetic algorithm are reproduction, crossover and mutation. In what respecting the reproduction operator, the successive generations of new strings are generated on the basis of their fitness function. In this case, it is used a rank weighting to select the strings from the old to the new population. For the crossover operator, the strings are randomly grouped together into pairs and a crossover point is randomly selected for each one of the n m lines of the parent. Then crossover is performed among pairs. Finally, for the mutation operator, one variable value from the V n values of the chromosome is replaced with a new random one.

The CLGA procedure is shown in figure 1, where ref x is the vector of reference position in the operational space and ini x is a vector representing the position of the end-effecter in the operational space.
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until termination condition is TRUE 16 get new q 17 End Fig. 1. Procedure for the CLGA.

Optimization criteria

The fitness function minimizes the joint displacement between the current joint position and the initial joint position, through the following function:

0 0 1 T T f A B t t - - ⎛ ⎞ ⎛ ⎞ = + ⎜ ⎟ ⎜ ⎟ Δ Δ ⎝ ⎠ ⎝ ⎠ q q q q q q (8)
where , A B + ∈ » denotes weighting factors, 0 q and q represents the initial and current joint configurations, respectively, and t Δ is a step time increment.

The OLGA formulation

The OLGA trajectory planning adopts a simple open-loop structure, as we can see in figure 2. An initial population of strings, with dimension P n N = , is constructed at random and the search is then carried out among this population. Each chromosome is defined through an array of . For the generation T , the i th chromosome of the population is represented as:
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The end-effector position, ( )

, T i
x

, for each configuration, ( )

, T i q
, is easily calculated using the direct kinematics.

Optimization criteria

The evaluation function is defined based on the positional error of the end-effector:

( ) ( ) 2 2 error c f c f P x x y y = - + - (10) 
where ( )
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are vectors representing the end-effector current position and the desired final position, respectively. Therefore, the algorithm minimizes the function
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Simulation results

In this section we start by analyzing the performance of the CLGA for a free workspace and then we study the effect of including several types of obstacles in the working environment.

Without lacking of generality, in the following experiments are adopted arms having identical link lengths, . The goal here is to position the end-effector of the nR-robot at a target location while minimizing the joint angle drift using the fitness function 1 f with

1 A B = = .
The initial joint configuration is obtained using the OLGA with the fitness function 2 f .

The average of the positional error for C n cycles is given by the expression:

1 k error i error P P k = = ∑ ( 11 
)
where k is the number of sampling points and is defined as:
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The average of the total joint displacement for the nR-robot is given by the expression:

n Δ Δ = q q ( 13 
)
where

0 f Δ = - q q
q , is the vector of the joint displacement between the final, f q , and the initial, 0 q , joint configurations, and ⋅ represents the Euclidean norm.

The CLGA algorithm adopts crossover probabilities of 0.5 We observe that: i) the CLGA gives good precision in the task of positioning the end-effector at the target position; ii) in general, we get better results for the radial distance 2.0 r = and worse results for the radial distance 0.7 r = ; iii) in general, the positional error gets worse when the number of joints increases. Fig. 6. CLP successive robot configurations of the 3R-robot for the 1 st and 50 th cycles, respectively, and 2.0 r = .

Fig. 7. CLP successive robot configurations of the 7R-robot for the 1 st and 50 th cycles, respectively, and 2.0 r = .

In order to evaluate the joint angle drift after executing 50

C n = cycles, table 1 shows the average of the total joint displacement, Δq , when { } 3, 4, 5, 6, 7 n = and { } 0.7, 1.0, 2.0 r = , for the CLGA and the CLP methods. We verify that for the CLGA we get some drift in joint positions, but the values are very similar for all the manipulators and for all of the radial distances. For the CLP we get an high drift in the joint positions revealing that this method leads to unpredictable arm configurations. ( ) For the CLGA, we conclude that: i) repetitive trajectories in the operational space lead to periodic trajectories in the joint space; ii) the initial and final joint positions, for each of the cycles, are very close; iii) the signal energy is concentrated essentially in the fundamental and multiple higher harmonics. For the CLP, we conclude that the results depend on the circle being executed. Besides the position drifts, occur unpredictable motions with severe variations that lead to high joint transients. Moreover, for 0.7 r = we verify that a large part of the energy is distributed along several sub-harmonics, revealing properties similar to those that occur in chaotic systems.

CLGA 0.7 r = 1.0 r = 2.0 r = 3R 9 
1 dB F q ( ) 1 dB F q (a) 3R t t t 1 q 7R t 1 q 0 5 10 
1 dB F q ( ) 1 dB F q 0 1 2 3 -20 0 
We verify that the CLGA has a good performance in repetitive motion tasks because we get not only a good positioning but also a repetitive behavior. 
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The CLGA performance in a workspace with obstacles

This section presents the results of several simulations, when considering two obstacles in the workspace. At the end of the section, are presented some examples in a workspace with three obstacles. When, for a given joint configuration, some part of the manipulator is inside an obstacle, the CLGA simply rejects the configuration and generates a new population element.

The CLGA performance in a workspace with two obstacles

In the experiments, the position of the obstacles in the workspace depends on the radial distance. In figures 10-12 are represented the positions of the obstacles in the workspace for each radial distance, ( ) We observe that: i) the CLGA gives good precision in the task of positioning the end-effector at the target position, while avoiding the obstacles in the workspace; ii) in general, we get better results for the radial distance 2.0 r = and worse results for 0.7 r = ; iii) in general, the positional error, error P , gets worse when the number of joints increases. 

1.0; 1 O ( )
2.0; O i , 1, 2, 3 i = ,
during the 1 st and 50 th cycles, respectively, revealing that the motion is repetitive. Table 2 shows the average of the joint displacement, Δq , for { } 

; i O r , { } 0.7, 1.0, 2.0 r = , 1, 2, 3 i = .
Figures 18-20 show the joint positions and the Fourier transform of the robot joint velocities for the 1 st joint and 50

C n = cycles, { } 3, 7 n = , ( ) 
2.0; O i , 1 , 2, 3 i = 
. For the others joints the results are similar to the verified ones for the 1 st joint. We conclude that: i) repetitive trajectories in the operational space lead to periodic trajectories in the joint space; ii) the initial and final joint positions for each one of the cycles are very close; iii) the signal energy is concentrated essentially in the fundamental and multiple higher harmonics. We observe also that the results are consistent with those of the previous section and that the presence of obstacles does not present an additional complexity for the CLGA to reach a repetitive solution. 
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4.2.2.2

The CLGA performance in a workspace with three obstacles

One of the problems that occurs when we use the repeatability criterion is that, if the initial joint configuration of the manipulator is not well adjusted for the task, then will occur 'jumps' of the robot structure to prevent the collision with the obstacles. In the experiments the trajectory is repetitive and, therefore, these jumps may occur during several cycles.

In figures 21-22 we use a workspace with three obstacles. For 3 n = , after two different executions of the algorithm, we obtained two different initial joint configurations with distinct consequences, in terms of the positional error and performance in the execution of the task. However, if we use a manipulator with 7 n = rotational joints there is no problem to find a good solution for the initial positions. Anyway, the manipulator motion is always repeatable and the drift in the joint positions is similar to the one we obtained in the previous experiments. 

Conclusions

A CLGA algorithm that combines the CLP with a GA scheme was presented. Several experiments were developed to study the performance of the CLGA when the manipulator is required to repeat a circular motion in the operational space, while satisfying an optimization criterion, in a workspace without and with obstacles.

The results show that the CLGA gives good results in the perspective of the positional error and the repeatability of the joint positions. In what concerns the drift in the joint angles, there is no zero-drift but the results seem to be acceptable for all manipulators under analysis.

It is shown that the presence of obstacles does not present an additional complexity for the CLGA. However, the initial configuration of the manipulator plays an important role in the performance of the manipulator in a workspace with obstacles. In fact, if the initial configuration is not adjusted adequately for the required task, then jumps may occur in the joint positions to prevent the collision with the obstacles.
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 22 Fig.[START_REF] Zhang | Optimal Motion Generation of a Flexible Macro-micro Manipulator System Using Genetic Algorithm and Neural Network[END_REF]. Successive robot configurations of the 7R-robot for the 1 st and 2 nd cycles, respectively, for a workspace with three obstacles and 2.0 r = .
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 1 CLGA and CLP average of the total joint displacement, Δq , of the nR-robot,

					CLP	r =	0.7	r =	1.0	r =	2.0
		.96E-04	8.84E-04	1.08E-03	3R	1.35E+01	6.41E+00	5.80E-01
	4R	7.12E-04	7.38E-04	5.70E-04	4R	8.2E+00	4.4E+00	5.8E-01
	5R	6.73E-04	5.42E-04	6.15E-04	5R	7.2E+00	2.2E+00	4.4E-01
	6R	5.98E-04	4.81E-04	8.57E-04	6R	5.4E+00	4.9E+00	3.0E-01
	7R	1.26E-03	5.44E-04	5.39E-04	7R	4.2E+00	2.4E+00	2.0E-01
							r =	{ 0.7, 1.0, 2.0 }	and after	50

C n = cycles.
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