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Abstract Of the three collinear libration points of the Sun-Earth Circular Restricted Three-Body Problem (CR3BP), L3 is that
located opposite to the Earth with respect to the Sun and approximately at the same heliocentric distance. Whereas several space
missions have been launched to the other two collinear equilibrium points, i.e. L1 and L2, taking advantage of their dynamical
and geometrical characteristics, the region around L3 is so far unexploited. This is essentially due to the severe communication
limitations caused by the distant and permanent oppositionto the Earth, and by the gravitational perturbations mainlyinduced
by Jupiter and the close passages of Venus, whose effects aremore important than those due to the Earth. However, the adoption
of a suitable periodic orbit around L3 to ensure the necessary communication links with the Earth,or the connection with one or
more relay satellites located at L4 or L5, and the simultaneous design of an appropriate station keeping-strategy, would make it
possible to perform valuable fundamental physics and astrophysics investigations from this location. Such an opportunity leads
to the need of studying the ways to transfer a spacecraft (s/c) from the Earth’s vicinity to L3. In this contribution, we investigate
several trajectory design methods to accomplish such a transfer, i.e., various types of two-burn impulsive trajectories in a Sun-s/c
two-body model, a patched conics strategy exploiting the gravity assist of the nearby planets, an approach based on traveling
on invariant manifolds of periodic orbits in the Sun-Earth CR3BP, and finally a low-thrust transfer. We examine advantages and
drawbacks, and we estimate the propellant budget and time offlight (TOF) requirements of each.

Keywords Two-Body Problem· Patched Conics· Gravity Assist· Circular Restricted Three-Body Problem· Libration Points·
Periodic Orbits· Invariant Manifolds· Low-Thrust

1 Introduction

A space observatory placed at or around L3 could provide insight into local astrophysical phenomena such as the solar wind
and the properties of the Sun’s magnetosphere; it could monitor the evolution of the sunspots, perform solar storm forecast
and observe the space environment from a new perspective, hidden to the Earth, and in this way supplement and complete the
information obtainable, e.g., from L1 or from Earth based observatories. A satellite at L3 could be even thought of as part of
a circular or spherical constellation of s/c monitoring theSun’s activity and the space environment at many different angles.
Moreover, L3 may constitute a privileged site to perform relativity experiments, such as measuring the gravitational bending of
light on behalf of the Sun, as a follow-up of the Cassini-Huygens radio science observations. Finally, some minor bodiessuch
as NEOs and comets, hidden by the Sun as viewed from Earth, could be observed and even tracked from this more favorable
location.
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Fig. 1 The synodical barycentric reference frame of the Sun-Earth CR3BP showing the location of the two primaries and the five libration points.

The framework in which the L3 point is defined is the CR3BP, which describes the motion of a massless particle in the
gravitational force field created by two main bodies, the primaries, in Keplerian circular motion around their centre ofmass. In
the so-called synodical barycentric reference frame, the two primaries occupy fixed positions on thex-axis and there exist five
equilibrium points for the third body to stay at rest (Fig. 1): in particular, the position of the three collinear points on thex-axis
of the system are found by solving the Lagrange quintic equation ([11], pp. 134-138), which for L3 provides the approximation
1.0000013 AU for thex coordinate of Fig. 1 when the mass ratioµ of the Sun-Earth CR3BP is given a value of 3.0404234·

10−6. L3 orbits the Sun at a distance of 0.9999982 AU, hence on a slightly inner orbit with respect to that of the Earth.
Thinking of a space mission to L3, necessarily introduces the issue of designing the transfer trajectory from the Earth to this

new destination. This problem is here investigated by considering several dynamical models and design methods and discussing
preliminary solutions thus obtained. Note that if one neglects the small difference in the orbital radii between the Earth and L3 in
heliocentric inertial space, this transfer is essentiallya 180◦ re-phasing problem, i.e., providing the s/c orbit with a true anomaly
difference of 180◦ with respect to the Earth.

Section 2 presents three design strategies based on the use of impulsive maneuvers in the Sun-s/c two-body problem. This
is followed (Sect. 3) by a survey of optimized planetary gravity assisted solutions based on the patched conics method. In Sect.
4 the invariant manifolds of planar Lyapunov orbits around the three collinear libration points are used to reach the vicinity of
L3. Sect. 5 investigates two low-thrust strategies, based on optimizing the transfer time with a continuously operating thrust and
the fuel consumption in a thrust-coast-thrust operation scheme, respectively. Finally, Sects. 6 and 7 summarize and compare our
findings. For a comprehensive description of the present investigation the reader is referred to [12].

2 Two-body impulsive maneuvers

The model is the planar Sun-s/c two-body problem, with the s/c departing from the Earth’s heliocentric orbit and reaching L3

with zero relative speed. Four solution types, made of Keplerian elliptical arcs and impulsive maneuvers, are here presented.

2.1 Bi-elliptic transfer

A bi-elliptic transfer (Fig. 2a) is a classical three-burnsmaneuver consisting of two half elliptical orbits: from theinitial orbit
of radiusra, a∆Va is applied boosting the s/c into the first transfer orbit withan (arbitrary) apoapsis at some pointrb away
from the central body. At this point, a second burn, of size∆Vb, is applied sending the s/c into the second elliptical orbitwith
periapsis at the radiusrc of the final desired orbit where a third∆Vc is performed for injection (see, e.g., [13], pp. 324-332).

The requirement that the arrival point on the target orbit bein opposition to the Earth can be expressed as a relation between
the sum of the transfer times on the two elliptical orbits andthe orbital periodT⊕ of the Earth:

π

s
(ra + rb)3

8GM⊙

+ π

s
(rb + rc)3

8GM⊙

=
n

2
T⊕, n = 1, 3, 5, ... (1)

thus providing the distancerb. In Eq. 1,GM⊙ is the gravitational parameter of the Sun. By varying the oddintegern, rb and the
corresponding∆V budget and transfer time are obtained (Fig. 3a): the cheapest solution (with a∆V of 6.7 km s−1) is obtained
for n = 3 which corresponds to a reasonably short transfer time (1.5 years). Note that, when the transfer occurs between two
circular orbits which are very close to each other, like in this case, the size of the apoapsis maneuver is very small. At the limit
in which the departure and target orbits are identical, the apoapsis maneuver disappears and the resulting transfer implies two
tangential burns, shown in Fig. 2b.
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Fig. 2 Types of two-body impulsive maneuvers trajectories from the Earth’s orbit to L3: a classical bi-elliptic (a), its limiting case, called two-tangent
burn maneuver, for equal departure and arrival orbits (b), a bi-elliptic one-tangent burn (c), a multi-revolution orbit (d).

2.2 Bi-elliptic one-tangent burn transfer

A generalization of the previous case is obtained by imposing that the total transfer angle∆φ is in the interval ]π,2π] (see also
[13], pp. 333-338 for a similar maneuver). The trajectory isa sequence of two elliptical arcs: the first is half of an ellipse, thus
involving aπ radians transfer angle, whereas the second subtends an angle of∆φ−π. The total transfer requires three impulses,
but, whereas the first,∆Va, is applied tangentially, the remaining two,∆Vb and∆Vc, are in the direction required to perform the
insertion onto the second elliptical arc and the target orbit, respectively (see Fig. 2c). The apoapsis distancerb and the transfer
angle∆φ must bea priori set. Then, the timing requirement between the position of the Earth on its orbit and that of L3 on
arrival leads to a relation between the sum of the timesTe1 andTe2 spent on the two elliptical arcs and the periodT⊕ of the
Earth:

Te1 + Te2 =

�
∆φ− π

2π

�
T⊕ + nT⊕, n = 0, 1, 2, 3, ... (2)

with

Te1 = π

s
(ra + rb)3

8GM⊙

. (3)

For a givenn, Eq. 2 provides the value ofTe2 which is then used to solve the Lambert problem on the second arc, thus allowing
to compute∆Vb and∆Vc as the difference of the velocities at the start and end points of such arc with the velocity at apoapsis
of the first ellipse and the velocity of the target circular orbit, respectively.

The case here considered corresponds to a total transfer angle∆φ of 270◦. Several values for the apoapsis radiusrb between
0.7 and 1.7 AU have been adopted leading to very expensive (≫ 10 km s−1) and therefore unfeasible solutions. The cheapest
corresponds to an apoapsis radiusrb of 1.7 AU and requires a total∆V of 16.9 km s−1 and a TOF of 1 year and 3 months.
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Fig. 3 ∆V budget (open circles) and TOF (stars) for the bi-elliptic (a) and multi-revolution (b) strategies as a function of the oddintegern on which
the timing problem is designed.

2.3 Multi-revolution transfer

Finally, one can think of a multi-orbit transfer, which consists in following one and the same transfer ellipse many times in such
a way that every revolution dephases the s/c of a given (small) angle∆ψ with respect to the Earth. This option requires two
tangential burns of equal size, the first one to insert into the multi-revolution ellipse and the second one to leave it andplace the
s/c on the target orbit.∆ψ determines the integer numbern (n = 1,2,3,...) of revolutions to be performed in order to acquire the
desiredπ displacement with respect to the Earth (here L3 and the Earth are assumed to be on the same heliocentric orbit), and
the total transfer timeTm:

n =
π

∆ψ
, (4)

Tm =
2n+ 1

2
T⊕. (5)

Therefore, the displacement∆ψ determines the apoapsis distancerb of the transfer ellipse through its periodTe:

Te =
Tm

n
, (6)

rb = 2a− ra, (7)

in whicha is the semi-major axis of the transfer ellipse. Finally, the∆V budget is twice the magnitude of the impulse given to
insert into the transfer ellipse and can be represented as a function ofn as shown in Fig. 3b where also the TOF is given: the
smaller the angle∆ψ, the lower the total cost and the longer the transfer.

3 Gravity assisted trajectories

An optimized three-dimensional (3D) patched conics strategy exploiting the gravity assist of the nearby planets is here inves-
tigated as the natural evolution of the impulsive maneuver solution of the preceding section. L3 is geometrically defined as an
anti-Earth, i.e., it has the same ephemerides as the Earth, except for a true anomaly difference of 180◦.

According to the patched conics method, a trajectory to reach L3 is divided into segments, the end points of which are
planetary swingbys or departure and arrival events. Each trajectory segment is modeled as a Sun-s/c two-body problem, whereas
at the swingby events (assumed to be instantaneous) the encounter with the planet inside the planet’s sphere of influenceis
modeled as a planet-s/c two-body problem. Note that L3 is treated by the algorithm as an arrival planet of zero mass (i.e., no
swingby occurs) and therefore the arrival maneuver simply circularizes the orbit. Impulsive maneuvers are allowed at departure
(∆Vd), arrival (∆Va) and at the swingbys: one impulse at periapsis of size∆VGA is allowed in order to fill the difference between
the periapsis velocities of the incoming and the outgoing hyperbolic paths, determined by the arrival and departure heliocentric
velocities at the surface of the sphere of influence and by theconstraint of connecting in position space at a common pericenter.
No deep space maneuvers are allowed. On each interplanetarysegment the trajectory is determined by solving a 3D Lambert
problem between two dates and two heliocentric position vectors.

The trajectory solution is an optimization problem in whichthe planetary encounters and their ordering are givena priori.
The departure date, the arrival date (and hence the corresponding position vectors, as determined by the planetary ephemerides
based on polynomials in terms of the classical orbital elements, see [13], pp. 297-300 and 995-999) and the dates of the planetary
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swingbys are varied in order to minimize an objective functionC defined as the sum of the magnitudes of the maneuvers, with
the inclusion of a penalty function:

C = ∆Vd +∆Va +
nX

i=0

"
∆VGAi +Wi ·

(RPi + hmin i − rπi)
2

R2

Pi

#
. (8)

Heren is the number of swingbys and∆VGAi is the magnitude (equal to zero for unpowered swingbys) of the periapsis maneuver
at theith encounter. An additional cost, i.e., the penalty function,appears in Eq. 8 through the second term in the sum and is
represented as a nonlinear expression involving the radiusRPi of the encountered planet, the minimum swingby altitudehmin i

and the actual value of the periapsis distancerπi computed by the swingby solver.Wi is a weight and increases from preliminary
search (∼ 10) to local optimizations (∼ 100) to guarantee the feasibility of the final solutions. It is worth noting that this penalty
function is zero whenever the minimum altitude constraint is satisfied by the current solution, i.e.,rπi > RPi + hmin i.

This local optimization problem is solved through a sequential quadratic programming algorithm fed with initial guesses for
the optimization variables, obtained by a global optimization method: a genetic algorithm or a discrete search grid on arange
of dates. Typically, the former global method is adopted when the trajectory involves many (n ≥ 3) swingbys, the latter being
preferred for problems of small size (n = 1 or n = 2).

Several solutions have been explored by varying the number and ordering of the planetary swingbys, with the encountered
bodies chosen among the nearest planets, i.e., Mercury, Venus, Earth and Mars. Table 1 summarizes the results with an acceptable
cost, i.e. less than 15 km s−1, and for each planetary sequence it gives the minimum∆V budget found (given as the sum of
the individual impulses), an estimate of the gravity assist∆VB provided by the planets (expressed as the sum of the individual
contributions) and the corresponding TOF (sum of the times spent on each segment). Solutions involving swingbys at Mercury
or more than two intermediate encounters have been tested, but the resulting trajectories are very expensive and, therefore, do
not appear in this list.

The optimized solution of the type Earth-Earth-L3 (EEL3) is the cheapest (3.80 km s−1) of all. With a transfer time of 1.5
years from the Earth’s gravity assist to arrival at L3, it is geometrically identical to the two-tangent burn maneuver withn = 3,
the reduction in cost being ensured by the Earth’s gravity assist which provides a natural∆VB of 2.8 km s−1. However, this
solution is characterized by very low (< 0.5 km s−1) incoming and outgoing relative velocities at the surface of the Earth’s
sphere of influence, which cause the swingby to be too slow to be considered instantaneous, contrary to what the model requires.
This could make this solution unrealistic (or at least requiring verification in an n-body model) unless appropriately modified,
for example, by introducing deep space maneuvers.

From this preliminary analysis, the best solution appears to be that involving one swingby at the Earth, because sending
the s/c to an inner or an outer planet for subsequent re-direction to a heliocentric distance of 1 AU, implies a higher cost.
Alternatively, and aiming at encountering the Earth at the same departure location but avoiding heliocentric orbits with large
semi-major axis (which are expensive to reach and leave), wehave investigated what we called the Earth resonant swingby.
This option introduces additional, multiple revolutions on two intermediate (i.e., between departure and Earth’s swingby, and
between Earth’s swingby and arrival, respectively) elliptical orbits with semi-major axis determined by the the chosen resonance
and close to that of the Earth’s orbit. The numbersn1 andn2 of revolutions on the two elliptical, resonant orbits are integer and
are chosen by means of a grid search. An important characteristic of this type of solutions is that the s/c encounters the Earth in
a swingby with adequate dynamical parameters and reaches L3 with a small insertion maneuver1. Of course, the price is a much
extended TOF with respect to the standard solution. Two examples of this type are labelled in Table 1 by En1r1En2r2L3, and
are illustrated in Fig. 4a (wheren1 = 4 andn2 = 2) and 4b (in whichn1 = 2 andn2 = 2).

A direct Earth-L3 transfer again geometrically coincides with the two-tangent burn solution withn = 3. Finally, illustration
of the best solutions obtained for the sequences Earth-Mars-L3 (EML3) and Earth-Venus-Venus-Earth-L3 (EVVEL3) are given
in Fig. 5a and 5b, respectively.

4 Invariant manifold transfers

The dynamics of the stable and unstable invariant manifold tubes associated to the L1 and L2 periodic orbits in the CR3BP
has been successfully applied to the design of s/c transfers(e.g., the Genesis [8] or the Herschel/Planck missions [6]). This
suggests that perhaps also the dynamics of the invariant manifolds of periodic orbits around L3 in the Sun-Earth CR3BP may be
exploited for designing a low-cost transfer from the Earth to this new destination. In this work, a family of 74 planar Lyapunov
periodic orbits around L3 is considered as target of the transfer: thex amplitude of the orbits ranges from 10−4 to 10−1 AU,
which corresponds toy amplitudes of up to 0.25 AU, thus including a considerable number of orbits large enough (i.e.,> 0.1

1 It is worth noting that these trajectories are, in first approximation, independent from the departure date: a change in the launch date results only in
a rotation of the solution because of the resonances and the L3 location.
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Table 1 Optimized gravity assisted solutions: for each given planetary sequence we report the minimum∆V budget found (given as the sum of the
individual impulses), the gravity assist∆VB provided by the bodies (expressed as the sum of the individual contributions) and the corresponding TOF
(sum of the times spent on each segment). The meaning of the symbols used to name the planetary sequences is the following: E = Earth, V = Venus, M
= Mars.

Pl. seq. ∆V = ∆Vd +
P

n

i=1
∆Vi + ∆Va ∆VB =

P
n

i=1
∆VBi TOF =

P
n

i=1
(TOF )i + (TOF )a

(km s−1) (km s−1) (days)

EEL3 3.80 = 0 + 0.51 + 3.29 2.80 586 = 39 + 547
E4r1E2r2L3 4.72 = 2.49 + 0.08 + 2.15 4.13 2674 = 1460 + 1214
E2r1E2r2L3 4.95 = 2.60 + 0.08 + 2.27 4.31 2321 = 1440 + 881
EL3 6.57 – 548
EML3 6.26 = 3.22 + 0 + 3.04 0.01 560 = 341 + 219
EVVEL3 6.94 = 3.00 + 0.07 + 0.02 + 0.12 + 3.73 18.57 = 6.25 + 6.34 + 5.98 1248 = 172 + 449 + 115 + 512
EVEML3 7.89 = 3.37 + 0 + 0 + 0 + 4.52 10.77 = 4.70 + 3.40 + 2.67 1080 = 135 + 266 + 333 + 346
EVL3 16.03 = 3.15 + 0.45 + 12.43 7.66 586 = 106 + 480
EMEL3 9.85 = 5.15 + 0 + 0.86 + 3.84 2.40 = 0.02 + 2.38 1236 = 114 + 611 + 511
EMVL3 11.65 = 4.95 + 1.09 + 2.11 + 3.50 8.18 = 3.76 + 4.42 757 = 163 + 416 +178
EVEL3 11.80 = 7.91 + 0 + 0.11 + 3.78 13.01 = 6.87 + 6.14 859 = 250 + 95 + 514
EVML3 12.82 = 3.88 + 0 + 2.53 + 6.41 9.27 = 7.16 + 2.11 737 = 123 + 345 + 269
EVVL3 14.40 = 10.79 + 0 + 0.59 + 3.02 10.22 = 4.14 + 6.08 964 = 386 + 433 + 145

(a) (b)

Fig. 4 Two types of En1r1En2r2L3 solutions: an E4r1E2r2L3 (a), and an E2r1E2r2L3 (b).
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Fig. 5 Optimized trajectories of the type EML3 (a) and EVVEL3 (b).
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AU in y) to ensure visibility from the Earth. From the largest to thesmallest orbit, the Jacobi constant2 spans the range from
2.985554 to 3.000006. The adoption of Halo orbits as alternative destinations might benefit from the three-dimensionality of
these objects. However, the study of the transfer strategy by means of invariant manifolds, the cost and TOF budgets would not
differ significantly from the planar case. The adoption of planar orbits therefore ensures sufficient generality while simplifying
the problem by neglecting the third dimension.

The mass ratioµ of the Sun-Earth CR3BP falls into the range of values for which the stable and unstable invariant manifolds
of the Lyapunov orbits around L3 are known to perform so-called horseshoe motion ([1,3]), flowing above and below thex-axis
of the system towards the Earth (but never reaching it) and then bouncing back to the progenitor orbit (Fig. 6). Unfortunately, the
transfer times to the closest approach with the Earth (between 0.2 and 0.4 AU over the family) are so large that these trajectories
must be necessarily discarded for s/c applications: depending on the size of the Lyapunov orbit in the given family, these times
range from 700 to 800 years.

A much more realistic alternative is obtained by following the approach devised by [7] which consists in considering the
orbits belonging to the unstable manifolds of Lyapunov orbits around either L1 or L2 in the Sun-Earth system: Fig. 7a shows
that at typical energy levels for which the Earth’s lobe determined by the zero velocity curves opens on both sides, the unstable
manifolds of planar Lyapunov orbits around L1 after traveling through the Hill’s sphere containing the Sun, cross thex-axis
close to L3, whereas the unstable manifolds of planar Lyapunov orbits around L2 approach L3 from outer space. Both types flow
close to the forbidden region and bounce several times off the zero-velocity curve that confines it (Fig. 7). On approaching L3,
the orbits of these manifolds pass through the area where also the Lyapunov orbits of the L3 family exist (Fig. 8). The existence
of such overlap, in configuration space, can be exploited to design a transfer to L3 through either L1 or L2: the s/c could perform
a multi-objective mission by first visiting L1 or L2 and then, following a trajectory belonging to one of the associated unstable
invariant manifolds, reach the region around L3 and finally be inserted into a Lyapunov orbit of the target family (see also [9,5]).
The whole invariant manifold flight would take between 5 and 12 years. The final insertion, in general, requires an impulsive
maneuver which, by the way, corresponds to unclosing the forbidden region around L3 and raising the energy of the approaching
trajectory to match that of the selected target Lyapunov orbit. The orbit insertion maneuver is designed to occur at the intersection
of the incoming trajectory with thex-axis. We report here the results for one solution of the typeL1-L3 and one solution of the
type L2-L3. In both cases, the departure Lyapunov orbit hasx-amplitude of approximately 0.006 AU andy-amplitude of about
0.016 AU and is sampled with 200 points. The Jacobi constant values on the departure orbits are of 3.000690 and 3.000687,
respectively. The local approximation of the unstable manifold associated to each orbit is obtained by application of asmall
perturbation in the direction of the unstable eigenvector and is then globalized by numerical integration during the time required
to cut the selected Poincaré section aty = 0. There, thex interval of overlap between the manifold trajectories and the L3

Lyapunov family is determined and at each incoming manifoldtrajectory one Lyapunov orbit is associated, that endowed with
the nearestx coordinate aty = 0. Note that in general the same Lyapunov orbit can be associated to more manifold trajectories,
with different inclinations with respect to thex-axis. The velocity correction∆V to be applied for orbit insertion is given by

∆V =
q
ẋ2

M + (ẏL3
− ẏM )2, (9)

whereẋM andẏM are thex andy components of the arrival velocity on the manifold trajectory andẏL3
is the only non-zero

component of the velocity on the Lyapunov orbit aty = 0 due to the geometrical symmetry of such orbits with respect to the
x-axis. The∆V required for orbit insertion as a function of thex coordinate on the incoming manifold is illustrated in Fig. 9a
and 9b, respectively for the L1-L3 and L2-L3 solutions. These plots provide estimates of the minimum andmaximum size of the
insertion maneuver from a given invariant manifold into thetarget L3 family when the insertion point is aty = 0. The magnitude
ranges found are almost identical (from 0.5 to 1.6 km s−1) for the two cases considered, i.e., L1-L3 and L2-L3, with the latter
extending a little bit more than the former. Note that with a∆V of approximately 3 km s−1, the s/c can be inserted into the stable
manifold of a Lyapunov orbit around either L1 or L2 from a geostationary transfer orbit (GTO). As far as the transfer times are
concerned, the GTO to L1 or L2 part of the trajectory can be covered in three months, whereas the manifold part of the transfer
takes from 5.5 to 10.5 years for the L1-L3 solution (Fig. 10a) and from 6 to 11 years for the L2-L3 option (Fig. 10b).

5 Low-thrust trajectories

As an alternative to the design methods involving impulsivemaneuvers, one can think of flying a s/c to L3 with an electrical
low-thrust engine. In our investigations the dynamical model adopted is the planar Sun-s/c two-body problem in which the
equations of motion are:

ẍ = −
GM⊙

r3
x+

T

m
αx, (10)

2 The definition adopted for the Jacobi constant isJ = x2 + y2
− 2µ/r1 + 2(µ − 1)/r2 − µ(µ − 1) − ẋ2

− ẏ2, with µ the mass ratio of the
system,x, y, ẋ and ẏ the synodical barycentric components of position and velocity of the third body, andr1 andr2 its distances from the first and
second primary, respectively.
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Fig. 6 The stable invariant manifolds of the smallest (a) and largest(b) Lyapunov orbits of the family.
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Lyapunov around the L2 point (b) in the Sun-Earth CR3BP.
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Fig. 10 Transfer times as a function of the location on the departure Lyapunov orbit (expressed in units of the period of the Lyapunov orbit) for the
L1-L3 (a) and L2-L3 (b) solutions, respectively.

ÿ = −
GM⊙

r3
y +

T

m
αy, (11)

supplemented by the differential equation that governs themass variation:

ṁ = −
T

g0Isp
. (12)

In Eqs. 10 - 12,T is the thrust provided by the engine and is the force acting onthe s/c,m is the s/c mass,g0 is the gravity
acceleration at the Earth’s surface,Isp is the specific impulse of the engine andαx andαy are thex andy components of the
thrust direction, i.e., the unit vectorα. The trajectory is assumed to start at the surface of the Earth’s sphere of influence either
from L1 or L2 and end with the s/c at rest in L3.

The trajectory is solved as an optimal control problem ([2,10]) consisting in finding the thrust directionα as a function of
time such that the performance index is minimized. By using the Pontryagin minimum principle, the dynamical equations (Eqs.
10 - 12) are supplemented by a set of costate equations in Hamiltonian form:

λ̇r = −
∂H

∂r
=

�
GM⊙

r3
λv −

3GM⊙

r5
λT
v r

�
r, (13)

λ̇v = −
∂H

∂v
= −λr, (14)

λ̇m = −
∂H

∂m
= −

T

m2
|| λv ||, (15)
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in which || · || is the operator norm, and the HamiltonianH of the system is

H = λT
r v + λT

v

�
−
GM⊙

r3
r +

T

m
α

�
−

T

g0Isp
λm, (16)

andλT
r , λT

v andλm are the Lagrangian multipliers (or costates) associated with positionr, velocityv and massm, respectively.
The optimal thrust vectorα is obtained by setting∂H/∂α = 0 with the normalization constraintαT · α = 1. This leads to the
following expression for the optimal controlα⋆:

α∗ = −
λv

|| λv ||
, (17)

where the minus sign follows from the Legendre-Clebsch condition (see, e.g., [2]) which guarantees that the Hamiltonian is
minimized. A thrust segment is determined by Eqs. 10 to 17, given a set of initial values for states and costates. The trajectory
is computed by solving the resulting nonlinear constrainedoptimization problem. In this study two kinds of thrust operation
have been considered: one in which the thrust is assumed to becontinuous throughout the transfer (optimal time, OT) and one
in which a thrust-coast-thrust scheme is followed (optimalfuel, OF).

5.1 Optimal time strategy

The performance index of the parameter optimization problem is the final timetf (z) (to be minimized), wherez represents the
optimization parametersλr(0), λv(0) andtf . The requirement of matching the positionr(tf ) and the velocityv(tf ) of L3 at
time tf is expressed by the constraint equalitiesr(tf ) − rL3

(tf ) = 0 andv(tf ) − vL3
(tf ) = 0, in which r(tf ) andv(tf ) are

the final position and velocity of the s/c att = tf .
The transversality conditions and the final value of the Hamiltonian, which appear in the standard indirect method, are here

ignored. A trial and error guess of the optimization parameters att = 0 feeds the sequential quadratic programming algorithm
implemented in the SNOPT ([4]) computer program. One solution of this type has been obtained by assuming a s/c with an initial
massm0 of 500 kg, endowed with an electric engine of 3100 s specific impulse and a thrustT of 90 mN, departing from L1. The
resulting trajectory is illustrated in Fig. 11a, represented in heliocentric inertial coordinates. The refinement in the Sun-Earth
CR3BP by means of the direct method provides the trajectory shown in Fig. 11b. More solutions can be obtained by continuation
on the thrust, up to an upper limit forT which expresses a safety measure against collisions with the Sun. In our experiments,T
has been made to vary between 20 and 100 mN. The relationship between the thrust and the TOF is shown in Fig. 12a, whereas
Fig. 12b illustrates the relationship between the thrust and the percentage of mass used, separately for departures from L1 and
L2. Finally, Fig. 13 gives the relationship between the TOF andthe mass consumption. We can conclude that flying to L3 from
L1 is cheaper and faster than from L2. For example, a s/c withT = 90 mN reaches L3 in 566 and 629 days, respectively from
L1 and L2, and the mass consumption is 29% and 32% in the two cases.
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Fig. 11 A trajectory to L3 obtained by solving the time optimal control problem in the Sun-s/c two-body model with the parameters given in the text
and departing from L1 (a) and its refinement in the Sun-Earth CR3BP (b): the arrows indicate the instantaneous direction of thrust and the two empty
circles show the location of the start (L1) and end (L3) points; the solid circles represent the Sun and the Earth.
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Fig. 12 OT strategy: TOF (a) and mass consumption (b) as a function of thrust, separately for departures from L1 and L2.
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Fig. 13 OT strategy: TOF vs. mass consumption, as obtained by varying the thrust magnitude from 20 to 100 mN and considering departures from
either L1 or L2.

5.2 Optimal fuel strategy

The performance index of the parameter optimization problem is −mf (z) (to be minimized), wheremf is the final fuel mass
andz represents the optimization parametersλr(0), λv(0), λr[(1 − p2)tf ], λv[(1 − p2)tf ], p1, p2, andtf : as in the previous
case,tf is the TOF,p1 andp2 give the duration of the first and the second thrust segments in units of the total TOF, whereas
λr[(1 − p2)tf ] andλv[(1 − p2)tf ] are the initial values of the costates on the second thrust segment. The final time constraints
r(tf ) − rL3

(tf ) = 0 andv(tf ) − vL3
(tf ) = 0 are the same as in the OT case, but now an additional requirement that the TOF

is lower than a given value (of 3 years) has to be imposed in order to avoid that the solution converges to an optimal transfer
orbit with two very short thrust segments and a long coast segment, in which the s/c achieves the correct phasing with respect
to L3 (and the longer the coast segment the lower the fuel consumption). With an initial massm0 of 500kg, a specific impulse
Isp of 3100s and a thrustT of 48 and 50 mN, we have computed two transfer orbits, respectively departing from L1 and L2: the
solutions have been obtained in the Sun-s/c two-body model and then refined in the Sun-Earth CR3BP (Figs. 14 and 15).

Continuation on the thrust provides more transfer orbits. For the present case, the Sun collision avoidance places the upper
limit for the thrust at 250 mN. The adopted range of variationof T is 50 to 250 mN. The relationship between thrust, TOF
and mass consumption is shown in Figs. 16 and 17. Note that in this case the mass consumption is not very sensitive to thrust
variations.

Finally, note that whenT = 90mN , the OT transfer takes approximately 600 days from L1 or L2 with about30% of mass
consumption, whereas the OF transfer needs about 1000 days and employs 11% of the mass.
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Fig. 14 A thrust-coast-thrust transfer from L1 to L3 with T=48 mN in inertial coordinates (a) and after refinement in the Sun-Earth CR3BP (b).
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Fig. 15 A thrust-coast-thrust transfer from L2 to L3 with T=50 mN in inertial coordinates (a) and after refinement in the Sun-Earth CR3BP (b).

6 Comparisons

In this contribution, three approaches based on the use of impulsive maneuvers have been explored to design a trajectoryfrom
the Earth’s vicinity to the L3 point of the Sun-Earth CR3BP. If a trade-off is made between∆V budget and transfer times, the
classical two-body techniques of Sect. 2 allow to reach L3 in 2.5 years at a cost of 4.0 km s−1 (multi-revolution solution with
n = 2). Trajectories assisted by planetary swingbys are generally more expensive. In particular, those based on multiple gravity
assists at several different planets are not cheap enough tojustify the large transfer times (e.g.,> 1000 days). Others, e.g., those
involving one swingby at the Earth, have transfer times of only 1.5 years, but require further verification due to the low relative
velocity on the incoming hyperbola. Alternative solutionsbased on a single Earth’s swinbgy preceded and followed by a number
of revolutions on appropriately tailored elliptical orbits resonant with the Earth, are characterized by∆V budgets as low as 4.7
km s−1, but have very large times of flight (∼ 2300-2600 days). The third approach based on impulsive maneuvers, exploits the
unstable invariant manifolds of the remaining two collinear libration points of the system (i.e., L1 and L2) as natural pathways
to reach the area where the periodic orbits around the L3 point reside: the TOF ranges between 5.5 and 11 years, depending on
the development in space of the manifold trajectory adoptedto accomplish the transfer. The cost of the insertion maneuver is
between 0.5 and 1.6 km s−1, but an additional budget of approximately 3 km s−1 should be accounted for in order to connect
the invariant manifolds with the Earth through, e.g., a GTO orbit. An alternative strategy based on a different thrust concept,
i.e., that provided by electrical engines, has been explored: the solution of an optimal control problem based on minimizing
the TOF of a transfer in which the low-thrust propulsion is always operational (OT strategy), has provided trajectoriesin the



13

50 100 150 200 250
940

960

980

1000

1020

1040

1060

1080

1100

Thrust (mN)

T
im

e 
of

 fl
ig

ht
 (

da
ys

)

 

 

L
1
 − L

3

L
2
 − L

3

50 100 150 200 250
10

10.5

11

11.5

Thrust (mN)

M
as

s 
C

on
s.

 (
%

)

 

 

L
1
−L

3

L
2
−L

3

(a) (b)

Fig. 16 OF strategy: TOF (a) and mass consumption (b) as a function of thrust, separately for departures from L1 and L2.
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Fig. 17 OF strategy: TOF vs. mass consumption, as obtained by varying the thrust magnitude from 20 to 100 mN and considering departures from
either L1 or L2.

Sun-s/c two-body model which reach L3 from either L1 or L2 with 15 ÷ 30% consumption of the initial mass in 550÷ 1400
days. The solutions obtained by minimizing the fuel consumption in a thrust-coast-thrust propulsion sequence (OF strategy) are
characterized by a mass consumption of 10÷ 11% and transfer times between 950 and 1080 days.

A global comparison among the several categories of transfers is here presented as a plot of mass consumption versus
TOF (Fig. 18) for the best or the most representative solutions of each method. For the low-thrust case, the OT and OF curves
correspond to departure from the more favorable location, i.e., L1. The mass consumption of the impulsive trajectories has been
obtained from the corresponding∆V by assuming an initial s/c massmi of 500 kg and a specific impulseIsp of 300 s and
computing the ratio of final to initial massmf/mi as

mf

mi
= exp

�
−
∆V

Ispg0

�
. (18)

Fig. 18 is largely in favor of the low-thrust solutions, in either operation scheme (OT or OF) as these are characterized by
much lower fuel consumption levels (10 to 30%) than any impulsive trajectory with the same TOF (in the range, say, between
500 and 1200 days). Only the invariant manifold strategy implies similar mass budgets, but at the price of a much longer
transfer duration (3800 days). Among the impulsive solutions, the single, powered gravity assist with the Earth is characterized
by approximately the same TOF as the best bi-elliptic solution (which is more fuel-expensive), and is better than the multi-
revolution scenario (here reported are the cases withn = 1, 2, ..., 10 which span a range of TOFs up to the largest transfer time
of the IM solutions). However, for the feasibility of the EEL3 trajectory, a numerical verification of the close approach phase
is required, or some deep space maneuver needs to be added. This issue constitutes an interesting future development of the
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Fig. 18 Comparison among the several trajectory solutions in terms of mass consumption (% of the initial mass) and TOF (days). The mass consumption
for the impulsive cases has been computed assuming a specific impulse of 300 s and an initial mass of 500 kg. The abbreviations used in the legend
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work. The resonant orbit alternative is far too time and fuelconsuming and should no longer be investigated. As for the IM
solutions, two cases appear in the plot, i.e., those characterized by the smallest transfer time and the smallest maneuver size
(irrespective of the departure location, i.e., L1 and L2), respectively: they are both characterized by lower fuel consumption than
the corresponding (i.e., having the same TOF) multi-revolution trajectories (i.e., those withn = 5 andn = 10). Finally, this
comparison should be considered as purely indicative and the reader should bear in mind that, for example, studying different
swingby sequences or adopting different low-thrust modelsand parameters (i.e., specific impulse, initial mass and thrust) might
lead to different trade-offs and conclusions.

7 Conclusions

The investigation here presented is a preliminary study of possible ways for a s/c to reach the L3 point of the Sun-Earth CR3BP,
based on different dynamical models (two-body problem, patched conics, three-body problem) and propulsion types (chemical,
electrical): classical two-body impulsive maneuvers, optimized gravity assisted trajectories with patched conics and powered
swingbys, impulsive trajectories in the Sun-Earth CR3BP exploiting invariant manifolds of libration point orbits, and different
types of low-thrust transfers optimized in the two-body problem and refined in the Sun-Earth CR3BP. The comparison among
the several strategies is based on a trade-off between fuel consumption and TOF and essentially favors electrical engines because
these, in either operation scheme (OT or OF), are capable of taking the s/c to L3 in the same range of times as the impulsive
strategies (primarily the classical maneuvers such as bi-elliptic or multi-revolution) but with a much lower fuel expenditure (10
to 30% vs. 70 to 99%). Only the invariant manifold strategy implies similar mass budgets, but at the price of a much longer
transfer duration (3800 instead of 1000 days). This suggests that, at least under the approximations, models and parametrizations
used in this study, the adoption of a low-thrust, electricalengine represents the most favorable option.
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5. Gómez, G., Koon, W.S., Lo, M.W., Marsden, J., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial three-body
problem, Nonlinearity, 17, 1571, 2004.

6. Hechler, M., Yanez, A., Herschel/Planck Consolidated Report on Mission Analysis FP-MA-RP-0010-TOS/GMA Issue 3.1,2006.
7. Hou, X., Tang, J., Liu, L.: Transfer to the collinear libration point L3 in the Sun-Earth+Moon system, Nasa Technical Report 20080012700, 2007.
8. Lo, M.W., Williams, B.G., Bollman, W.E., Han, D., Hahn, Y., et al.: Genesis Mission Design, AIAA Space Flight Mechanics,Paper No. AIAA

98-4468, 1998.
9. Koon,W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics,

Chaos 10 (2), 427-469, 2000.
10. Senent, J., Ocampo, C., Capella, A., Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits, J. Guid. Contr. Dyn.

28, 280-290, 2005.
11. Szebehely, V., Theory of orbits, Academic Press, New York(Massachusetts), 1967.
12. Tantardini, M.: Transfer strategies to the L3 libration point of the Sun-Earth system, MS Thesis, Aerospace Engineering, Delft University of

Technology, Delft, The Netherlands, 2009.
13. Vallado, D.A., Fundamentals of astrodynamics and applications, Microcosm Press, Hawthorne (California), 2007.


