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Infinite Feigenbaum Sequences and Spirals in the Vicinity of the Lagrangian Periodic
Solutions

Antonis D. Pinotsis

Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Athens,
Greece

Abstract

We studied systematically cases of the families of non-symmetric periodic orbits in the planar
restricted three-body problem. We took interesting information about the evolution, stability and
termination of bifurcating families of various multiplicities. We found that the main families of
simple non-symmetric periodic orbits present a similar dynamical structure and bifurcation
pattern. As the Jacobi constant changes each branch of the characteristic of a main family spirals
around a focal point-terminating point in x- at which the Jacobi constant is C=3 and their
periodic orbits terminate at the corotation (at the Lagrangian point L, or Ls). As the family
approaches asymptotically its termination point infinite changes of stability to instability and
vice versa occur along its characteristic. Thus, infinite bifurcation points appear and each one of
them produces infinite inverse Feigenbaum sequences. That is, every bifurcating family of a
Feigenbaum sequence produces the same phenomenon and so on. Therefore, infinite spiral
characteristics appear and each one of them generates infinite new inner spirals and so on. Each
member of these infinite sets of the spirals reproduces a basic bifurcation pattern. Therefore, we
have in general large unstable regions that generate large chaotic regions near the corotation
points L,, Ls, which are unstable. As C varies along the spiral characteristic of every bifurcating
family, which approaches its focal point, infinite loops, one inside the other, surrounding the
unstable triangular points L, or Ls are formed on their orbits. So, each terminating point
corresponds to an asymptotic non-symmetric periodic orbit that spirals into the corotation points
L., Ls with infinite period. This is a new mechanism that produces very large degree of
stochasticity. These conclusions help us to comprehend better the motions around the points L,
and L; of Lagrange.
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1. Introduction

In general, the stable periodic orbits are followed by many quasi periodic orbits, while the
unstable periodic orbits are followed by large numbers of chaotic orbits. There are some routes
to chaos in dissipative and conservative dynamical systems. The well-known Feigenbaum
sequence of infinite period doubling bifurcations is a particular route to chaos in dissipative and
conservative dynamical systems (Feigenbaum 1978; Coullet and Tresser, 1978). Some other
routes for the transition from order to chaos in conservative dynamical systems of 2-degrees of
freedom have been found by Contopoulos and Zikides (1980), Contopoulos (1983a,b, 1991),
Heggie (1983), Bier and Bountis (1984) and Pinotsis (1988). These scenarios of routes to chaos
are mentioned by Contopoulos (1993, 2002). Also, some of the routes to chaos in dissipative
and conservative systems we find in an article by Eckmann (1981).



It is well known, that in the planar restricted 3-body problem Feigenbaum sequences of
families of simple and double symmetric periodic orbits appear, as the Jacobi constant C varies,
with a universal ratio consistent with the value 6~8.72. Bifurcated families have in general large
unstable regions and generate large chaotic regions (Contopoulos and Pinotsis 1984, Pinotsis
1986, 1987).

Although there exist many studies of the types of bifurcations for the families of symmetric
periodic orbits in various Hamiltonian systems of two degrees of freedom, there are limited
explorations of the stability and bifurcations of families of non-symmetric periodic orbits. Thus,
our study centers on the changes of stability and bifurcations of the families of non-symmetric
periodic orbits, which bifurcate from the original families b, c, | and n.

The stability of motions in the neighborhood of the Lagrangian points L, and L5 has been
investigated for some values of the mass ratio p by a number of investigators (Pinotsis 1988,
Contopoulos 1991, Sandor et. al. 2000, Bardin 2002, Henrard and Navarro 2004,
Efthymiopoulos 2005, Erdi et. al. 2009). Also, Sicardy (2010) examined the stability of these
points for some values of p beyond the Gascheau’s value in the planar restricted three-body
problem and found that the periodic orbits follow a Feigenbaum cascade leading to chaos at a
value of .

We made a preliminary study for the non-symmetric short period orbits (SPO) of the family
b (Pinotsis 1988) and we found infinite spiral characteristics around infinite focal points. Also,
spiral characteristics of families of periodic solutions have been found in the case of a satellite
oscillations (Bruno, A.D. and Varin, V.P., 1997; Bruno, A.D., 2002 ). In this paper we make a
systematic study of the families of non-symmetric periodic orbits that bifurcate at the points b1,
cl, 12, n,4 (Hénon 1965) and z; (Pinotsis 1986), in the planar circular restricted 3-body problem
and in the case of equal masses of the primaries. We found interesting information about the
evolution and termination of the bifurcating families of various multiplicities of non-symmetric
periodic orbits. The relevant topological characteristics change not only quantitatively but also
qualitatively. We found a new mechanism that introduces a large degree of stochasticity, which
could not be predicted a priori. Thus, we found a new route for the transition from order to
chaos. This work required very large computing time because as the Jacobi constant C varies
infinite successive stable and unstable segments along the characteristic of each bifurcating
family appear, while each bifurcation point generates infinite inverse Feigenbaum sequences. So,
each bifurcating family forms infinite spirals and each one of them generates infinite new inner
spirals and so on. Therefore, we have in general large unstable regions that generate large
chaotic regions near the corotation points L,, Ls and so these points are unstable.

2. The method

For the planar restricted 3-body problem the equations of motion are (Szebehely 1967)
x-zy:%, y+2x:% (1)
The potential function Q is given by
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The Jacobian integral of equations (1) is
C=2Q-(x*+v?) (3)

where C is the so-called Jacobian constant. We study non-symmetric periodic solutions with
respect to the x-axis (the axis joining the two primaries), in the physical plane (x,y), for the
Copenhagen case (u=0.5). If we vary the Jacobi constant C, the values of x, x and y vary

continuously and the characteristic of the family is a curve in the 3-dimensional space (C, X, X),
since the value of y can be calculated from the Jacobi integral. For the numerical calculations,

in double precision, we used the recurrent power series method with variable step in time.

In order to find non-symmetric periodic orbits we applied essentially a Newton method. A
similar method has been applied already in 3-dimensional Hamiltonian systems (Magnenat
1982). In order to calculate a periodic orbit approximate, initial conditions (Xo, Yo=0, Xq, Yo)

are given. Each orbit intersects again the y=0 axis with y in the same direction as y, and at the
point X, y, X. If we consider x, x as functions f; (i=1, 2) of initial values of X, X, (we can
find y, from the Jacobi constant) then,

x=f1(Xo, Xg), X=Fx(Xo, Xg) (4)

In order to find a periodic orbit we give a small change of the initial conditions, Axy, A Xy which
implies a change of the final point Ax, AX. In order for the orbit to be periodic we must have,
X0+AX0 = fl(X0+AXO s Xo +A Xo)
Xo A Xg = fo(Xg+AXg , Xg+AXg) (5)

Neglecting terms of order higher than one in Taylor’s expansion, in matrix form equations (5)
can be written

Xo N AXq _(X), a; Ay ) [AXg ©)
X AXq X az ay ) (AXg

or
-1 ay \(AXg X — X
( ] 1= (7)
az a4 -1 AXg Xo — X
where a_fl =a, 8_f1 =y, % =az, % =a,
8X0 aXO aXO 8X0

The quantities a;, a,, as, a, can be found by calculating two orbits near the original one (i.e. we
need to compute 3 orbits) with deviations (Ax,, 0) and (0, AXy). In order to find approximate

initial conditions for different bifurcating families at the bifurcation points we used a method of
trial and error. Since we neglected higher order terms in Taylor’s expansion the solution of the



system (7) does not give exactly the periodic orbit. Adding the increments Axy, A Xq, given by
equation (7), to Xo, X We obtain better initial conditions for the next iteration. This iterative

process has to be repeated a number of times in order to give a periodic orbit with the required
accuracy.

The stability of the families of non-symmetric periodic orbits can be studied in general by
evaluating the Henon (1965) stability parameters a, b, ¢, d or by evaluating the monodromy
matrix of the variational equations (Hadjidemetriou 1989). In this work the stability of the
families is studied by evaluating the stability parameters which are functions of the initial values
Xg, Xo and the Jacobian C (Hénon 1965). For a non-symmetric periodic orbit the stability

condition is
a+d
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3. Infinite sets of spirals and self-similar orbits

We consider the original families of simple symmetric periodic orbits b, | and c. At the
previously mentioned bifurcation points -critical points- with initial conditions: bl (Cj,, X, X,
for the upper branch and x, for the lower one) (Table I), 12 (Ci,, X,p, X, X)) (Table 1V) and c1
(Cins Xupr X, X;) (Table V1) bifurcate new families of simple non-symmetric periodic orbits of the
same period with their corresponding symmetric periodic orbits (we call these families main
families fbl, fl2 and fc1 respectively) (Figures 1, 4, 7).

Each main family of the above three cases and each bifurcating families of various
multiplicities presents the Feigenbaum scenario of infinite period doubling pitchfork bifurcations
and each bifurcation ratio tends to approach the universal number 6~ 8.72 at a finite value of
the Jacobian constant, which we have already found for the families of symmetric periodic orbits
(Contopoulos and Pinotsis 1984, Pinotsis 1986, 1987).

Along the characteristic curve of each main family, as the serial number of its bifurcation
points increases the distances between two neighbouring characteristics of the bifurcating
families become smaller and smaller. So, it is more and more difficult to separate the bifurcating
families of different multiplicity. Also, they are strongly unstable and the instability of the
families becomes larger and larger from one bifurcating family to the next one. Therefore more
accuracy is necessary to study them, that is, a new magnification of the space (x—C diagram) is
needed and so on. Thus, it is difficult to follow further some of these families in order to find
their termination point because of the very large computing time needed.

As we mention below in these cases we took many interesting information about the
evolution and termination of the bifurcating families of various multiplicities of periodic orbits.

Also, we studied the main family of double non-symmetric periodic orbits, fz;, which
bifurcates at the critical point z; (C;,, X, x) (Table VIII). We found here the Feigenbaum
phenomenon. We followed the evolution of this main family of double non-symmetric periodic
orbits beyond its first 2(14 transition point. The family becomes more and more unstable, as C
increases, while the period of the orbits continuously increases. We did not follow further this
family because of the very large computing time needed. We stopped the numerical calculations
at the point (Cg, X, X).

As regards the main family of double non-symmetric periodic orbits, fn,4, which bifurcates
at the critical point n,4, it is unstable and becomes more and more unstable as the Jacobi



constant C varies. So, it does not appear that it has any bifurcation of other families of periodic
orbits. In Tables (I-VII1) we give some of the bifurcation points of all these families. The tables
"are published as attachments to the online version of this article™.

3.1 Evolution and stability of the main family fbl

I. Simple periodic orbits

The orbits of the main family fbl are the short period orbits (SPO). The second branch of its
characteristic is outside the Figure 1. As the Jacobi constant increases the stability parameter
decreases and at the 1—2 point (Cq, X4, x) (Tables I, 11, I1I) (first bifurcation point) bifurcates a
new stable family of double non-symmetric periodic orbits (we call this family fbd1) (Table I1).
This new family, as C increases, it becomes critically unstable at the 2—4 transition point
(Comsay Xypr X, X)) (Table I11). Here we have the Feigenbaum scenario. The characteristic of each
bifurcating family has two branches which extend towards larger values of C (Figure 1).

Looking for possible inverse Feigenbaum sequences, we followed the evolution of the
main family fbl. At first, as C increases the characteristic of the family extends to the right and
downwards (the absolute value of x decreases) in the x-C diagram. At the 1—2 bifurcation point
(C,, X5, x) (Tables I, 111) -second bifurcation point-a new stable family of non-symmetric double
periodic orbits- we call this family fbd2- with two branches towards smaller values of the Jacobi
constant appears. As C decreases the new stable family fbd2 becomes unstable and so on. Here
the Feigenbaum scenario appears.

As C increases beyond the second bifurcation point, the characteristic of the main family
continues to the right and downwards while the family is stable until the first turning point (C,,,
Xy, X) and the family has a maximum C. Following the evolution of the main family beyond the
first turning point the characteristic of the family has an initial part with C decreasing for
decreasing absolute value of x. As C decreases further the characteristic turns upwards in x. At
the point (Cy,, X, X), second turning point, the family becomes critically stable again and the
characteristic has a minimum C. After the second turning point, for C increasing the absolute
value of x increases and the family has a small stable segment until the third 1—2 critical point
(Cs, X3, %) at which it bifurcates a new stable family of non-symmetric double periodic orbits
with two branches towards larger values of C. This family loses its stability at the 2—4
bifurcation point (C,,4, X5, X, X)) (Table I11) and so on. A cascade of Feigenbaum bifurcations
is generated here.

After the third bifurcation point, for C increasing, the main family becomes more and more
unstable but after a while the family becomes stable again at the fourth 1—2 bifurcation point
(C4y X4, X). At this point it bifurcates a new stable family of non-symmetric double periodic
orbits with two branches towards smaller values of C. At this point the Feigenbaum scenario
appears.

After the fourth bifurcation point the main family is stable until the third turning point (Cy,
X3, X) at which it has a maximum C and so on (Figure 1). The same phenomenon occurs in the
other (lower) branch of the main family. We stopped the numerical calculations at the point C,
Xs, X) (Table I) after the fifth bifurcation point (Cs,, X5, X) at which we found the Feigenbaum
scenario.

As C changes along the spiral characteristic, which approaches asymptotically its focal
point-terminating point, infinite changes from stability to instability and vice versa appear,
while each bifurcation point generates infinite inverse Feigenbaum sequences. That is, each



branch of a Feigenbaum sequence presents the same phenomenon and so on. Therefore there
exist infinite spirals and each one of them produces infinite new inner spirals and so on. After
infinite successive small stable and large unstable segments the characteristic spirals inwards
around its terminating point. Each branch of the main family spirals into its focal point C_, =3,
Xyp =-1.624989 (or x, = -0.684635 for the lower branch). The values of x (for each branch of a
family) were calculated as the average of the extreme —closest to the focal point- values of the
corresponding final spiral, which was found numerically. Contopoulos (1991) investigated
periodic orbits of a galactic type potential and explained how the spirals are generated as soon as
the Langrangian points L,, Ls become unstable.

Figure 2 shows a set of some simple periodic orbits. We found that near the first turning
point a cusp appears close to the Lagrangian point L,, which turns to loop in the second turning
point. As C varies, the size of the loop of the orbit grows and encloses the triangular libration
point L,. As C varies further, a new inner cusp appears which evolves to a new inner loop, near
the fourth turning point, surrounding the triangular point L, and so on. As we approach the
terminating point infinite loops, one inside the other, emanate, surrounding the Lagrangian point
L,. Thus, an infinite set of self-similar orbits is constructed, each member of this set reproducing
a basic pattern. The orbits spiral around the triangular point L,. So, the terminating point
corresponds to an asymptotic non-symmetric periodic orbit spiraling into the point L,, which has
the same Jacobi constant as the Langrangian point L, (C o =3). In this limiting point we have an
infinite self-similar orbit with infinite period and so the termination principle T—o is satisfied
(Szebehely 1967).

I1. Families of double periodic orbits fod1 and fbd2

We followed the evolution of the family fbd1 beyond the 2—4 transition point (first bifurcation
point of the family fbd1) (Tables Il, 11l and Figure 3a). As C increases, the two branches of the
characteristic of the family fbd1l extend to the right in the x-C diagram. The upper branch
initially goes upwards, with decreasing period and then turns downwards while the period
continuously increases. The lower branch goes downwards. These branches are outside and far
from the characteristic of the main family (Figure 1). As C increases further the family becomes
critically stable again at the 2—4 bifurcation point, second bifurcation point, (C,, X, X, Xp)
(Table 11) a new stable family of quadruple non-symmetric periodic orbits with two branches
towards smaller C is generated and so on. Here the Feigenbaum scenario appears.

After its second bifurcation point, the family fbd1 has a stable segment and at its first turning
point (Cy, X, X, X,) the family has a maximum C. After this point C decreases with the
absolute value of x decreasing for the upper branch and increasing for the lower one (Figure 1).
At the second turning point (Cy, X, X, X,,) the family has a minimum C. After this point the
family has a stable segment until the third 2—4 bifurcation point (Cs, X;, X, X,,) and so on. At
this point a new stable family with two branches towards larger values of C emanates, giving
birth to a Feigenbaum sequence. We stopped at the point (Cg, X, X, X,,) (Table Il, Figure 3c)
which is after the fourth 2—4 bifurcation point.

In this case a similar bifurcation pattern as in the case of the main family of simple periodic
orbits fbl appears. The two branches of the family fbd1, which pass outside the spirals of the
main family, spiral around their focal points with C.=3, X,,~-1.6558 and x=-1.5038. As the
spiral characteristic approaches asymptotically its focal point infinite changes from stability to
instability and vice versa appear while from each bifurcation point infinite inverse Feigenbaum
sequences are generated. Each branch has infinite successive small stable and large unstable



segments. Every bifurcating family of a Feigenbaum sequence produces the same phenomenon
and so on. Therefore, infinite spiral characteristics appear and each one of them generates
infinite new inner spirals and so on. Each member of these infinite sets of the spirals reproduces
a basic bifurcation pattern. Therefore, we have in general large unstable regions that generate
large chaotic regions near the corotation point L,. We have here self-similar orbits, which grow
loops, as C varies. These loops surround the Langrangian point L,. The terminating point
corresponds to an infinite self-similar asymptotic orbit with C =3, while its period is infinite.

We also followed the evolution of the family fbd2 (Table I11, Figure 1). As C decreases
the two branches of the characteristic curve of the family extend to the left in the x-C diagram,
while its period continuously increases. This family becomes critically unstable at the 2—4
bifurcation point (C,.4, X, X, X,) (Figure 3d). We have here the Feigenbaum sequences
(Figure 1).

As C decreases, the family fbd2 becomes more and more unstable and its two branches
continue further to the left and upwards in the x-C diagram. The further study of this family is
very difficult because of the very large degree of stochasticity and so the very large computing
time needed to extend it to its terminating point. We stopped the numerical calculations at the
point (Cy, X, X, X,p) (Table I11, Figure 3e).

The two branches of this family are close to the characteristic of the main family fb1 and
inside of the two branches of the previous family fod1 (Figure 1). Also, the shapes and the initial
values of x of the orbits (b) and (e) of Figure 3, that belong to the two families fbd1 and fbd?2
respectively and they have the same value of Jacobi constant C, are different. So, the family fbd?2
can not join the family fbdl in order to form a bubble (Contopoulos 1983a). Thus, it is
topologically necessary that the evolution of the family fbd2 should present a similar bifurcation
pattern and dynamical structure of spirals as the previous mentioned cases of the families of
simple and double periodic orbits fb1l and fbdl. So, each branch of the characteristic of the
family fbd2 spirals into its focal point with C,=3. The terminating point corresponds to the
initial conditions of a limiting asymptotic non-symmetric orbit spiraling into the Langrangian
point L,. These results help us to comprehend the motions around the point L, of Lagrange.

3.2 Evolution and stability of the main family fl2

I. Simple periodic orbits

The second branch of the characteristic curve does not appear in Figure 4. As C decreases, at the
1—2 critical point -first bifurcation point-(C,, x;, X) (Tables 1V, V) bifurcates a new stable
family of non-symmetric double periodic orbits-family fld1. After that, for smaller values of C,
the family fld1 loses its stability at the 2—4 bifurcation point (C,_,4, X, X, X)) (Table V) and
so on (Figure 4). The Feigenbaum scenario appears.

We followed the main family after its first bifurcation point. As C decreases, the
characteristic of the family continues to the left and upwards (the absolute value of x increases)
in the x-C diagram while the period continuously increases (Figure 4). The family becomes
critically stable at the second bifurcation point (C,, x,, x) (Tables V). At this 1—2 transition
point a new stable family of double non-symmetric periodic orbits-family fld2-with two branches
towards larger values of C is generated. For somewhat larger C the new family fld2 also
becomes unstable at the 2—4 bifurcation point (C,_,4, X,p, X, X)) (Table V, Figure 6d) and so
on. Thus, we have here the Feigenbaum scenario (Figure 4).



As C decreases the main family is stable until the first turning point (Cy, X, X) at which it
has minimum C. After this point, the characteristic of the family turns to the right and upwards.
As C increases further the absolute value of x decreases and the family becomes critically stable
again at the second turning point (C,,, X,, X) and it has maximum C. With C decreasing the
family has a stable segment until the third 1—2 bifurcation point (C;, X3, x) (Tables IV,V). At
this point a new stable family of double non-symmetric periodic orbits emanates, while its two
branches are towards smaller value of C. The new family becomes critically unstable at the 2—4
transition point (C,_,4, X,p, X, X;) (Table V) and so a Feigenbaum scenario appears.

With C decreasing beyond the third 1—2 bifurcation point the family becomes stable again
at the fourth 1—2 bifurcation point (C,, X4, X), giving birth to a Feigenbaum sequence towards
larger values of C. As C decreases further, the family fI2 has a stable segment until the third
turning point (C, X3, X) at which the family has minimum C and so on. We stopped the
numerical calculations at the point (Cg, X, X) (Table IV) which is after the fifth turning point
(Ct51 X5, X)

The same phenomenon occurs in the other branch of the main family. Thus the evolution of
the family fI2 has a similar bifurcation pattern and dynamical structure as the families fb1 and
fbd1l. Namely, as the Jacobi constant changes each branch of the main family spirals around its
focal-terminating-point at C,.=3, x,,=-2.279677, x,=2.28174. As we approach the focal point of
the family infinite changes of stability to instability and vice versa appear while each bifurcation
point produces infinite inverse Feigenbaum sequences and so on. Therefore there exist infinite
spirals and each one of them produces infinite new inner spirals and so on. That is, a basic
pattern is continuously reproduced. The stable parts along the characteristic of the family are
smaller and smaller as we approach to the terminating point.

In Figure 5 we give a set of simple periodic orbits. We found that with C decreasing, a cusp
near the Lagrangian point L, appears which turns to a loop surrounding this point (Figures
5b,c). As C varies further, a new inner cusp appears which evolves to a new inner loop
surrounding the point L, (Figure 5d) and so on. Thus, as we approach the terminating point of
the family we pass through an infinite set of self-similar orbits, every member of this set
reproducing a basic pattern. The terminating point of the family corresponds to an infinite non-
symmetric self-similar orbit, with infinite period and C_,=3, approaching asymptotically the
triangular point L,.

I1. Families of double periodic orbits fld1 and fld2

We follow now the evolution of the family fld1 beyond the 2—4 its bifurcation point (Table V,
Figure 6a). As C decreases, the two branches of its characteristic continue to the left in the x-C
diagram (Figure 4). The upper branch turns upwards while the lower one extends initially
downwards and then turns upwards, that is, they have a similar behavior as the previous case of
the family fbd1. The two branches seem to pass respectively above and below the spirals of the
main family. We stopped the evolution of the family at the point (Cg, X, X, X;) because of the
very large degree of stochasticity and so of the very large computing time needed. The instability
parameter reaches an absolutely large value (Table V, Figure 6c).

Figure 6 shows a set of non-symmetric double periodic orbits. We see that the orbits (a), (b),
(c) of the family fld1 present a similar evolution as the orbits of the main family fl2 (Figure 5) as
well as the orbits of the families fb1 and fbd1 (Figures 2, 3). That is, with decreasing C three
cusps on the orbits appear near the triangular libration points L,, Ls, which evolve to three small
loops. As C decreases further the loops grow and enclose these points. It seems that as C varies



new inner loops continuously appear on the orbits surrounding the Lagrangian points. We
conclude that the family has a similar bifurcation pattern and dynamical structure as the
previous cases of the families fl2, fbl and fbd1. Each branch of the characteristic of the family
will approach asymptotically its focal point, with C_=3, spiralling around it.

Also, the evolution of the family fld2 shows that its two branches extend to the right and in
general downwards in the x-C diagram (Figure 4). The two branches are close to the
characteristic of the main family and inside the two branches of the previous family fld1. We
stopped the evolution of the family fld2 at the point (Cg, X, X, X;) because of the very large
computing time needed (Figure 6e). The instability parameter reaches an absolutely large value
(Table V).

In Figure 6 we give two non-symmetric double periodic orbits of the family fld2. We see that
as C increases the two loops grow and enclose the Lagrangian point L,. The periodic orbits (c)
and (e) (Figure 6) of the families fld1 and fld2 respectively have different shapes. Thus, the two
families do not seem to join each other in order to form a bubble. Thus, it is topological necessity
the two families to have a similar bifurcation pattern as in the previous case of the families fbd1,
fl2 and fbl.

3.3 Evolution and stability of the main family fcl

I. Simple periodic orbits

As C increases the stability index of the main family decreases and at the point (C,, X;,X)
(Tables VI, VII) we have the 1—2 critical point (first bifurcation point) bifurcates a new family
of double non-symmetric periodic orbits- family fcd1- which is also initially stable. After this
point, as C increases, the family of double periodic orbits becomes unstable at the 2—4
bifurcation point (C,_, 4, X5, X, X;) (Table VII). We have here the Feigenbaum scenario.

We continued the characteristic of the family fc1 beyond its first bifurcation point (Figure
7). The other branch of the characteristic is outside of the x-C diagram of Fig.7. As C increases
the characteristic curve extends to the right and downwards in the x-C diagram (the absolute
value of x decreases) and at the second 1—2 bifurcation point (C,, X,, x) (Tables VI, VII) the
family becomes critically stable again. In this point a new stable family of non-symmetric double
periodic orbits bifurcates-family fcd2-from the main family with two branches towards smaller
values of C. As C decreases this new family becomes critically unstable at the 2—4 transition
point (C,_.4, Xyp, X, X)) (Table VII, Figure 9c) and so the Feigenbaum scenario appears (Figure
7).

The main family is stable until the first turning point (Cy;, X1, X) and it has maximum C. As
C decreases the characteristic curve turns to the left and downwards in the x-C diagram. With C
decreasing further the absolute value of x increases and the family becomes critically stable
again at the second turning point (C,,, X, X) and it has minimum C. After the second turning
point, C increases with the absolute value of x increasing while the family has a small stable
segment until the third 1—2 bifurcation point (Cs, X3, X) (Tables VI,VI1I), at which a new stable
family of non-symmetric double periodic orbits with two branches towards larger values of C
bifurcates. This stable family loses its stability at the 2—4 transition point (C,_,4, Xyp, X, X))
(Table V1) and so on. Here a Feigenbaum scenario appears.

After the third bifurcation point, as C increases, the main family becomes stable again at the
point (C,, X4, X). At this fourth 1—2 bifurcation point a bifurcated new stable family of double



non-symmetric periodic orbits extends towards smaller values of C. This stable family loses its
stability and the Feigenbaum phenomenon appears.

After the 1—2 transition point the family fc1 becomes critically unstable again at the third
turning point (Cs, X3, X) at which we have a maximum C and so on. We stopped the numerical
calculations at the point (Cg, X4, X) (Table VI). This point is after the fifth 1—2 bifurcation
point at which we found the usual Feigenbaum scenario.

Thus the evolution of the main family presents a similar bifurcation pattern and dynamical
structure as in the cases of the families fbl and fl2. That is, as C varies, each branch of the
family spirals into its focal point at C,, = 3, x,,=-0.214405 and x,=0.215312. Therefore, infinite
spirals appear and each one of them generates infinite new inner spirals and so on. Each member
of these infinite sets of the spirals reproduces a basic bifurcation pattern. So, we found a new
route to Chaos

Figure 8 shows four simple periodic orbits. The last orbit (d) has two loops surrounding the
Lagrangian point Ls. As C varies new inner cusps appear which evolve into new inner loops
surrounding the point Ls and so on. Thus, we have here self-similar orbits. The terminating point
of the family corresponds to an infinite non-symmetric self-similar orbit, with infinite period,
approaching asymptotically the triangular point Ls (C,, = 3).

I1.  Families of double periodic orbits fcd1 and fcd2

We continued the family fcd1 beyond the 2—4 its bifurcation point-first bifurcation point of this
family (Table VII, Figure 9a). The two branches of its characteristic curve extend to the right in
the x-C diagram. As C increases, the upper branch turns initially upwards in x and then
downwards, as in the previous mentioned cases of the families of double periodic orbits. The
lower branch moves continuously downwards while the period of the orbits initially decreases
and then increases. The two branches are outside and far from the characteristic of the main
family (Figure 7). So, it seems that the two branches will pass outside of the spirals of the main
family as in the previous case of the family fbl. Because of the very large computing time
needed, we stopped at the point (Cg, X;, X, X,) (Table V11, Figure 9b).

On the contrary, the evolution of the family fcd2 (Tables VI, VII) shows that its two
branches extend to the left and upwards for the upper branch and downwards initially and then
upwards for the lower one, while the period continuously increases. The two branches of the
family are close to the characteristic of the main family and inside of the two branches of the
previous family fcd1 (Figure 7). This family becomes more and more unstable, as C decreases.
We did not follow further the family because of the very large degree of stochasticity and
consequently of the very large computing time needed. We stopped at the point (Cg, X,p, X, X))
(Table VI, Figure 9d)

Figure 9 shows some double non-symmetric periodic orbits along the characteristic of
the two families fcdl and fcd2. It seems that the two families fcd1l and fcd2 present similar
bifurcation structure and dynamical behavior as the previously mentioned families of double
periodic orbits of the main family fb1. Comparing the variation of the periods of the orbits of the
two families (Table VII) as well as the different shape of their orbits b and d of Figure 9, it
seems that they do not join each other in order to form a bubble. Thus, it is topologically
necessary that the families should have a similar bifurcation pattern as in the previous case of the
main family fc1 as well as in the case of the double periodic orbits of the family fb1. That is,
each bifurcated family seems to turn around its focal point with C_=3, while infinite bifurcation
points and so infinite inverse Feigenbaum sequences and infinite spirals appear. Consequently, in
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the case fcl we found a new mechanism which leads to a large degree of stochasticity. The
conclusions help us to comprehend the motions around the point Ls of Lagrange.

4. Conclusions

We studied systematically cases of non-symmetric periodic orbits of the families b, I, ¢ and n of
the planar restricted 3-body problem and in the case of equal masses of the primaries. The study
gives a new interesting dynamical structure of the phase space and the topological characteristics
change not only quantitatively but also qualitatively.

For the main families of simple non-symmetric periodic orbits fbl, fl2, fc1, and fz, that
bifurcate at the points b1, 12, c1, (Hénon 1965) and z;, (Pinotsis 1986) respectively, we found the
evolution and their stability. In their first bifurcation point these families present a similar
bifurcation structure. We did not find the termination point of the family fz, because of the very
large computing time required.

As regards the main families fb1, fI2, fc1, as the Jacobi constant C varies each branch of the
characteristic of a main family of simple non-symmetric periodic orbits spirals around its focal
point-termination point in x- at which the Jacobi constant is C,=3. As the characteristic of each
main family approaches asymptotically its termination point infinite changes from stability to
instability and vice versa and so infinite bifurcation points appear. So, infinite successive very
small stable and very large unstable segments along the characteristic of each main family are
formed. The stable parts along the characteristic of each family are smaller and smaller as we
approach to the terminating point. Each bifurcation point generates infinite inverse Feigenbaum
sequences. That is, each bifurcating family presents the same phenomenon and so on. Thus,
infinite sets of inverse Feigenbaum sequences and infinite sets of spirals appear. Each member of
these infinite sets of the spirals reproduces a basic bifurcating pattern. Thus, the families are
strongly unstable and so the regions near the Lagrangian points L,, L5 are mostly chaotic.

Every bifurcating family of double non-symmetric periodic orbits produces also the same
phenomenon, i.e. infinite inverse Feigenbaum sequences and infinite spirals that have infinite
different focal points. Also, each bifurcated family of higher multiplicity presents the same
phenomenon. That is, each bifurcated family leads to spiral around its focal point in x with
C,=3. Each spiral has infinite changes of stability to instability and vice versa. Infinite
bifurcation points appear and each one of them generates infinite inverse Feigenbaum sequences
and so on. Therefore, we have infinite spirals with infinite different focuses and each one of them
generates infinite new inner spirals and so on. Thus, infinite sets of spirals appear and each
member of these infinite sets of the spirals reproduces a basic bifurcating pattern.

The orbits of each main family near the corotation —Lagrangian points L,, Ls present a new
dynamical structure (Figures 2, 5, 8). As C changes along the characteristic of each main family
a cusp close to the Lagrangian point L, or Ls on the orbits emanates that evolves to loop
surrounding one of these points. As C changes continuously, approaching asymptotically its
terminating point, a new cusp inside the loop appears that turns to new inner loop enclosing one
of the triangular points L, or Ls and so on. This process reproduces continuously a basic pattern.
As we approach the terminating point, an infinite set of self-similar orbits is constructed. The
same phenomenon presents the families of double non-symmetric periodic orbits (Figures 3b,c
and 6b,c) as well as the orbits of each bifurcated family of higher multiplicity. So, the
terminating point of each bifurcating family corresponds to a non-symmetric self-similar orbit
with infinite period and C_=3, that approaches asymptotically the point. Thus, the termination
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principle for a family of periodic orbits, which states that either the period of an orbit or its size
or the energy goes to infinity (Szebehely 1967), is satisfied.

Bubbles do not exist in this case of families of periodic orbits that terminate at L, or Ls. In
general, there do not exist bubbles in the case u=0.5. We have found indications that bubbles are
formed after a critical value of p.

The maximum absolute value of the instability parameter of each family is very large of

order 10°. This value grows further as we approach the focus of its characteristic as well as the
multiplicity of the bifurcating families increases. Therefore, there must be large chaotic regions
of stochastic orbits around these periodic orbits.

This mechanism of the infinite sets of inverse Feigenbaum sequences and infinite sets of
spirals of each (main) family are generated near corotation points L, or Ls. Each multiplicity
family terminates after infinite spirals at its focal point- constant point in x- with the value of
Jacobi constant C,=3. The Lagrangian points L,, Ls as well as the regions near them are
strongly unstable.

This mechanism produces, in general, a very large degree of stochasticity that generates
large chaotic regions near the corotation points (L, or Ls). This is a new route to chaos. We have
thus a new mechanism that produces very large degree of stochasticity. These conclusions help
us to comprehend better the motions around the corotation points L, and Ls. We anticipate that
this mechanism will appear also in other rotating dynamical systems of 2-degrees of freedom.

Acknowledgements: | wish to thank Prof. G. Contopoulos for his useful comments and Manolis
Zoulias for making the Figures 1, 4 and 7.
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Figure captions
Figure 1: Evolution of the families of non-symmetric simple (main family fb1), double,
quadruple,... periodic orbits schematically (the actual values are given in the Tables). ( )

stable, (....) unstable orbits. The families of double periodic orbits fbd1 and fbd2, emanated at
the 1—2 first and second bifurcation points of the family fbl. The two branches of the
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characteristic curve of the family fbd2 remain always inside the two branches of the
characteristic curve of the family fbd1.

Figure 2: A set of simple periodic orbits in the x-y plane: (a) A symmetric periodic orbit of the
original family b in the neighborhood of the bifurcation point bl. Also, three non-symmetric
periodic orbits along the characteristic of the main family fbl. We see a change of the form of
the cusps or of the loops as C varies: (b) near the first turning point, (c) near the second turning
point, and (d) at the point at which we stopped the numerical calculations.

Figure 3: Some double non-symmetric periodic orbits in the x-y plane: Along the characteristic
curve of the family fbd1: (a) near the 2—4 bifurcation point, (b) at the point C=3.047539, x=-
1.498219454462, x =-0.03068701204, T=13.3517 and (c) at the point at which we stopped
the numerical calculations: Also, along the characteristic of the family fbd2: (d) near the 2—4
bifurcation point, and (e) at the point at which we stopped the numerical calculations. The orbits
(b) and (e) of the two families fbd1 and fbd2 correspond to the same C.

Figure 4: Evolution of the families of non-symmetric simple (main family fl2), double,
quadruple,... periodic orbits schematically (the actual values are given in the Tables). ( )
stable, (....) unstable orbits. The families of double periodic orbits fld1 and fld2 emanated at the
12 first and second bifurcation points of the family fI2. The two branches of the characteristic
curve of the family fld2 remain inside the two branches of the characteristic curve of the family
fld1.

Figure 5: Simple periodic orbits: (a) A symmetric periodic orbit of the original family | near the
bifurcation point 12. Also three non-symmetric periodic orbits of the main family fI2: (b) a cusp
appears near the point C=3.19, x=-2.079926229183, x=0.191954854072, T=10.8154, (c)
near the first turning point and (d) near the fifth turning point.

Figere 6: Double non-symmetric periodic orbits: Orbits belonging to the family fld1: (a) near
the bifurcation point 2—4, (b) three cusps appear near the point C=3.1230853, Xx=-
2.13360173108, x =0.19734606655 and (c) at the point at which we stopped the numerical
calculations: Orbits along the characteristic of the family fld2: (d) near the 2—4 bifurcation
point of the family fld2 and (e) at the point at which we stopped the numerical calculations.
Figure 7: Evolution of the families of non-symmetric simple (main family fcl), double,
quadruple,... periodic orbits schematically (the actual values are given in the Tables). (__ )
stable, (....) unstable orbits. The families of double periodic orbits fcd1l and fcd2 emanated at
the 1—2 first and second bifurcation points of the family fcl. The two branches of the
characteristic curve of the family fcd2 remain inside the two branches of the characteristic curve
of the family fcd1l.

Figure 8: A set of simple periodic orbits in the x-y plane: (a) A symmetric periodic orbit of the
original family c in the neighborhood of the bifurcation point c1. Also, three non- symmetric
periodic orbits along the characteristic of the main family fc1. We see a change of the form of
the cusps or of the loops as C varies: (b) near the first turning point, (c) near the second turning
point and (d) at the point at which we stopped the numerical calculations.

Figure 9: Some double non-symmetric periodic orbits in the x-y plane: Orbits belonging to the
family fcdl: () near the bifurcation point 2—4 and (b) at the point at which we stopped the
numerical calculations: Orbits along the characteristic of the family fcd2: (c) near the 2—4
bifurcation point and (d) at the point at which we stopped the numerical calculations.
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Table |

Bifurcations of the main family fb1. C,,C,,.., Jacobi constant of the bifurcation points.

Cu,Cp,.., Jacobi constant of the turning points.

Initial conditions of the critical points Period | Stability
T index A
Ci=2.27078 Xup=-1.7155626399 X =0 57902 | +1
x=-0.5496542824
C,=2.284816 X;=-1.7154767053 X =-0.0384865989 58113 |-1
C,=3.053810501 X,=-1.61536591 x =-0.18809097 8.9442 | -1
C;=3.05381119 Xy =-1.61534262 x =-0.18803613 8.9488 | +1
C,=2.993115816307 Xp=-1.626211247202 x=-0.1806600851015 | 12.2168 | +1
C,=2.99311581766 X3=-1.6262116309338 | x=-0.1806609429056 | 12.2173 | -1
C,=3.00084455473514 | x,=-1.6249085675 x=-0.181644983 155392 | -1
C3=3.00084455473767 | X3=-1.6249085509296 | x=-0.1816449703712 | 15.5393 | +1
2
C,=2.998958724736589 | xy4,=-1.62506982337 x=-0.181525103213 | 18.8499 | +1
8
C5=2.9998958724736637 | Xs=-1.62506982346 x=-0.1815251034061 | 18.85 -1
C4=3.0000123276 X4=-1.6250503904397 | x=-0.1815406045172 | 21.9283 | -3.89x10°
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Table Il
Bifurcations of the family of double periodic orbits fbd1. C,,C,,.., Jacobi constant of the
bifurcation points. C;,C,,,.., Jacobi constant of the turning points.

Initial conditions of the critical points Period | Stability
T index A
Ci= 2.284816 X;=-1.7154767053 x =-0.0384865989 5.8113 | -1
C,=2.286493 Xyp=-1.72113211 x =-0.04267198044 11617 | -1
x=-1.708763228629 9
C,=3.056031450829 x=-1.49728175567 x =-0.02958157413 13.806 | -1
Xup=-1.6509765232 3
C1=3.05603145088715 x=-1.4972818162 x =-0.02958148958 13.806 | +1
Xup=-1.650976169619 4
Cp=2.9928415643453027 | x,=-1.510426741038 X =- 17.104 | +1
Xup=-1.660705844398 0.0288617082239 1
C;=2.99284156434545 x=-1.5104267399485 X =- 17104 | -1
Xup=-1.660482771437 0.0288617097337 2
C=2.99794649 x=-1.5093075839134 X =- 18.656 | -1.05x10°
Xup=-1.660211636989 0.0290258657503 7

Table 111
Bifurcations of the first three families of double periodic orbits fod1, fbd2 and fbd3
Initial conditions of the bifurcation points of the family fbdl Period | Stability

T index A

C,,,=2.284816 ‘ X;=-1.7154767053 ‘ X =-0.0384865989 5.8113 | -1
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C,,,=2.286493 Xyp=-1.72113211 x=-0.0426719804 4 | 11.6179 |-1
X=-1.70876322863
C,,5=2.28668105 x=-1.7076 1 x =-0.03423224 23.2361 | -1
Xup=-1.709725
Initial conditions of the bifurcation points of the family fbd2 Period | Stability
T index A
C,,,=3.053810501 X,=-1.61536591 x =-0.18809097 8.9442 | -1
C,,,=3.053810329 x=-1.6153884368924 | x=0.1881101288858 | 17.8885 | -1
Xup=-1.6168196461756
C,,5=3.053810307 X, =-1.6153876697247 | x-0.1881118816314 | 35.7768 | -1
Xy =-1.616819721
C«=3.047539 Xyp=-1.62115333 x=-0.19184434 17.9617 | -7.4x10*
X=-1.6127423
Initial conditions of the bifurcation points of the family fbd3 Period | Stability
T index A
| C,.,,=2.99311581766 X3=-1.6262116309338 | x =-0.1806609429056 | 12.2173 | -1
C,,,=2.993115818 Xyp=-1.626211997351 | x=-0.180661248628 | 24.4347 | -1

X=-1.626211277421

Table IV
Bifurcations of the main family fl2. C,,C,,.., Jacobi constant of the bifurcation points.

Ci1,Cs,,.., Jacobi constant of the turning points.

Initial conditions of the critical points Period | Stability

T index A
Ci,=3.552593 Xyp=-1.907961968103 | x=0 10.5675 | +1

x=1.9079619681

C,=3.53401 X;=-1.91796399 X =0.05286984 10.5765 | -1
C,=2.855512 X,=-2.2764855257 X =0.2132893264 11.8966 | -1
C1=2.85545487 Xu=-2.27808186 x=0.21300771 11.9193 | +1
C,=3.01707925685 Xpp=-2.27955289 X =0.19140455 15.3749 | +1
C;=3.01707913 X3=-2.2795231 x=0.19140926 15.3783 | -1
C,=2.997887875 X4=-2.2796852 X =0.19413788 18.6593 | -1
C3=2.997887874567 Xi3=-2.2796858 x=0.19413779 18.6599 | +1
C4=3.000260188348925 | X4=-2.27967606904 X =0.19380232 21.9771 | +1
C5=3.000260188348 X5=-2.27967606 x=0.19380233 21.9772 | -1
C=2.9999679358126972 | X5=-2.2796774342327 | x=0.1938436770669 | 25.2887 | -1
C5=2.9999679358126962 | X5=-2.2796774343397 | x=0.1938436770498 | 25.2888 | +1
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C=2.99997945696 Xup=-2.27968469583 x =0.19384087578 26.2157 | 4.7x10°
Table V
Bifurcations of the families of double periodic orbits fld1, fld2 and fld3
Initial conditions of the bifurcation points of the family fld1 Period | Stability
T index A
C,,,=3.53401 X;,=-1.91796399 x =0.05286984 10.5765 | -1
C,,,=3.5317879 Xyp=-1.9359955675679 x=0.0611642364043 | 21.1842 | -1
x=-1.897372374
C,.,5=3.53153746 Xyp=-1.9372144299 x=0.061036773178 42.3717 | -1
X=-1.93525442
C=3.071987 Xyp=-2.15553929883 x=0.20318136029 25.3679 | -6.25-10°
X=-1.79270089598
Initial conditions of the bifurcation points of the family fld2 Period | Stability
T index A
C,,,=2.855512 X,=-2.2764855257 x=0.2132893264 11.8966 | -1
C,,,=2.8555266 Xp=-2.2769878265466- | x=0.212988032694 23.7933 | -1
x=-2.2700686916169
C,,5=2.85552832 Xyp=-2.2771457736215 x=0.2129308405946 | 47.5859. | -1
X=-2.2746043598865
Cy=2.947418671875 Xyp=-2.21282188725 x=0.22731611007 24,5566 | -1.42-10"
X=-2.28353496416
Initial conditions of the bifurcation points of the family fld3 Period | Stability
T index A
\ C,,,=3.01707913 X3=-2.2795231 x=0.19140926 \15.3783 -1
C,,4=3.017079098089889 | X,=-2.27953209496 %x=0.1914041540738 | 30.7566 | -1
X=-2.2768103614415

24




Table VI
Bifurcations of the main family fc1. C,,C,,.., Jacobi constant of the bifurcation points.
C.1,.Cp,.., Jacobi constant of the turning points.

Initial conditions of the critical points Period Stability
T index A
Ci=2.6217 Xyp=-0.2624399239 x=0 5.2617 +1
x=0.262412784
C,=2.6249439 X,=-0.262203 x =0.03937928 5.271 -1
C,=3.0433717756 X,=-0.21174171 x=0.27078923 7.9827 -1
Cy=3.043371908421 Xy =-0.21173066 Xx=0.27073376 7.9849 +1
C,=2.994695024137 Xp=-0.21476724 x=0.25165819 11.2868 | +1
C5=2.99469502439 X3=-0.21476741 x =0.25165904 112871 | -1
C,=3.000654379316 X4=-0.21438139001 x =0.25403459 146037 | -1
C3=3.00065437931646 X=-0.2143813874 x =0.25403457867 14,6038 | +1
C,=2.9999193730694 Xu=-0.214428857034 | x=0.253742667486 | 17.91518 | +1
7
C5=2.999919373069410877 | X5=-0.214428857076 | x=0.253742667696 | 17.9152 |-1
C«=2.99993004195 X=-0.214431457 x=0.253763457842 | 18.4213 | -3.4x10°
2

Table VII
Bifurcations of the families of double periodic orbits fcdl, fcd2 and fcd3
Initial conditions of the bifurcation points of the family fcdl Period | Stability
T index A
C,,,=2.6249439 X1=-0.262203 x=0.03937928 5271 -1
C,.,,=2.6253365 Xup= -0.2633431725 x=0.04477541497 | 10.5362 | -1
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X=-0.26070513131

C,.,5=2.62538195 x=-0.2604342 x =0.03373525 21.0721 | -1
Xup=-0.26092077
C=2.789904985 x=-0.195501410821 | x=0.018973376764 | 9.9598 | -2.19-10
Xup=-0.2535792185
Initial conditions of the bifurcation points of the family fcd2 Period | Stability
T index A
C,,,=3.0433717756 X,=-0.21174171 x=0.27078923 7.9827 | -1
C,,,=3.043371741 Xyp=-0.2117482633 x =0.27081565 15.9655 | -1
x=-0.21173527
C,,5=3.0433717373 Xup=-0.211748507159 | x=0.270816005452 | 31.9309 | -1
x=-0.21167271047
C«=3.0430907835 X,p=-0.21237236357 | x=0.27317910053 | 15.9697 | -1.69-10"
x=-0.20813463864
Initial conditions of the bifurcation points of the family fcd3 Period | Stability
T index A
\ C,,,=2.99469502439 X3=-0.21476741 x =0.25165904 11.2871 -1
C,,4=2.99469502443929914 | X,,=0.2147675008222 | x=0.251659407344 | 22.5741 | -1
x=-0.2130428044011 | 2
Table VI
Bifurcations of the family of double periodic orbits fz,
Initial conditions of the bifurcation points Period T | Stability
index A
Ci,=2.2330236 | X=-0.5233143 x =0 12.2682 | +1
C,,4=2.234761 X=-0.52225233 x=0.02279438 12.3055 | -1
C,,5=2.234933 x=-0.52176309 x =0.02353585 246135 | -1
Cy=2.285669 x=-0.51127768 x =0.07348204 12.8737 | -6.25-10"
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