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Abstract 
 

We studied systematically cases of the families of non-symmetric periodic orbits in the planar 

restricted three-body problem. We took interesting information about the evolution, stability and 

termination of bifurcating families of various multiplicities. We found that the main families of 

simple non-symmetric periodic orbits present a similar dynamical structure and bifurcation 

pattern. As the Jacobi constant changes each branch of the characteristic of a main family spirals 

around a focal point-terminating point in x- at which the Jacobi constant is C∞=3 and their 

periodic orbits terminate at the corotation (at the Lagrangian point L4 or L5). As the family 

approaches asymptotically its termination point infinite changes of stability to instability and 

vice versa occur along its characteristic. Thus, infinite bifurcation points appear and each one of 

them produces infinite inverse Feigenbaum sequences. That is, every bifurcating family of a 

Feigenbaum sequence produces the same phenomenon and so on. Therefore, infinite spiral 

characteristics appear and each one of them generates infinite new inner spirals and so on. Each 

member of these infinite sets of the spirals reproduces a basic bifurcation pattern. Therefore, we 

have in general large unstable regions that generate large chaotic regions near the corotation 

points L4, L5, which are unstable. As C varies along the spiral characteristic of every bifurcating 

family, which approaches its focal point, infinite loops, one inside the other, surrounding the 

unstable triangular points L4 or L5 are formed on their orbits. So, each terminating point 

corresponds to an asymptotic non-symmetric periodic orbit that spirals into the corotation points 

L4, L5 with infinite period. This is a new mechanism that produces very large degree of 

stochasticity. These conclusions help us to comprehend better the motions around the points L4 

and L5 of Lagrange.  
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1. Introduction 
 

       In general, the stable periodic orbits are followed by many quasi periodic orbits, while the 

unstable periodic orbits are followed by large numbers of chaotic orbits. There are some routes 

to chaos in dissipative and conservative dynamical systems. The well-known Feigenbaum 

sequence of infinite period doubling bifurcations is a particular route to chaos in dissipative and 

conservative dynamical systems (Feigenbaum 1978; Coullet and Tresser, 1978). Some other 

routes for the transition from order to chaos in conservative dynamical systems of 2-degrees of 

freedom have been found by Contopoulos and Zikides (1980), Contopoulos (1983a,b, 1991), 

Heggie (1983), Bier and Bountis (1984) and Pinotsis (1988). These scenarios of routes to chaos 

are mentioned by Contopoulos (1993, 2002). Also, some of the routes to chaos in dissipative 

and conservative systems we find in an article by Eckmann  (1981).  
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 It is well known, that in the planar restricted 3-body problem Feigenbaum sequences of 

families of simple and double symmetric periodic orbits appear, as the Jacobi constant C varies, 

with a universal ratio consistent with the value δ 8.72. Bifurcated families have in general large 

unstable regions and generate large chaotic regions (Contopoulos and Pinotsis 1984, Pinotsis 

1986, 1987).  

       Although there exist many studies of the types of bifurcations for the families of symmetric 

periodic orbits in various Hamiltonian systems of two degrees of freedom, there are limited 

explorations of the stability and bifurcations of families of non-symmetric periodic orbits. Thus, 

our study centers on the changes of stability and bifurcations of the families of non-symmetric 

periodic orbits, which bifurcate from the original families b, c, l and n. 

      The stability of motions in the neighborhood of the Lagrangian points L4 and L5 has been 

investigated for some values of the mass ratio μ by a number of investigators (Pinotsis 1988, 

Contopoulos 1991, Sandor et. al. 2000, Bardin 2002, Henrard and Navarro 2004, 

Efthymiopoulos 2005, Erdi et. al. 2009). Also, Sicardy (2010) examined the stability of these 

points for some values of μ beyond the Gascheau’s value in the planar restricted three-body 

problem and found that the periodic orbits follow a Feigenbaum cascade leading to chaos at a 

value of μ . 

      We made a preliminary study for the non-symmetric short period orbits (SPO) of the family 

b (Pinotsis 1988) and we found infinite spiral characteristics around infinite focal points. Also, 

spiral characteristics of families of periodic solutions have been found in the case of a satellite 

oscillations (Bruno, A.D. and Varin, V.P.,  1997; Bruno, A.D., 2002 ). In this paper we make a 

systematic study of the families of non-symmetric periodic orbits that bifurcate at the points b1, 

c1, l2, n24 (Hénon 1965) and z1 (Pinotsis 1986), in the planar circular restricted 3-body problem 

and in the case of equal masses of the primaries. We found interesting information about the 

evolution and termination of the bifurcating families of various multiplicities of non-symmetric 

periodic orbits. The relevant topological characteristics change not only quantitatively but also 

qualitatively. We found a new mechanism that introduces a large degree of stochasticity, which 

could not be predicted a priori. Thus, we found a new route for the transition from order to 

chaos. This work required very large computing time because as the Jacobi constant C varies 

infinite successive stable and unstable segments along the characteristic of each bifurcating 

family appear, while each bifurcation point generates infinite inverse Feigenbaum sequences. So, 

each bifurcating family forms infinite spirals and each one of them generates infinite new inner 

spirals and so on. Therefore, we have in general large unstable regions that generate large 

chaotic regions near the corotation points L4, L5 and so these points are unstable.  

 

2. The method 
 

For the planar restricted 3-body problem the equations of motion are (Szebehely 1967) 
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The Jacobian integral of equations (1) is  

 
2 2C 2 (x y )                                                  (3) 

 

where C is the so-called Jacobian constant. We study non-symmetric periodic solutions with 

respect to the x-axis (the axis joining the two primaries), in the physical plane (x,y), for the 

Copenhagen case (μ=0.5). If we vary the Jacobi constant C, the values of x, x  and y  vary 

continuously and the characteristic of the family is a curve in the 3-dimensional space (C, x, x ), 

since the value of y  can be calculated from the Jacobi integral. For the numerical calculations, 

in double precision, we used the recurrent power series method with variable step in time. 

       In order to find non-symmetric periodic orbits we applied essentially a Newton method. A 

similar method has been applied already in 3-dimensional Hamiltonian systems (Magnenat 

1982). In order to calculate a periodic orbit approximate, initial conditions (x0, y0=0, 0x , 0y ) 

are given.  Each orbit intersects again the y=0 axis with y  in the same direction as 0y  and at the 

point x, y , x .  If we consider x, x  as functions fi (i=1, 2) of initial values of x0, 0x   (we can 

find 0y  from the Jacobi constant) then,  

  

                                       x=f1(x0, 0x ),  x =f2(x0, 0x )                                                           (4) 

 

In order to find a periodic orbit we give a small change of the initial conditions, Δx0, Δ 0x  which 

implies a change of the final point Δx, Δ x . In order for the orbit to be periodic we must have,  
 

x0+Δx0 = f1(x0+Δx0 , 0x +Δ 0x ) 

                                            0x +Δ 0x = f2(x0+Δx0 , 0x +Δ 0x )                                           (5) 

                            
Neglecting terms of order higher than one in Taylor’s expansion, in matrix form equations (5) 

can be written 
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The quantities a1, a2, a3, a4 can be found by calculating two orbits near the original one (i.e. we 

need to compute 3 orbits) with deviations (Δx0, 0) and (0, Δ 0x ).  In order to find approximate 

initial conditions for different bifurcating families at the bifurcation points we used a method of 

trial and error. Since we neglected higher order terms in Taylor’s expansion the solution of the 
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system (7) does not give exactly the periodic orbit. Adding the increments Δx0, Δ 0x , given by 

equation (7), to x0, 0x  we obtain better initial conditions for the next iteration.  This iterative 

process has to be repeated a number of times in order to give a periodic orbit with the required 

accuracy.  

        The stability of the families of non-symmetric periodic orbits can be studied in general by 

evaluating the Hénon (1965) stability parameters a, b, c, d or by evaluating the monodromy 

matrix of the variational equations (Hadjidemetriou 1989). In this work the stability of the 

families is studied by evaluating the stability parameters which are functions of the initial values 

0, 0 x x   and the Jacobian C (Hénon 1965). For a non-symmetric periodic orbit the stability 

condition is  

      A
a d

2
1                                                          (8) 

 

3. Infinite sets of spirals and self-similar orbits 
          
We consider the original families of simple symmetric periodic orbits b, l and c. At the 

previously mentioned bifurcation points -critical points- with initial conditions: b1 (Cin, xup, x , 

for the upper branch and xl for the lower one) (Table I), l2 (Cin, xup, x , xl) (Table IV) and c1 

(Cin, xup, x , xl) (Table VI) bifurcate new families of simple non-symmetric periodic orbits of the 

same period with their corresponding symmetric periodic orbits (we call these families main 

families fb1, fl2 and fc1 respectively) (Figures 1, 4, 7). 

       Each main family of the above three cases and each bifurcating families of various 

multiplicities presents the Feigenbaum scenario of infinite period doubling pitchfork bifurcations 

and each bifurcation ratio tends to approach the universal number δ 8.72 at a finite value of 

the Jacobian constant, which we have already found for the families of symmetric periodic orbits 

(Contopoulos and Pinotsis 1984, Pinotsis 1986, 1987).  

         Along the characteristic curve of each main family, as the serial number of its bifurcation 

points increases the distances between two neighbouring characteristics of the bifurcating 

families become smaller and smaller. So, it is more and more difficult to separate the bifurcating 

families of different multiplicity. Also, they are strongly unstable and the instability of the 

families becomes larger and larger from one bifurcating family to the next one. Therefore more 

accuracy is necessary to study them, that is, a new magnification of the space (x–C diagram) is 

needed and so on. Thus, it is difficult to follow further some of these families in order to find 

their termination point because of the very large computing time needed.  

     As we mention below in these cases we took many interesting information about the 

evolution and termination of the bifurcating families of various multiplicities of periodic orbits.  

     Also, we studied the main family of double non-symmetric periodic orbits, fz1, which 

bifurcates at the critical point z1 (Cin, x, x ) (Table VIII). We found here the Feigenbaum 

phenomenon. We followed the evolution of this main family of double non-symmetric periodic 

orbits beyond its first 2 4 transition point. The family becomes more and more unstable, as C 

increases, while the period of the orbits continuously increases. We did not follow further this 

family because of the very large computing time needed. We stopped the numerical calculations 

at the point (Cst, x, x ).  

       As regards the main family of double non-symmetric periodic orbits, fn24, which bifurcates 

at the critical point n24, it is unstable and becomes more and more unstable as the Jacobi 
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constant C varies. So, it does not appear that it has any bifurcation of other families of periodic 

orbits. In Tables (I-VIII) we give some of the bifurcation points of all these families. The tables 

"are published as attachments to the online version of this article". 
 

3.1 Evolution and stability of the main family fb1  
 

I. Simple periodic orbits 
       

The orbits of the main family fb1 are the short period orbits (SPO). The second branch of its 

characteristic is outside the Figure 1. As the Jacobi constant increases the stability parameter 

decreases and at the 1 2 point (C1, x1, x ) (Tables I, II, III) (first bifurcation point) bifurcates a 

new stable family of double non-symmetric periodic orbits (we call this family fbd1) (Table II). 

This new family, as C increases, it becomes critically unstable at the 2 4 transition point 

(C2 4, xup, x , xl) (Table III). Here we have the Feigenbaum scenario. The characteristic of each 

bifurcating family has two branches which extend towards larger values of C (Figure 1).  

          Looking for possible inverse Feigenbaum sequences, we followed the evolution of the 

main family fb1. At first, as C increases the characteristic of the family extends to the right and 

downwards (the absolute value of x decreases) in the x-C diagram. At the 1 2 bifurcation point 

(C2, x2, x ) (Tables I, III) -second bifurcation point-a new stable family of non-symmetric double 

periodic orbits- we call this family fbd2- with two branches towards smaller values of the Jacobi 

constant appears. As C decreases the new stable family fbd2 becomes unstable and so on. Here 

the Feigenbaum scenario appears. 

       As C increases beyond the second bifurcation point, the characteristic of the main family 

continues to the right and downwards while the family is stable until the first turning point (Ct1, 

xt1, x ) and the family has a maximum C. Following the evolution of the main family beyond the 

first turning point the characteristic of the family has an initial part with C decreasing for 

decreasing absolute value of x. As C decreases further the characteristic turns upwards in x. At 

the point (Ct2, xt2, x ), second turning point, the family becomes critically stable again and the 

characteristic has a minimum C. After the second turning point, for C increasing the absolute 

value of x increases and the family has a small stable segment until the third 1 2 critical point 

(C3, x3, x ) at which it bifurcates a new stable family of non-symmetric double periodic orbits 

with two branches towards larger values of C. This family loses its stability at the 2 4 

bifurcation point (C2 4, xup, x , xl) (Table III) and so on. A cascade of Feigenbaum bifurcations 

is generated here.  

       After the third bifurcation point, for C increasing, the main family becomes more and more 

unstable but after a while the family becomes stable again at the fourth 1 2 bifurcation point 

(C4, x4, x ). At this point it bifurcates a new stable family of non-symmetric double periodic 

orbits with two branches towards smaller values of C. At this point the Feigenbaum scenario 

appears.  

     After the fourth bifurcation point the main family is stable until the third turning point (Ct3, 

xt3, x ) at which it has a maximum C and so on (Figure 1). The same phenomenon occurs in the 

other (lower) branch of the main family. We stopped the numerical calculations at the point Cst, 

xst, x ) (Table I) after the fifth bifurcation point (C5,, x5, x ) at which we found the Feigenbaum 

scenario. 

       As C changes along the spiral characteristic, which approaches asymptotically its focal 

point-terminating point, infinite changes from  stability to instability and vice versa appear, 

while each bifurcation point generates infinite inverse Feigenbaum sequences. That is, each 
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branch of a Feigenbaum sequence presents the same phenomenon and so on. Therefore there 

exist infinite spirals and each one of them produces infinite new inner spirals and so on. After 

infinite successive small stable and large unstable segments the characteristic spirals inwards 

around its terminating point. Each branch of the main family spirals into its focal point C∞ =3, 

xup ≈-1.624989 (or xl ≈ -0.684635 for the lower branch). The values of x (for each branch of a 

family) were calculated as the average of the extreme –closest to the focal point- values of the 

corresponding final spiral, which was found numerically. Contopoulos (1991) investigated 

periodic orbits of a galactic type potential and explained how the spirals are generated as soon as 

the Langrangian points L4, L5 become unstable. 

        Figure 2 shows a set of some simple periodic orbits. We found that near the first turning 

point a cusp appears close to the Lagrangian point L4, which turns to loop in the second turning 

point. As C varies, the size of the loop of the orbit grows and encloses the triangular libration 

point L4. As C varies further, a new inner cusp appears which evolves to a new inner loop, near 

the fourth turning point, surrounding the triangular point L4 and so on.  As we approach the 

terminating point infinite loops, one inside the other, emanate, surrounding the Lagrangian point 

L4. Thus, an infinite set of self-similar orbits is constructed, each member of this set reproducing 

a basic pattern. The orbits spiral around the triangular point L4. So, the terminating point 

corresponds to an asymptotic non-symmetric periodic orbit spiraling into the point L4, which has 

the same Jacobi constant as the Langrangian point L4 (C =3).  In this limiting point we have an 

infinite self-similar orbit with infinite period and so the termination principle T  is satisfied 

(Szebehely 1967).  
 

II. Families of double periodic orbits fbd1 and fbd2 
 

We followed the evolution of the family fbd1 beyond the 2 4 transition point (first bifurcation 

point of the family fbd1) (Tables II, III and Figure 3a). As C increases, the two branches of the 

characteristic of the family fbd1 extend to the right in the x-C diagram. The upper branch 

initially goes upwards, with decreasing period and then turns downwards while the period 

continuously increases. The lower branch goes downwards. These branches are outside and far 

from the characteristic of the main family (Figure 1). As C increases further the family becomes 

critically stable again at the 2 4 bifurcation point, second bifurcation point, (C2, xl, x , xup) 

(Table II) a new stable family of quadruple non-symmetric periodic orbits with two branches 

towards smaller C is generated and so on. Here the Feigenbaum scenario appears. 

      After its second bifurcation point, the family fbd1 has a stable segment and at its first turning 

point (Ct1, xl, x , xup) the family has a maximum C.  After this point C decreases with  the 

absolute value of x decreasing for the upper branch and increasing for the lower one (Figure 1). 

At the second turning point (Ct2, xl, x , xup) the family has a minimum C. After this point the 

family has a stable segment until the third 2 4 bifurcation point (C3, xl, x , xup) and so on. At 

this point a new stable family with two branches towards larger values of C emanates, giving 

birth to a Feigenbaum sequence. We stopped at the point (Cst, xl, x , xup) (Table II, Figure 3c) 

which is after the fourth 2 4 bifurcation point. 

       In this case a similar bifurcation pattern as in the case of the main family of simple periodic 

orbits fb1 appears. The two branches of the family fbd1, which pass outside the spirals of the 

main family, spiral around their focal points with C∞=3, xup≈-1.6558 and xl≈-1.5038. As the 

spiral characteristic approaches asymptotically its focal point infinite changes from stability to 

instability and vice versa appear while from each bifurcation point infinite inverse Feigenbaum 

sequences are generated. Each branch has infinite successive small stable and large unstable 
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segments. Every bifurcating family of a Feigenbaum sequence produces the same phenomenon 

and so on. Therefore, infinite spiral characteristics appear and each one of them generates 

infinite new inner spirals and so on. Each member of these infinite sets of the spirals reproduces 

a basic bifurcation pattern. Therefore, we have in general large unstable regions that generate 

large chaotic regions near the corotation point L4. We have here self-similar orbits, which grow 

loops, as C varies.  These loops surround the Langrangian point L4. The terminating point 

corresponds to an infinite self-similar asymptotic orbit with C∞=3, while its period is infinite. 

 We also followed the evolution of the family fbd2 (Table III, Figure 1). As C decreases 

the two branches of the characteristic curve of the family extend to the left in the x-C diagram, 

while its period continuously increases. This family becomes critically unstable at the 2 4 

bifurcation point (C2 4, xl, x , xup) (Figure 3d). We have here the Feigenbaum sequences 

(Figure 1).  

       As C decreases, the family fbd2 becomes more and more unstable and its two branches 

continue further to the left and upwards in the x-C diagram. The further study of this family is 

very difficult because of the very large degree of stochasticity and so the very large computing 

time needed to extend it to its terminating point. We stopped the numerical calculations at the 

point (Cst, xl, x , xup)
 
(Table III, Figure 3e). 

       The two branches of this family are close to the characteristic of the main family fb1 and 

inside of the two branches of the previous family fbd1 (Figure 1). Also, the shapes and the initial 

values of x of the orbits (b) and (e) of Figure 3, that belong to the two families fbd1 and fbd2 

respectively and they have the same value of Jacobi constant C, are different. So, the family fbd2 

can not join the family fbd1 in order to form a bubble (Contopoulos 1983a). Thus, it is 

topologically necessary that the evolution of the family fbd2 should present a similar bifurcation 

pattern and dynamical structure of spirals as the previous mentioned cases of the families of 

simple and double periodic orbits fb1 and fbd1. So, each branch of the characteristic of the 

family fbd2 spirals into its focal point with C∞=3. The terminating point corresponds to the 

initial conditions of a limiting asymptotic non-symmetric orbit spiraling into the Langrangian 

point L4. These results help us to comprehend the motions around the point L4 of Lagrange. 
 

3.2 Evolution and stability of the main family fl2  
 

I. Simple periodic orbits 
 

The second branch of the characteristic curve does not appear in Figure 4. As C decreases, at the 

1 2 critical point -first bifurcation point-(C1, x1, x ) (Tables IV, V) bifurcates a new stable 

family of non-symmetric double periodic orbits-family fld1. After that, for smaller values of C, 

the family fld1 loses its stability at the 2 4 bifurcation point (C2 4, xup, x , xl) (Table V)  and 

so on (Figure 4). The Feigenbaum scenario appears. 

       We followed the main family after its first bifurcation point. As C decreases, the 

characteristic of the family continues to the left and upwards (the absolute value of x increases) 

in the x-C diagram while the period continuously increases (Figure 4). The family becomes 

critically stable at the second bifurcation point (C2, x2, x ) (Tables IV). At this 1 2 transition 

point a new stable family of double non-symmetric periodic orbits-family fld2-with two branches 

towards larger values of C is generated. For somewhat larger C the new family fld2 also 

becomes unstable at the 2 4 bifurcation point (C2 4, xup, x , xl) (Table V, Figure 6d) and so 

on. Thus, we have here the Feigenbaum scenario (Figure 4).  
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       As C decreases the main family is stable until the first turning point (Ct1, xt1, x ) at which it 

has minimum C. After this point, the characteristic of the family turns to the right and upwards. 

As C increases further the absolute value of x decreases and the family becomes critically stable 

again at the second turning point (Ct2, xt2, x ) and it has maximum C. With C decreasing the 

family has a stable segment until the third 1 2 bifurcation point (C3, x3, x ) (Tables IV,V). At 

this point a new stable family of double non-symmetric periodic orbits emanates, while its two 

branches are towards smaller value of C. The new family becomes critically unstable at the 2 4 

transition point (C2 4, xup, x , xl) (Table V)  and so a Feigenbaum scenario appears.  

       With C decreasing beyond the third 1 2 bifurcation point the family becomes stable again 

at the fourth 1 2 bifurcation point (C4, x4, x ), giving birth to a Feigenbaum sequence towards 

larger values of C. Αs C decreases further, the family fl2 has a stable segment until the third 

turning point (Ct3, xt3, x ) at which the family has minimum C and so on. We stopped the 

numerical calculations at the point (Cst, xst, x ) (Table IV) which is after the fifth turning point 

(Ct5, xt5, x ). 

       The same phenomenon occurs in the other branch of the main family. Thus the evolution of 

the family fl2 has a similar bifurcation pattern and dynamical structure as the families fb1 and 

fbd1. Namely, as the Jacobi constant changes each branch of the main family spirals around its 

focal-terminating-point at C∞=3, xup=-2.279677, xl=2.28174. As we approach the focal point of 

the family infinite changes of stability to instability and vice versa appear while each bifurcation 

point produces infinite inverse Feigenbaum sequences and so on. Therefore there exist infinite 

spirals and each one of them produces infinite new inner spirals and so on. That is, a basic 

pattern is continuously reproduced. The stable parts along the characteristic of the family are 

smaller and smaller as we approach to the terminating point.    

           In Figure 5 we give a set of simple periodic orbits. We found that with C decreasing, a cusp 

near the Lagrangian point L4 appears which turns to a loop surrounding this point (Figures 

5b,c). As C varies further, a new inner cusp appears which evolves to a new inner loop 

surrounding the point L4 (Figure 5d) and so on. Thus, as we approach the terminating point of 

the family we pass through an infinite set of self-similar orbits, every member of this set 

reproducing a basic pattern. The terminating point of the family corresponds to an infinite non-

symmetric self-similar orbit, with infinite period and C∞=3, approaching asymptotically the 

triangular point L4.  
 

II. Families of double periodic orbits fld1 and fld2 
 

We follow now the evolution of the family fld1 beyond the 2 4 its bifurcation point (Table V, 

Figure 6a). As C decreases, the two branches of its characteristic continue to the left in the x-C 

diagram (Figure 4). The upper branch turns upwards while the lower one extends initially 

downwards and then turns upwards, that is, they have a similar behavior as the previous case of 

the family fbd1. The two branches seem to pass respectively above and below the spirals of the 

main family. We stopped the evolution of the family at the point (Cst, xup, x , xl) because of the 

very large degree of stochasticity and so of the very large computing time needed. The instability 

parameter reaches an absolutely large value (Table V, Figure 6c). 

       Figure 6 shows a set of non-symmetric double periodic orbits. We see that the orbits (a), (b), 

(c) of the family fld1 present a similar evolution as the orbits of the main family fl2 (Figure 5) as 

well as the orbits of the families fb1 and fbd1 (Figures 2, 3). That is, with decreasing C three 

cusps on the orbits appear near the triangular libration points L4, L5, which evolve to three small 

loops. As C decreases further the loops grow and enclose these points. It seems that as C varies 
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new inner loops continuously appear on the orbits surrounding the Lagrangian points. We 

conclude that the family has a similar bifurcation pattern and dynamical structure as the 

previous cases of the families fl2, fb1 and fbd1. Each branch of the characteristic of the family 

will approach asymptotically its focal point, with C∞=3, spiralling   around it.    

       Also, the evolution of the family fld2 shows that its two branches extend to the right and in 

general downwards in the x-C diagram (Figure 4). The two branches are close to the 

characteristic of the main family and inside the two branches of the previous family fld1. We 

stopped the evolution of the family fld2 at the point (Cst, xup, x , xl) because of the very large 

computing time needed (Figure 6e).  The instability parameter reaches an absolutely large value 

(Table V). 

     In Figure 6 we give two non-symmetric double periodic orbits of the family fld2. We see that 

as C increases the two loops grow and enclose the Lagrangian point L4. The periodic orbits (c) 

and (e) (Figure 6) of the families fld1 and fld2 respectively have different shapes. Thus, the two 

families do not seem to join each other in order to form a bubble. Thus, it is topological necessity 

the two families to have a similar bifurcation pattern as in the previous case of the families fbd1, 

fl2 and fb1.  

           

3.3 Evolution and stability of the main family fc1  
 

I.  Simple periodic orbits 
 

As C increases the stability index of the main family decreases and at the point (C1, x1, x ) 

(Tables VI, VII) we have the 1 2 critical point (first bifurcation point) bifurcates a new family 

of double non-symmetric periodic orbits- family fcd1- which is also initially stable. After this 

point, as C increases, the family of double periodic orbits becomes unstable at the 2 4 

bifurcation point (C2 4, xup, x , xl) (Table VII). We have here the Feigenbaum scenario. 

       We continued the characteristic of the family fc1 beyond its first bifurcation point (Figure 

7). The other branch of the characteristic is outside of the x-C diagram of Fig.7. As C increases 

the characteristic curve extends to the right and downwards in the  x-C diagram (the absolute 

value of x decreases) and at the second 1 2 bifurcation point (C2, x2, x ) (Tables VI, VII) the 

family becomes critically stable again. In this point a new stable family of non-symmetric double 

periodic orbits   bifurcates-family fcd2-from the main family with two branches towards smaller 

values of C.  As C decreases this new family becomes critically unstable at the 2 4 transition 

point (C2 4, xup, x , xl) (Table VII, Figure 9c) and so the Feigenbaum scenario appears  (Figure 

7).         

       The main family is stable until the first turning point (Ct1, xt1, x ) and it has maximum C. As 

C decreases the characteristic curve turns to the left and downwards in the x-C diagram. With C 

decreasing further the absolute value of x increases and the family becomes critically stable 

again at the second turning point (Ct2, xt2, x ) and it has minimum C.  After the second turning 

point, C increases with the absolute value of x increasing while the family has a small stable 

segment until the third 1 2 bifurcation point (C3, x3, x ) (Tables VI,VII), at which a new stable 

family of non-symmetric double periodic orbits with two branches towards larger values of C 

bifurcates. This stable family loses its stability at the 2 4 transition point (C2 4, xup, x , xl) 

(Table VII) and so on. Here a Feigenbaum scenario appears.  

      After the third bifurcation point, as C increases, the main family becomes stable again at the 

point (C4, x4, x ). At this fourth 1 2 bifurcation point a bifurcated new stable family of double 
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non-symmetric periodic orbits extends towards smaller values of C. This stable family loses its 

stability and the Feigenbaum phenomenon appears.  

      After the 1 2 transition point the family fc1 becomes critically unstable again at the third 

turning point (Ct3, xt3, x ) at which we have a maximum C and so on. We stopped the numerical 

calculations at the point (Cst, xst, x ) (Table VI). This point is after the fifth 1→2 bifurcation 

point at which we found the usual Feigenbaum scenario. 

       Thus the evolution of the main family presents a similar bifurcation pattern and dynamical 

structure as in the cases of the families fb1 and fl2.  That is, as C varies, each branch of the 

family spirals into its focal point at C∞ = 3, xup=-0.214405 and xl=0.215312. Therefore, infinite 

spirals appear and each one of them generates infinite new inner spirals and so on. Each member 

of these infinite sets of the spirals reproduces a basic bifurcation pattern. So, we found a new 

route to Chaos  

       Figure 8 shows four simple periodic orbits. The last orbit (d) has two loops surrounding the 

Lagrangian point L5. As C varies new inner cusps appear which evolve into new inner loops 

surrounding the point L5 and so on. Thus, we have here self-similar orbits. The terminating point 

of the family corresponds to an infinite non-symmetric self-similar orbit, with infinite period, 

approaching asymptotically the triangular point L5 (C∞ = 3).  
 

II.   Families of double periodic orbits fcd1 and fcd2 
 

We continued the family fcd1 beyond the 2 4 its bifurcation point-first bifurcation point of this 

family (Table VII, Figure 9a). The two branches of its characteristic curve extend to the right in 

the x-C diagram. As C increases, the upper branch turns initially upwards in x and then 

downwards, as in the previous mentioned cases of the families of double periodic orbits. The 

lower branch moves continuously downwards while the period of the orbits initially decreases 

and then increases. The two branches are outside and far from the characteristic of the main 

family (Figure 7).  So, it seems that the two branches will pass outside of the spirals of the main 

family as in the previous case of the family fb1. Because of the very large computing time 

needed, we stopped at the point (Cst, xl, x , xup) (Table VII, Figure 9b). 

       On the contrary, the evolution of the family fcd2 (Tables VI, VII) shows that its two 

branches extend to the left and upwards for the upper branch and downwards initially and then 

upwards for the lower one, while the period continuously increases. The two branches of the 

family are close to the characteristic of the main family and inside of the two branches of the 

previous family fcd1 (Figure 7). This family becomes more and more unstable, as C decreases. 

We did not follow further the family because of the very large degree of stochasticity and 

consequently of the very large computing time needed. We stopped at the point (Cst, xup, x , xl) 

(Table VII, Figure 9d) 

 Figure 9 shows some double non-symmetric periodic orbits along the characteristic of 

the two families fcd1 and fcd2. It seems that the two families fcd1 and fcd2 present similar 

bifurcation structure and dynamical behavior as the previously mentioned families of double 

periodic orbits of the main family fb1. Comparing the variation of the periods of the orbits of the 

two families (Table VII) as well as the different shape of their orbits b and d of Figure 9, it 

seems that they do not join each other in order to form a bubble.  Thus, it is topologically 

necessary that the families should have a similar bifurcation pattern as in the previous case of the 

main family fc1 as well as in the case of the double periodic orbits of the family fb1. That is, 

each bifurcated family seems to turn around its focal point with C∞=3, while infinite bifurcation 

points and so infinite inverse Feigenbaum sequences and infinite spirals appear. Consequently, in 
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the case fc1 we found a new mechanism which leads to a large degree of stochasticity. The 

conclusions help us to comprehend the motions around the point L5 of Lagrange. 
 

4. Conclusions  
 

We studied systematically cases of non-symmetric periodic orbits of the families b, l, c and n of 

the planar restricted 3-body problem and in the case of equal masses of the primaries. The study 

gives a new interesting dynamical structure of the phase space and the topological characteristics 

change not only quantitatively but also qualitatively. 

       For the main families of simple non-symmetric periodic orbits fb1, fl2, fc1, and fz1 that 

bifurcate at the points b1, l2, c1, (Hénon 1965) and z1 (Pinotsis 1986) respectively, we found the 

evolution and their stability. In their first bifurcation point these families present a similar 

bifurcation structure. We did not find the termination point of the family fz1 because of the very 

large computing time required.  

       As regards the main families fb1, fl2, fc1, as the Jacobi constant C varies each branch of the 

characteristic of a main family of simple non-symmetric periodic orbits spirals around its focal 

point-termination point in x- at which the Jacobi constant is C∞=3. As the characteristic of each 

main family approaches asymptotically its termination point infinite changes from stability to 

instability and vice versa and so infinite bifurcation points appear. So, infinite successive very 

small stable and very large unstable segments along the characteristic of each main family are 

formed. The stable parts along the characteristic of each family are smaller and smaller as we 

approach to the terminating point. Each bifurcation point generates infinite inverse Feigenbaum 

sequences. That is, each bifurcating family presents the same phenomenon and so on. Thus, 

infinite sets of inverse Feigenbaum sequences and infinite sets of spirals appear. Each member of 

these infinite sets of the spirals reproduces a basic bifurcating pattern. Thus, the families are 

strongly unstable and so the regions near the Lagrangian points L4, L5 are mostly chaotic. 

       Every bifurcating family of double non-symmetric periodic orbits produces also the same 

phenomenon, i.e. infinite inverse Feigenbaum sequences and infinite spirals that have infinite 

different focal points. Also, each bifurcated family of higher multiplicity presents the same 

phenomenon. That is, each bifurcated family leads to spiral around its focal point in x with 

C =3. Each spiral has infinite changes of stability to instability and vice versa. Infinite 

bifurcation points appear and each one of them generates infinite inverse Feigenbaum sequences 

and so on. Therefore, we have infinite spirals with infinite different focuses and each one of them 

generates infinite new inner spirals and so on. Thus, infinite sets of spirals appear and each 

member of these infinite sets of the spirals reproduces a basic bifurcating pattern.  

        The orbits of each main family near the corotation –Lagrangian points L4, L5 present a new 

dynamical structure (Figures 2, 5, 8). As C changes along the characteristic of each main family 

a cusp close to the Lagrangian point L4 or L5 on the orbits emanates that evolves to loop 

surrounding one of these points. As C changes continuously, approaching asymptotically its 

terminating point, a new cusp inside the loop appears that turns to new inner loop enclosing one 

of the triangular points L4 or L5 and so on. This process reproduces continuously a basic pattern. 

As we approach the terminating point, an infinite set of self-similar orbits is constructed. The 

same phenomenon presents the families of double non-symmetric periodic orbits (Figures  3b,c 

and 6b,c) as well as the orbits of each bifurcated family of higher multiplicity. So, the 

terminating point of each bifurcating family corresponds to a non-symmetric self-similar orbit 

with infinite period and C∞=3, that approaches asymptotically the point. Thus, the termination 
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principle for a family of periodic orbits, which states that either the period of an orbit or its size 

or the energy goes to infinity (Szebehely 1967), is satisfied.  

       Bubbles do not exist in this case of families of periodic orbits that terminate at L4 or L5.  In 

general, there do not exist bubbles in the case μ=0.5. We have found indications that bubbles are 

formed after a critical value of μ. 

        The maximum absolute value of the instability parameter of each family is very large of 

order 10 6 . This value grows further as we approach the focus of its characteristic as well as the 

multiplicity of the bifurcating families increases. Therefore, there must be large chaotic regions 

of stochastic orbits around these periodic orbits.  

       This mechanism of the infinite sets of inverse Feigenbaum sequences and infinite sets of 

spirals of each (main) family are generated near corotation points L4 or L5. Each multiplicity 

family terminates after infinite spirals at its focal point- constant point in x- with the value of 

Jacobi constant C∞=3. The Lagrangian points L4, L5 as well as the regions near them are 

strongly unstable.  

       This mechanism produces, in general, a very large degree of stochasticity that generates 

large chaotic regions near the corotation points (L4 or L5). This is a new route to chaos. We have 

thus a new mechanism that produces very large degree of stochasticity. These conclusions help 

us to comprehend better the motions around the corotation points L4 and L5. We anticipate that 

this mechanism will appear also in other rotating dynamical systems of 2-degrees of freedom.  
 

Acknowledgements: I wish to thank Prof. G. Contopoulos for his useful comments and Manolis  

Zoulias for making the Figures 1, 4 and 7. 
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                                          Figure captions 

 

Figure 1: Evolution of the families of non-symmetric simple (main family fb1), double, 

quadruple,… periodic orbits schematically (the actual values are given in the Tables). ( ___ ) 

stable, (….) unstable  orbits. The families of double periodic orbits fbd1 and fbd2, emanated at 

the 1→2 first and second bifurcation points of the family fb1. The two branches of the 
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characteristic curve of the family fbd2 remain always inside the two branches of the 

characteristic curve of the family fbd1.  

Figure 2: A set of simple periodic orbits in the x-y plane: (a) A symmetric periodic orbit of the 

original family b in the neighborhood of the bifurcation point b1. Also, three non-symmetric 

periodic orbits along the characteristic  of the main family fb1. We see a change of the form of 

the cusps or of the loops as C varies: (b) near the first turning point, (c) near the second turning 

point,  and (d) at the point at which we stopped the numerical calculations. 

Figure 3: Some double non-symmetric periodic orbits in the x-y plane: Along the characteristic 

curve of the family fbd1: (a) near the 2→4 bifurcation point, (b) at the point C=3.047539, x=-

1.498219454462, x -0.03068701204, T=13.3517 and (c) at the point at which we stopped 

the numerical calculations: Also, along the characteristic of the family fbd2: (d) near the 2→4 

bifurcation point, and (e) at the point at which we stopped the numerical calculations. The orbits 

(b) and (e) of the two families fbd1 and fbd2 correspond to the same C. 

Figure 4: Evolution of the families of non-symmetric simple (main family fl2), double, 

quadruple,… periodic orbits schematically (the actual values are given in the Tables). ( ___ ) 

stable, (….) unstable orbits. The families of double periodic orbits fld1 and fld2 emanated at the 

1→2 first and second bifurcation points of the family fl2. The two branches of the characteristic 

curve of the family fld2 remain inside the two branches of the characteristic curve of the family 

fld1.  

Figure 5: Simple periodic orbits: (a) A symmetric periodic orbit of the original family l near the 

bifurcation point l2. Also three non-symmetric periodic orbits of the main family fl2: (b) a cusp 

appears near the point C=3.19, x=-2.079926229183, x 0.191954854072, T=10.8154, (c) 

near the first turning point and (d) near the fifth turning point.   

Figere 6:  Double non-symmetric periodic orbits: Orbits belonging to the family fld1: (a) near 

the bifurcation point 2→4, (b) three cusps appear near the point C=3.1230853, x=-

2.13360173108, x 0.19734606655 and (c) at the point at which we stopped the numerical 

calculations: Orbits along the characteristic of the family fld2: (d) near the 2→4 bifurcation 

point of the family fld2 and (e) at the point at which we stopped the numerical calculations. 

Figure 7: Evolution of the families of non-symmetric simple (main family fc1), double, 

quadruple,… periodic orbits schematically (the actual values are given in the Tables). ( ___ ) 

stable, (….) unstable  orbits. The families of double periodic orbits fcd1 and fcd2 emanated at 

the 1→2 first and second bifurcation points of the family fc1. The two branches of the 

characteristic curve of the family fcd2 remain inside the two branches of the characteristic curve 

of the family fcd1.  

 Figure 8: A set of simple periodic orbits in the x-y plane: (a) A symmetric periodic orbit of the 

original family c in the neighborhood of the bifurcation point c1. Also, three non- symmetric 

periodic orbits along the characteristic of the main family fc1. We see a change of the form of 

the cusps or of the loops as C varies: (b) near the first turning point, (c) near the second turning 

point and (d) at the point at which we stopped the numerical calculations. 

Figure 9: Some double non-symmetric periodic orbits in the x-y plane: Orbits belonging to the 

family fcd1: (a) near the bifurcation point 2→4 and (b) at the point at which we stopped the 

numerical calculations: Orbits along the characteristic of the family fcd2: (c) near the 2→4 

bifurcation point and (d)  at the point at which we stopped the numerical calculations. 
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                                            Table I 

Bifurcations of the main family fb1. C1,C2,.., Jacobi constant of the bifurcation points.        

                        Ct1,Ct2,.., Jacobi constant of the  turning points. 

Initial conditions of the critical points   Period    

     T 

Stability 

index  A              

Cin=2.27078 xup=-1.7155626399 

xl=-0.5496542824 

x b1=0 

 

5.7902 +1 

C1= 2.284816 x1=-1.7154767053 x =-0.0384865989 
 

5.8113 -1 

C2=3.053810501 x2=-1.61536591 x =-0.18809097 
 

8.9442 -1 

Ct1=3.05381119 xt1=-1.61534262 x =-0.18803613 
 

8.9488 +1 

Ct2=2.993115816307 xt2=-1.626211247202 x =-0.1806600851015 
 

12.2168 +1 

C3=2.99311581766 x3=-1.6262116309338 x =-0.1806609429056 
 

12.2173 -1 

C4=3.00084455473514 x4=-1.6249085675 x =-0.181644983 
 

15.5392 -1 

Ct3=3.00084455473767

2 

xt3=-1.6249085509296 x =-0.1816449703712 

 

15.5393 +1 

Ct4=2.998958724736589

8 

xt4=-1.62506982337 x =-0.181525103213 

 

18.8499 +1 

C5=2.9998958724736637 x5=-1.62506982346 x =-0.1815251034061 18.85 -1 

Cst=3.0000123276 xst=-1.6250503904397 x =-0.1815406045172 21.9283 -3.89 10
5
 

 



 22 

                                                                   

 

 

 

 

 

 

 

                                                              Table II  

Bifurcations of the family of double periodic orbits fbd1. C1,C2,.., Jacobi constant of the 

bifurcation points. Ct1,Ct2,.., Jacobi constant of the  turning points.  

Initial conditions of the critical points 

 
Period 

T 

Stability 

index  A 

Cin= 2.284816 x1=-1.7154767053 x =-0.0384865989 5.8113 -1 

C1=2.286493 xup=-1.72113211 

xl=-1.708763228629 

x =-0.04267198044 11.617

9 

-1 

C2=3.056031450829 xl=-1.49728175567 

xup=-1.6509765232 

x =-0.02958157413 13.806

3 

-1 

Ct1=3.05603145088715 xl=-1.4972818162 

xup=-1.650976169619 

x =-0.02958148958 13.806

4 

+1 

Ct2=2.9928415643453027 xl =-1.510426741038 

xup=-1.660705844398 

x =-

0.0288617082239 

17.104

1 

+1 

C3=2.99284156434545 xl=-1.5104267399485 

xup=-1.660482771437 

x =-

0.0288617097337 

17.104

2 

-1 

Cst=2.99794649 xl=-1.5093075839134 

xup=-1.660211636989 

x =-

0.0290258657503 

18.656

7 
-1.05 10

6
 

                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        Table III   

    Bifurcations of the first three families of double periodic orbits fbd1,  fbd2 and  fbd3 

              Initial conditions of  the bifurcation points of the family fbd1  

         

Period 

T 

Stability 

index A 

C1 2 =2.284816 x1=-1.7154767053 x =-0.0384865989 5.8113 -1 
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C2 4=2.286493 xup=-1.72113211 

xl=-1.70876322863  

x =-0.0426719804 4  11.6179 

  

-1 

C4 8=2.28668105 

 

xl=-1.7076 1 

xup=-1.709725 

x =-0.03423224 23.2361 -1 

              Initial conditions of  the bifurcation points of the family fbd2 

         

Period 

T 

Stability 

index A    

C1 2=3.053810501 X2=-1.61536591 x =-0.18809097 8.9442 -1 

C2 4=3.053810329 xl=-1.6153884368924 

xup=-1.6168196461756 

x =0.1881101288858 17.8885  -1 

C4 8=3.053810307 xl =-1.6153876697247 

xup =-1.616819721 

x -0.1881118816314 35.7768 -1 

Cst=3.047539 xup=-1.62115333 

xl=-1.6127423 

x =-0.19184434 17.9617 -7.4 10
4
 

              Initial conditions of  the bifurcation points of the family fbd3 

         

Period 

T 

Stability 

index A    

C1 2=2.99311581766 x3=-1.6262116309338 x =-0.1806609429056 
 

12.2173 -1 

C2 4=2.993115818 xup=-1.626211997351 

xl=-1.626211277421 

x =-0.180661248628 24.4347 -1 

                                                           

                                                               

 

 

 

 

 

 

 

Table IV 

Bifurcations of the main family fl2. C1,C2,.., Jacobi constant of the bifurcation points. 

Ct1,Ct2,.., Jacobi constant of the  turning points. 

Initial conditions of the critical points Period    

     T 

Stability 

index A   

Cin=3.552593 xup=-1.907961968103 

xl=1.9079619681 

x =0 10.5675 +1 

C1=3.53401 X1=-1.91796399 x =0.05286984 10.5765 -1 

C2=2.855512 x2=-2.2764855257 x =0.2132893264 11.8966 -1 

Ct1=2.85545487 xt1=-2.27808186 x =0.21300771 11.9193 +1 

Ct2=3.01707925685 xt2=-2.27955289 x =0.19140455 15.3749 +1 

C3=3.01707913 x3=-2.2795231 x =0.19140926 15.3783 -1 

C4=2.997887875 x4=-2.2796852 x =0.19413788 18.6593 -1 

Ct3=2.997887874567 xt3=-2.2796858 x =0.19413779 18.6599 +1 

Ct4=3.000260188348925 xt4=-2.27967606904 x =0.19380232 21.9771 +1 

C5=3.000260188348 x5=-2.27967606 x =0.19380233 21.9772 -1 

C6=2.9999679358126972 x6=-2.2796774342327 x =0.1938436770669 25.2887 -1 

Ct5=2.9999679358126962 xt5=-2.2796774343397 x =0.1938436770498 25.2888 +1 
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8 

Cst=2.99997945696 xup=-2.27968469583 x =0.19384087578 26.2157 4.7 10
5
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table V 

Bifurcations of the families of double periodic orbits fld1, fld2 and fld3 

Initial conditions of the bifurcation points of the family fld1 

         

Period 

T 

Stability 

index A 

C1 2=3.53401 X1=-1.91796399 x =0.05286984 10.5765 -1 

C2 4=3.5317879 xup=-1.9359955675679 

xl=-1.897372374 

x =0.0611642364043 21.1842 

 

-1 

C4 8=3.53153746 xup=-1.9372144299 

xl= -1.93525442 

x =0.061036773178 42.3717  -1 

Cst=3.071987 xup=- 2.15553929883 

xl= -1.79270089598 

x =0.20318136029 25.3679 -6.25∙10
4
 

        Initial conditions of the bifurcation points of the family fld2               

         

Period 

T 

Stability 

index A 

C1 2=2.855512 x2=-2.2764855257 x =0.2132893264 11.8966 -1 

C2 4=2.8555266 Xup=-2.2769878265466- 

xl=-2.2700686916169 

x =0.212988032694 23.7933 -1 

C4 8=2.85552832 xup=-2.2771457736215 

xl=-2.2746043598865 

x =0.2129308405946 47.5859.  -1 

Cst=2.947418671875 Xup=-2.21282188725 

xl=-2.28353496416 

x =0.22731611007 24.5566 -1.42∙10
4
 

              Initial conditions of  the bifurcation points of the family fld3 

         

Period 

T 

Stability 

index A    

C1 2=3.01707913  x3=-2.2795231  x =0.19140926 
 

15.3783 -1 

C2 4=3.017079098089889 xup=-2.27953209496 

xl=-2.2768103614415 

x =0.1914041540738 30.7566 -1 
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Table VI 

Bifurcations of the main family fc1. C1,C2,.., Jacobi constant of the bifurcation points. 

Ct1,Ct2,.., Jacobi constant of the  turning points. 

                            Initial conditions of the critical points  Period 

    T 

Stability 

index A 

Cin=2.6217 xup=-0.2624399239 

xl=0.262412784 

x =0 5.2617 +1 

C1= 2.6249439 X2=-0.262203 x =0.03937928 5.271 -1 

C2=3.0433717756 x2=-0.21174171 x =0.27078923 7.9827 -1 

Ct1=3.043371908421 xt1=-0.21173066 x =0.27073376 7.9849 +1 

Ct2=2.994695024137 xt2=-0.21476724 x =0.25165819 11.2868 +1 

C3=2.99469502439 x3=-0.21476741 x =0.25165904 11.2871 -1 

C4=3.000654379316 x4=-0.21438139001 x =0.25403459 14.6037 -1 

Ct3=3.00065437931646 xt3=-0.2143813874 x =0.25403457867 14.6038 +1 

Ct4=2.9999193730694 xt4=-0.214428857034 x =0.253742667486

7 

17.91518 +1 

C5=2.999919373069410877 x5=-0.214428857076 x =0.253742667696 17.9152 -1 

Cst=2.99993004195 xst=-0.214431457 x =0.253763457842

2 

18.4213 -3.4 10
5
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table VII     

Bifurcations of the families of double periodic orbits fcd1,  fcd2 and fcd3  

Initial conditions of  the bifurcation points of the family fcd1 Period 

T 

Stability 

index A 

C1 2= 2.6249439 X1=-0.262203 x =0.03937928 5.271 -1 

C2 4=2.6253365 xup= -0.2633431725 x =0.04477541497 10.5362 -1 
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xl=-0.26070513131  

C4 8=2.62538195 xl=-0.2604342 

xup=-0.26092077 

x =0.03373525 21.0721  -1 

Cst=2.789904985 xl= -0.195501410821 

xup=-0.2535792185 

x =0.018973376764  9.9598 -2.19∙10
4
 

Initial conditions of  the bifurcation points of the family fcd2 Period 

T 

Stability 

index A 

C1 2=3.0433717756 x2=-0.21174171 x =0.27078923 7.9827 -1 

C2 4=3.043371741 xup=-0.2117482633 

xl=-0.21173527 

x =0.27081565 15.9655 -1 

C4 8=3.0433717373 xup=-0.211748507159 

xl=-0.21167271047 

x =0.270816005452 31.9309 -1 

Cst=3.0430907835 xup=-0.21237236357 

xl=-0.20813463864 

x =0.27317910053 15.9697 -1.69 10
4
 

              Initial conditions of  the bifurcation points of the family fcd3 

         

Period 

T 

Stability 

index A    

C1 2=2.99469502439 x3=-0.21476741 x =0.25165904 
 

11.2871 -1 

C2 4=2.99469502443929914 xup=0.2147675008222 

xl=-0.2130428044011 

x =0.251659407344

2 

22.5741 -1 

 

 

 

 

 

 

 

 

Table VIII 

Bifurcations of the family of double periodic orbits fz1 

Initial conditions of the bifurcation points 

         

Period T Stability 

index A 

Cin=2.2330236 X=-0.5233143  x =0 12.2682 +1 

C2 4=2.234761 X=-0.52225233  x =0.02279438 12.3055 -1 

C4 8=2.234933 x=-0.52176309 x =0.02353585 24.6135 -1 

Cst=2.285669 x=-0.51127768 x =0.07348204 12.8737 -6.25∙10
4
 

 

 

 

 


