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Abstract Of the three collinear libration points of the Sun-EarthaGlar Restricted Three-Body Problem (CR3BP),i& that
located opposite to the Earth with respect to the Sun andajppately at the same heliocentric distance. Whereas akesgaice
missions have been launched to the other two collinearibguin points, i.e. Iy and Ly, taking advantage of their dynamical
and geometrical characteristics, the region arousalso far unexploited. This is essentially due to the sevenensunication
limitations caused by the distant and permanent oppositidthe Earth, and by the gravitational perturbations maimtijuced
by Jupiter and the close passages of Venus, whose effegtsoaeemportant than those due to the Earth. However, thetixtop
of a suitable periodic orbit around;lto ensure the necessary communication links with the Eartine connection with one or
more relay satellites located at br L5, and the simultaneous design of an appropriate stationh@gejrategy, would make it
possible to perform valuable fundamental physics and plsyisics investigations from this location. Such an oppotueads
to the need of studying the ways to transfer a spacecrajtf(efo the Earth’s vicinity to L. In this contribution, we investigate
several trajectory design methods to accomplish such sfeame., various types of two-burn impulsive trajeatsrin a Sun-s/c
two-body model, a patched conics strategy exploiting thaigr assist of the nearby planets, an approach based aalitrgv
on invariant manifolds of periodic orbits in the Sun-EartRIBP, and finally a low-thrust transfer. We examine advasgamnd
drawbacks, and we estimate the propellant budget and tirfliglof (TOF) requirements of each.

Keywords Two-Body Problem Patched ConicsGravity Assist: Circular Restricted Three-Body Probleribration Points
Periodic Orbits Invariant Manifolds Low-Thrust

1 Introduction

A space observatory placed at or arounddould provide insight into local astrophysical phenomemehsas the solar wind
and the properties of the Sun’s magnetosphere; it could torotiie evolution of the sunspots, perform solar storm faséc
and observe the space environment from a new perspectilderio the Earth, and in this way supplement and complete the
information obtainable, e.g., from;Lor from Earth based observatories. A satellite atcbuld be even thought of as part of

a circular or spherical constellation of s/c monitoring Ben’s activity and the space environment at many differegles.
Moreover, L3 may constitute a privileged site to perform relativity esipgents, such as measuring the gravitational bending of
light on behalf of the Sun, as a follow-up of the Cassini-Heryg radio science observations. Finally, some minor badies

as NEOs and comets, hidden by the Sun as viewed from Eartld bewbserved and even tracked from this more favorable
location.
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Fig. 1 The synodical barycentric reference frame of the Sun-EaRBEP showing the location of the two primaries and the fivealiion points.

The framework in which the 4 point is defined is the CR3BP, which describes the motion ofaastess particle in the
gravitational force field created by two main bodies, thenariies, in Keplerian circular motion around their centrenafss. In
the so-called synodical barycentric reference frame,whegrimaries occupy fixed positions on theaxis and there exist five
equilibrium points for the third body to stay at rest (Fig. ib) particular, the position of the three collinear pointstbez-axis
of the system are found by solving the Lagrange quintic equdf11], pp. 134-138), which for 4 provides the approximation
1.0000013 AU for ther coordinate of Fig. 1 when the mass ratiof the Sun-Earth CR3BP is given a value of 3.0404234
1075, L3 orbits the Sun at a distance of 0.9999982 AU, hence on a Kfiiginter orbit with respect to that of the Earth.

Thinking of a space mission to;l-necessarily introduces the issue of designing the tratrsfectory from the Earth to this
new destination. This problem is here investigated by dargig several dynamical models and design methods andsdisg)
preliminary solutions thus obtained. Note that if one negl¢he small difference in the orbital radii between theftand Ls in
heliocentric inertial space, this transfer is essent@lh8C re-phasing problem, i.e., providing the s/c orbit with aetemomaly
difference of 180 with respect to the Earth.

Section 2 presents three design strategies based on thé ingautsive maneuvers in the Sun-s/c two-body problem. This
is followed (Sect. 3) by a survey of optimized planetary @saassisted solutions based on the patched conics meth&gdt.

4 the invariant manifolds of planar Lyapunov orbits arouimel three collinear libration points are used to reach thitycof
Ls. Sect. 5 investigates two low-thrust strategies, basegtmiing the transfer time with a continuously operatihgust and
the fuel consumption in a thrust-coast-thrust operatitresw, respectively. Finally, Sects. 6 and 7 summarize amgpace our
findings. For a comprehensive description of the preseesinyation the reader is referred to [12].

2 Two-body impulsive maneuvers

The model is the planar Sun-s/c two-body problem, with teedsparting from the Earth’s heliocentric orbit and reagHhin
with zero relative speed. Four solution types, made of Kégieelliptical arcs and impulsive maneuvers, are heregmtesl.

2.1 Bi-elliptic transfer

A bi-elliptic transfer (Fig. 2a) is a classical three-bumaneuver consisting of two half elliptical orbits: from timétial orbit
of radiusr,, a AV, is applied boosting the s/c into the first transfer orbit vath (arbitrary) apoapsis at some poiptaway
from the central body. At this point, a second burn, of sivig,, is applied sending the s/c into the second elliptical ol
periapsis at the radius of the final desired orbit where a thirdV. is performed for injection (see, e.g., [13], pp. 324-332).

The requirement that the arrival point on the target orbinb@pposition to the Earth can be expressed as a relatioreleatw
the sum of the transfer times on the two elliptical orbits #relorbital periodl’s, of the Earth:

(ra +1p)3 (rp+1e)® _n
= T =1 1

thus providing the distancg. In Eq. 1,G M is the gravitational parameter of the Sun. By varying theiotiebern, r, and the
corresponding\V budget and transfer time are obtained (Fig. 3a): the cheapksion (with aAV of 6.7 km s71) is obtained

for n = 3 which corresponds to a reasonably short transfer time @absy. Note that, when the transfer occurs between two
circular orbits which are very close to each other, like iis tase, the size of the apoapsis maneuver is very small eAinttit

in which the departure and target orbits are identical, rempsis maneuver disappears and the resulting transféegmwo
tangential burns, shown in Fig. 2b.
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Fig. 2 Types of two-body impulsive maneuvers trajectories from taghes orbit to Lg: a classical bi-elliptic (a), its limiting case, called twangent
burn maneuver, for equal departure and arrival orbits (bjaliptic one-tangent burn (c), a multi-revolution orhbif)(

2.2 Bi-elliptic one-tangent burn transfer

A generalization of the previous case is obtained by imgptiat the total transfer anglé¢ is in the interval 27 (see also
[13], pp. 333-338 for a similar maneuver). The trajectorg sequence of two elliptical arcs: the first is half of an skipthus
involving ar radians transfer angle, whereas the second subtends &diagh — 7. The total transfer requires three impulses,
but, whereas the firstAV,, is applied tangentially, the remaining twa}};, and AV., are in the direction required to perform the
insertion onto the second elliptical arc and the targettorespectively (see Fig. 2c). The apoapsis distapa@nd the transfer
angle A¢ must bea priori set. Then, the timing requirement between the position ®ffarth on its orbit and that ofsLon
arrival leads to a relation between the sum of the tifigsand 7.2 spent on the two elliptical arcs and the peribg of the
Earth:

Te1 4+ Te2 = <A¢2_7T) Te +nTg, n=0,1,2,3,.. 2)
v
with
__ [(ra+m)?
Ter =7 8GM7@ . (3)

For a givem, Eq. 2 provides the value @t.o which is then used to solve the Lambert problem on the secandas allowing
to computeAV, and AV, as the difference of the velocities at the start and end paifisuch arc with the velocity at apoapsis
of the first ellipse and the velocity of the target circulabigrrespectively.

The case here considered corresponds to a total transflerangf 270°. Several values for the apoapsis radiybetween
0.7 and 1.7 AU have been adopted leading to very expensivéq km s 1) and therefore unfeasible solutions. The cheapest
corresponds to an apoapsis radiy®f 1.7 AU and requires a totalV of 16.9 km s and a TOF of 1 year and 3 months.
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Fig. 3 AV budget (open circles) and TOF (stars) for the bi-ellipticgad multi-revolution (b) strategies as a function of the oddgern on which
the timing problem is designed.

2.3 Multi-revolution transfer

Finally, one can think of a multi-orbit transfer, which c@ts in following one and the same transfer ellipse manydimesuch

a way that every revolution dephases the s/c of a given (sm@uadjle Ay with respect to the Earth. This option requires two
tangential burns of equal size, the first one to insert intontulti-revolution ellipse and the second one to leave it@ade the
s/c on the target orbitA determines the integer numbelr = 1,2,3,...) of revolutions to be performed in order to aogtie
desiredr displacement with respect to the Earth (hegealnd the Earth are assumed to be on the same heliocentriy, arixit
the total transfer timé@,,:

m

n= Tw, 4
T, — 2n2+1T®. (5)
Therefore, the displacement) determines the apoapsis distamg®f the transfer ellipse through its periad:
Tm
Te = —/—, (6)
n
ry = 2a — Ta, ©)

in which a is the semi-major axis of the transfer ellipse. Finally, th& budget is twice the magnitude of the impulse given to
insert into the transfer ellipse and can be represented ascéidn ofn as shown in Fig. 3b where also the TOF is given: the
smaller the angle\«, the lower the total cost and the longer the transfer.

3 Gravity assisted trajectories

An optimized three-dimensional (3D) patched conics sgatexploiting the gravity assist of the nearby planets ieheves-
tigated as the natural evolution of the impulsive maneuskrt®n of the preceding sectionglis geometrically defined as an
anti-Earth, i.e., it has the same ephemerides as the Eadbpefor a true anomaly difference of 180

According to the patched conics method, a trajectory tohrdacis divided into segments, the end points of which are
planetary swingbys or departure and arrival events. Eapbciory segment is modeled as a Sun-s/c two-body probléeress
at the swingby events (assumed to be instantaneous) ther@ecavith the planet inside the planet’s sphere of influesce
modeled as a planet-s/c two-body problem. Note thaislireated by the algorithm as an arrival planet of zero miass (o
swingby occurs) and therefore the arrival maneuver simiptptarizes the orbit. Impulsive maneuvers are allowedegtadture
(AVy), arrival (AV,) and at the swingbys: one impulse at periapsis of Aikg 4 is allowed in order to fill the difference between
the periapsis velocities of the incoming and the outgoingehnlyolic paths, determined by the arrival and departuriedehtric
velocities at the surface of the sphere of influence and bgahstraint of connecting in position space at a common eete.
No deep space maneuvers are allowed. On each interplarseigmyent the trajectory is determined by solving a 3D Lambert
problem between two dates and two heliocentric positioiorsc

The trajectory solution is an optimization problem in whible planetary encounters and their ordering are gavpriori.
The departure date, the arrival date (and hence the comdsppposition vectors, as determined by the planetaryraphides
based on polynomials in terms of the classical orbital elgmesee [13], pp. 297-300 and 995-999) and the dates ofdnefalry



swingbys are varied in order to minimize an objective funret’ defined as the sum of the magnitudes of the maneuvers, with
the inclusion of a penalty function:

< (RPi + Rmin i — T7T’i)2
C=AVg+AVa+ Y [AVgai + Wi 2 . (8)
i=0 P

Heren is the number of swingbys antiV 4, is the magnitude (equal to zero for unpowered swingbys)aptriapsis maneuver

at thei'” encounter. An additional cost, i.e., the penalty funct&ppears in Eq. 8 through the second term in the sum and is
represented as a nonlinear expression involving the ragiyf the encountered planet, the minimum swingby altitigg,, ;

and the actual value of the periapsis distangecomputed by the swingby solvé#/; is a weight and increases from preliminary
search £ 10) to local optimizations~ 100) to guarantee the feasibility of the final solutionss livorth noting that this penalty
function is zero whenever the minimum altitude constrardatisfied by the current solution, i.ex; > Rp; + hmin i-

This local optimization problem is solved through a seqgia¢guadratic programming algorithm fed with initial guesgor
the optimization variables, obtained by a global optim@aimethod: a genetic algorithm or a discrete search grid ange
of dates. Typically, the former global method is adopted mtie trajectory involves many:(> 3) swingbys, the latter being
preferred for problems of small size & 1 orn = 2).

Several solutions have been explored by varying the numizeoedering of the planetary swingbys, with the encountered
bodies chosen among the nearest planets, i.e., MercunysVEarth and Mars. Table 1 summarizes the results with aptatale
cost, i.e. less than 15 kn'$, and for each planetary sequence it gives the minimiivhbudget found (given as the sum of
the individual impulses), an estimate of the gravity asdig}; provided by the planets (expressed as the sum of the individu
contributions) and the corresponding TOF (sum of the tinpemson each segment). Solutions involving swingbys at Mgrc
or more than two intermediate encounters have been testethéresulting trajectories are very expensive and, tbexedo
not appear in this list.

The optimized solution of the type Earth-Earth{EELs) is the cheapest (3.80 knt §) of all. With a transfer time of 1.5
years from the Earth’s gravity assist to arrival gt It is geometrically identical to the two-tangent burn mavesr withn = 3,
the reduction in cost being ensured by the Earth’s gravisjsasvhich provides a naturalVz of 2.8 km s 1. However, this
solution is characterized by very low:(0.5 km s!) incoming and outgoing relative velocities at the surfatéhe Earth’s
sphere of influence, which cause the swingby to be too slowe tmhsidered instantaneous, contrary to what the modeiresqu
This could make this solution unrealistic (or at least reqgiverification in an n-body model) unless appropriatelydified,
for example, by introducing deep space maneuvers.

From this preliminary analysis, the best solution appeaiset that involving one swingby at the Earth, because sending
the s/c to an inner or an outer planet for subsequent retiireto a heliocentric distance of 1 AU, implies a higher cost
Alternatively, and aiming at encountering the Earth at tame departure location but avoiding heliocentric orbitarge
semi-major axis (which are expensive to reach and leavehave investigated what we called the Earth resonant swingby
This option introduces additional, multiple revolutions o intermediate (i.e., between departure and Earth’'sgiwi, and
between Earth’s swingby and arrival, respectively) aigitorbits with semi-major axis determined by the the chagsonance
and close to that of the Earth’s orbit. The numbersandns of revolutions on the two elliptical, resonant orbits areeger and
are chosen by means of a grid search. An important charstitenf this type of solutions is that the s/c encounters thetEn
a swingby with adequate dynamical parameters and reagheitta small insertion maneuverOf course, the price is a much
extended TOF with respect to the standard solution. Two plesof this type are labelled in Table 1 by EnsroL 3, and
are illustrated in Fig. 4a (where, = 4 andny = 2) and 4b (in whichn; = 2 andng = 2).

A direct Earth-L3 transfer again geometrically coincides with the two-tarid®irn solution withn = 3. Finally, illustration
of the best solutions obtained for the sequences Earth-Ma(EML 3) and Earth-Venus-Venus-Earth-(EVVEL 3) are given
in Fig. 5a and 5b, respectively.

4 Invariant manifold transfers

The dynamics of the stable and unstable invariant manifabed associated to theg land Ly periodic orbits in the CR3BP
has been successfully applied to the design of s/c tranéfags the Genesis [8] or the Herschel/Planck missions &j)s
suggests that perhaps also the dynamics of the invariarifatdmof periodic orbits aroundd.in the Sun-Earth CR3BP may be
exploited for designing a low-cost transfer from the Eaatlthis new destination. In this work, a family of 74 planar pyaov
periodic orbits around 4.is considered as target of the transfer: thamplitude of the orbits ranges from 18to 10~ AU,
which corresponds tg amplitudes of up to 0.25 AU, thus including a considerablmber of orbits large enough (i.e», 0.1

1 It is worth noting that these trajectories are, in first appration, independent from the departure date: a changeifatinch date results only in
a rotation of the solution because of the resonances andsthaeation.



Table 1 Optimized gravity assisted solutions: for each given plaryesequence we report the minimuftd” budget found (given as the sum of the
individual impulses), the gravity assig&tVp provided by the bodies (expressed as the sum of the individudributions) and the corresponding TOF
(sum of the times spent on each segment). The meaning of the syodsal to name the planetary sequences is the following: Eth,Bar Venus, M

= Mars.

PI. seq. AV = AV + Z?:l AV; 4+ AV, AVp = Z?:l AVp; TOF = Z:lel('TOF')Z + (TOF)a
(kms™1) (kms™1) (days)
EEL;3 3.80=0+0.51+3.29 2.80 586 = 39 + 547
E4r E2rnL3 4.72=2.49+0.08+2.15 4.13 2674 = 1460 + 1214
E2rE2rL3 495=2.60+0.08+2.27 4.31 2321 =1440 + 881
ELs 6.57 - 548
EML3 6.26=3.22+0+3.04 0.01 560 =341 + 219
EVVEL5 6.94=3.00+0.07+0.02+0.12+3.73 1857=6.25+6.34 +5.98 4812172 + 449 + 115 + 512
EVEML 3 7.89=337+0+0+0+4.52 10.77=4.70+3.40 + 2.67 1080 = 1356+2833 + 346
EVL3 16.03=3.15+0.45+12.43 7.66 586 = 106 + 480
EMEL3 9.85=5.15+0+0.86 + 3.84 2.40=0.02+2.38 1236 =114 + 611 + 511
EMVL 3 11.65=4.95+1.09 +2.11 + 3.50 8.18=3.76 +4.42 757 = 163 + 4188+
EVEL3 11.80=791+0+0.11+3.78 13.01=6.87+6.14 859 =250+95+514
EVML3 12.82=3.88+0+2.53+6.41 9.27=7.16+2.11 737 =123 + 345 + 269
EVVL3 14.40=10.79+ 0+ 0.59 + 3.02 10.22=4.14+6.08 964 =386 + 4385+ 1
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AU in y) to ensure visibility from the Earth. From the largest to simeallest orbit, the Jacobi constaspans the range from
2.985554 to 3.000006. The adoption of Halo orbits as altemnaestinations might benefit from the three-dimensiyaif
these objects. However, the study of the transfer stratgggdans of invariant manifolds, the cost and TOF budgets dvoat
differ significantly from the planar case. The adoption afrir orbits therefore ensures sufficient generality whitgobfying
the problem by neglecting the third dimension.

The mass rati@ of the Sun-Earth CR3BP falls into the range of values for Whie stable and unstable invariant manifolds
of the Lyapunov orbits aroundslare known to perform so-called horseshoe motion ([1, 3lvifig above and below the-axis
of the system towards the Earth (but never reaching it) amal llouncing back to the progenitor orbit (Fig. 6). Unfortiehg the
transfer times to the closest approach with the Earth (keiv@e2 and 0.4 AU over the family) are so large that thesedi@ijies
must be necessarily discarded for s/c applications: depegrwh the size of the Lyapunov orbit in the given family, théisnes
range from 700 to 800 years.

A much more realistic alternative is obtained by followig tapproach devised by [7] which consists in considering the
orbits belonging to the unstable manifolds of Lyapunov wsrlround either L or Ly in the Sun-Earth system: Fig. 7a shows
that at typical energy levels for which the Earth’s lobe deieed by the zero velocity curves opens on both sides, thabte
manifolds of planar Lyapunov orbits around bfter traveling through the Hill's sphere containing thenScross ther-axis
close to L, whereas the unstable manifolds of planar Lyapunov orbitsrad Ly approach k from outer space. Both types flow
close to the forbidden region and bounce several times efténo-velocity curve that confines it (Fig. 7). On approaghis,
the orbits of these manifolds pass through the area whevdtad yapunov orbits of the4-family exist (Fig. 8). The existence
of such overlap, in configuration space, can be exploiteégigh a transfer tod-through either k. or L: the s/c could perform
a multi-objective mission by first visitingsLor L, and then, following a trajectory belonging to one of the a&ged unstable
invariant manifolds, reach the region aroungdnd finally be inserted into a Lyapunov orbit of the targetifaifsee also [9, 5]).
The whole invariant manifold flight would take between 5 a2dygars. The final insertion, in general, requires an impelsi
maneuver which, by the way, corresponds to unclosing thedden region aroundd.and raising the energy of the approaching
trajectory to match that of the selected target Lyapunoit.orhe orbit insertion maneuver is designed to occur atritergection
of the incoming trajectory with the-axis. We report here the results for one solution of the typ& 3 and one solution of the
type Lo-L3. In both cases, the departure Lyapunov orbit hasnplitude of approximately 0.006 AU andamplitude of about
0.016 AU and is sampled with 200 points. The Jacobi constaluieg on the departure orbits are of 3.000690 and 3.000687,
respectively. The local approximation of the unstable rfindshiassociated to each orbit is obtained by application simall
perturbation in the direction of the unstable eigenveanatia then globalized by numerical integration during theetirequired
to cut the selected Poind@asection ay = 0. There, ther interval of overlap between the manifold trajectories amel It3
Lyapunov family is determined and at each incoming manifagectory one Lyapunov orbit is associated, that endowittd w
the nearest coordinate ayy = 0. Note that in general the same Lyapunov orbit can be assddiatmore manifold trajectories,
with different inclinations with respect to theaxis. The velocity correctiodV' to be applied for orbit insertion is given by

AV =/i%, + (90, — 9m)?, 9)

wherez ; andy,, are thex andy components of the arrival velocity on the manifold trajegtandyy,, is the only non-zero
component of the velocity on the Lyapunov orbitya 0 due to the geometrical symmetry of such orbits with respetie
z-axis. TheAV required for orbit insertion as a function of tkecoordinate on the incoming manifold is illustrated in Fig. 9
and 9b, respectively for the;kL 5 and Ly-L 3 solutions. These plots provide estimates of the minimummaakimum size of the
insertion maneuver from a given invariant manifold into tiwget L family when the insertion point is at= 0. The magnitude
ranges found are almost identical (from 0.5 to 1.6 Km)sfor the two cases considered, i.e;-Ls and Ly-L 3, with the latter
extending a little bit more than the former. Note that with & of approximately 3 kms!, the s/c can be inserted into the stable
manifold of a Lyapunov orbit around eithef lor L» from a geostationary transfer orbit (GTO). As far as thedfantimes are
concerned, the GTO tojLor L, part of the trajectory can be covered in three months, wisdreamanifold part of the transfer
takes from 5.5 to 10.5 years for theL 3 solution (Fig. 10a) and from 6 to 11 years for thelL3 option (Fig. 10b).

5 Low-thrust trajectories

As an alternative to the design methods involving impulsieneuvers, one can think of flying a s/c tg with an electrical
low-thrust engine. In our investigations the dynamical elcaopted is the planar Sun-s/c two-body problem in whieh th
equations of motion are:

= —G]\ng—&—Zax, (10)
r m

2 The definition adopted for the Jacobi constanfis= 2 + y2 — 2u/r1 + 2(u — 1) /12 — p(p — 1) — &2 — 2, with u the mass ratio of the
system,z, y, £ andy the synodical barycentric components of position and viiazfi the third body, and; andrs its distances from the first and
second primary, respectively.
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L, (coming from below) and & (coming from above) and the planar Lyapunov orbits of thddmily.
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L;-L3 (a) and Le-L3 (b) solutions, respectively.

GM T
= "5+ —ay, (11)
T m
supplemented by the differential equation that governsrthss variation:
T
= _ . 12
gOIsp ( )

In Egs. 10 - 127 is the thrust provided by the engine and is the force actinthers/c,m is the s/c masgy is the gravity
acceleration at the Earth’s surfadg, is the specific impulse of the engine ang and«,, are thex andy components of the
thrust direction, i.e., the unit vectar. The trajectory is assumed to start at the surface of thenEBaphere of influence either
from L or Ly, and end with the s/c at rest i L

The trajectory is solved as an optimal control problem (() tonsisting in finding the thrust directianas a function of
time such that the performance index is minimized. By udirgRontryagin minimum principle, the dynamical equatidegs(
10 - 12) are supplemented by a set of costate equations inltdaman form:

- OH _ (GM 3GM

=y T ( 7"3@ Voo ®/\€r> " 49
Av = —%—f = —r, (14)
‘ OH _ T
Am = —o == gl Avl, (15)
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in which|| - || is the operator norm, and the Hamiltoni&nof the system is
H=Xv+Al (— G]\gGr + Za) - L)\’ﬂh (16)
T m gOIsp

andA!, AL and),, are the Lagrangian multipliers (or costates) associatéupasitionr, velocity v and massn, respectively.
The optimal thrust vectas is obtained by settingH /0« = 0 with the normalization constraint’ - o = 1. This leads to the
following expression for the optimal contral':

* /\v

o = — , 17
M an

where the minus sign follows from the Legendre-Clebsch timmd(see, e.g., [2]) which guarantees that the Hamiltoriga
minimized. A thrust segment is determined by Egs. 10 to M&rga set of initial values for states and costates. Thectaje
is computed by solving the resulting nonlinear constraioptimization problem. In this study two kinds of thrust cgigon
have been considered: one in which the thrust is assumeddoriteuous throughout the transfer (optimal time, OT) and o
in which a thrust-coast-thrust scheme is followed (optifoal, OF).

5.1 Optimal time strategy

The performance index of the parameter optimization prahiethe final timet ¢(z) (to be minimized), where represents the
optimization parameters:(0), Av(0) andt. The requirement of matching the positieft ;) and the velocity (¢;) of L3 at
timet; is expressed by the constraint equaliti€s;) — rr,(ty) = 0 andv(ty) — v, (tf) = 0, in whichr(t;) andv(t;) are
the final position and velocity of the s/ciat= ¢ ;.

The transversality conditions and the final value of the Himmian, which appear in the standard indirect method, are h
ignored. A trial and error guess of the optimization parareat: = 0 feeds the sequential quadratic programming algorithm
implemented in the SNOPT ([4]) computer program. One saiutif this type has been obtained by assuming a s/c with aalinit
massmn of 500 kg, endowed with an electric engine of 3100 s speciffiuilse and a thrust of 90 mN, departing from L. The
resulting trajectory is illustrated in Fig. 11a, represehin heliocentric inertial coordinates. The refinementhia Sun-Earth
CR3BP by means of the direct method provides the trajectwowas in Fig. 11b. More solutions can be obtained by contionat
on the thrust, up to an upper limit f@r which expresses a safety measure against collisions vatBiin. In our experimentg;,
has been made to vary between 20 and 100 mN. The relationstvigén the thrust and the TOF is shown in Fig. 12a, whereas
Fig. 12b illustrates the relationship between the thrudtthe percentage of mass used, separately for departured frand
L.. Finally, Fig. 13 gives the relationship between the TOF thiedmass consumption. We can conclude that flyingstéram
L, is cheaper and faster than from.LFor example, a s/c witli' = 90 mN reaches 4.in 566 and 629 days, respectively from
L; and Ly, and the mass consumption is’2@nd 32 in the two cases.

0.8

0.6

0.4r

0.2

y (AU)
y (AV)

Fig. 11 A trajectory to L3 obtained by solving the time optimal control problem in the Simtwo-body model with the parameters given in the text
and departing from L (a) and its refinement in the Sun-Earth CR3BP (b): the arrodisate the instantaneous direction of thrust and the two ympt
circles show the location of the start;(Land end (I3) points; the solid circles represent the Sun and the Earth.
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Fig. 13 OT strategy: TOF vs. mass consumption, as obtained by varhimghtust magnitude from 20 to 100 mN and considering deparfuoen
either Ly or Lo.

5.2 Optimal fuel strategy

The performance index of the parameter optimization pralike—m ¢(z) (to be minimized), wheren is the final fuel mass
andz represents the optimization parametg§$0), Av(0), Ar[(1 — p2)ts], Av[(1 — p2)ts], p1, p2, andt;: as in the previous
casety is the TOF,p; andps give the duration of the first and the second thrust segmanisits of the total TOF, whereas
Ae[(1 — p2)t¢] @andAv[(1 — p2)ty] are the initial values of the costates on the second thrgsteet. The final time constraints
r(ty) —rp,(ty) =0andv(ty) — vp,(ty) = 0 are the same as in the OT case, but now an additional requitehat the TOF

is lower than a given value (of 3 years) has to be imposed iardalavoid that the solution converges to an optimal transfe
orbit with two very short thrust segments and a long coasinsed, in which the s/c achieves the correct phasing witheetsp
to L3 (and the longer the coast segment the lower the fuel consomptVith an initial massn of 500kg, a specific impulse
Isp 0of 3100s and a thrugt of 48 and 50 mN, we have computed two transfer orbits, res@écteparting from L and Ly: the
solutions have been obtained in the Sun-s/c two-body mauktren refined in the Sun-Earth CR3BP (Figs. 14 and 15).

Continuation on the thrust provides more transfer orbits.the present case, the Sun collision avoidance placespiber u
limit for the thrust at 250 mN. The adopted range of variatdri” is 50 to 250 mN. The relationship between thrust, TOF
and mass consumption is shown in Figs. 16 and 17. Note thhisrcase the mass consumption is not very sensitive to thrust
variations.

Finally, note that whe” = 90m N, the OT transfer takes approximately 600 days frojrok Ly with about30% of mass
consumption, whereas the OF transfer needs about 1000 ddyswploys 1% of the mass.
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Fig. 14 A thrust-coast-thrust transfer from lto L3 with 7=48 mN in inertial coordinates (a) and after refinement in the-Barth CR3BP (b).
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Fig. 15 A thrust-coast-thrust transfer fromplto L3 with 7=50 mN in inertial coordinates (a) and after refinement in the-Barth CR3BP (b).

6 Comparisons

In this contribution, three approaches based on the usemflgive maneuvers have been explored to design a trajefttory
the Earth’s vicinity to the b point of the Sun-Earth CR3BP. If a trade-off is made betwaéhbudget and transfer times, the
classical two-body techniques of Sect. 2 allow to reaghnl2.5 years at a cost of 4.0 knt§ (multi-revolution solution with

n = 2). Trajectories assisted by planetary swingbys are gdgenalre expensive. In particular, those based on multipdeity
assists at several different planets are not cheap enoygstify the large transfer times (e.gx, 1000 days). Others, e.g., those
involving one swingby at the Earth, have transfer times df drb years, but require further verification due to the |lahative
velocity on the incoming hyperbola. Alternative solutidresed on a single Earth’s swinbgy preceded and followed byrder

of revolutions on appropriately tailored elliptical orbitesonant with the Earth, are characterized¥yy budgets as low as 4.7
km s~!, but have very large times of flight(2300-2600 days). The third approach based on impulsive uvang, exploits the
unstable invariant manifolds of the remaining two collingaration points of the system (i.e.;land L) as natural pathways
to reach the area where the periodic orbits around thedint reside: the TOF ranges between 5.5 and 11 years, degeo
the development in space of the manifold trajectory adofeatcomplish the transfer. The cost of the insertion mageisv
between 0.5 and 1.6 kn'$, but an additional budget of approximately 3 km'sshould be accounted for in order to connect
the invariant manifolds with the Earth through, e.g., a GTBitoAn alternative strategy based on a different thrustoept,
i.e., that provided by electrical engines, has been exgidte solution of an optimal control problem based on miaing
the TOF of a transfer in which the low-thrust propulsion iwa}s operational (OT strategy), has provided trajectdrigbe
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Fig. 17 OF strategy: TOF vs. mass consumption, as obtained by varfaghtust magnitude from 20 to 100 mN and considering deparfooen
either Ly or Ls.

Sun-s/c two-body model which reach from either Ly or Ly with 15 < 30% consumption of the initial mass in 559 1400
days. The solutions obtained by minimizing the fuel constiomgn a thrust-coast-thrust propulsion sequence (OFeglya are
characterized by a mass consumption of:101 % and transfer times between 950 and 1080 days.

A global comparison among the several categories of tremsfehere presented as a plot of mass consumption versus
TOF (Fig. 18) for the best or the most representative saistif each method. For the low-thrust case, the OT and OF gurve
correspond to departure from the more favorable locatien,li; . The mass consumption of the impulsive trajectories has bee
obtained from the correspondingl” by assuming an initial s/c mass; of 500 kg and a specific impulsg;, of 300 s and
computing the ratio of final to initial masa ¢ /m; as

my exp( AV ) . (18)

m; Ispgo

Fig. 18 is largely in favor of the low-thrust solutions, irtr@r operation scheme (OT or OF) as these are characteryzed b
much lower fuel consumption levels (10 to &) than any impulsive trajectory with the same TOF (in the erggy, between
500 and 1200 days). Only the invariant manifold strategyliespsimilar mass budgets, but at the price of a much longer
transfer duration (3800 days). Among the impulsive sohgjdhe single, powered gravity assist with the Earth isadterized
by approximately the same TOF as the best bi-elliptic sotutwhich is more fuel-expensive), and is better than thetimul
revolution scenario (here reported are the caseswith1, 2, ..., 10 which span a range of TOFs up to the largest transfer time
of the IM solutions). However, for the feasibility of the EEkrajectory, a numerical verification of the close approakhse
is required, or some deep space maneuver needs to be addedslie constitutes an interesting future developmentef t
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Fig. 18 Comparison among the several trajectory solutions in terms s§ic@nsumption (% of the initial mass) and TOF (days). The massicaption
for the impulsive cases has been computed assuming a specifiségfB00 s and an initial mass of 500 kg. The abbreviationd irséhe legend
mean one-tangent burn (OTB), BE (bi-elliptic), MR (multi-oéwtion), GA (gravity assist), IM (invariant manifold), LTov-thrust), respectively. When
not explicitly specified, the values reported in the ploered the best case of the corresponding category.

work. The resonant orbit alternative is far too time and ftmhsuming and should no longer be investigated. As for the IM
solutions, two cases appear in the plot, i.e., those claraetl by the smallest transfer time and the smallest mamnesixe
(irrespective of the departure location, i.ey,and Ly), respectively: they are both characterized by lower foaekstmption than
the corresponding (i.e., having the same TOF) multi-reiafutrajectories (i.e., those with = 5 andn = 10). Finally, this
comparison should be considered as purely indicative amdetder should bear in mind that, for example, studyingdifit
swingby sequences or adopting different low-thrust modetsparameters (i.e., specific impulse, initial mass angthmight
lead to different trade-offs and conclusions.

7 Conclusions

The investigation here presented is a preliminary studyossible ways for a s/c to reach thg point of the Sun-Earth CR3BP,
based on different dynamical models (two-body problenghped conics, three-body problem) and propulsion typesifats,
electrical): classical two-body impulsive maneuversjroted gravity assisted trajectories with patched coniws$ powered
swingbys, impulsive trajectories in the Sun-Earth CR3Bpl@iing invariant manifolds of libration point orbits, drdifferent
types of low-thrust transfers optimized in the two-bodylgemn and refined in the Sun-Earth CR3BP. The comparison among
the several strategies is based on a trade-off betweendnslimption and TOF and essentially favors electrical esggirecause
these, in either operation scheme (OT or OF), are capabkkofg the s/c to b in the same range of times as the impulsive
strategies (primarily the classical maneuvers such a8lipiie or multi-revolution) but with a much lower fuel expditure (10

to 30 % vs. 70 to 99%). Only the invariant manifold strategy implies similar mdsidgets, but at the price of a much longer
transfer duration (3800 instead of 1000 days). This sugdkat, at least under the approximations, models and pétaat®ns
used in this study, the adoption of a low-thrust, electr@adine represents the most favorable option.
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