
HAL Id: hal-00568376
https://hal.science/hal-00568376

Submitted on 23 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a Fortran procedure for rotating spherical-harmonic
coefficients

R. H. Gooding, C. A. Wagner

To cite this version:
R. H. Gooding, C. A. Wagner. On a Fortran procedure for rotating spherical-harmonic coefficients.
Celestial Mechanics and Dynamical Astronomy, 2010, 108 (1), pp.95-106. �10.1007/s10569-010-9293-
3�. �hal-00568376�

https://hal.science/hal-00568376
https://hal.archives-ouvertes.fr


 1 

 

Running Head: Procedure for Rotating the Gravitational Potential 

 

On a Fortran Procedure for Rotating Spherical-Harmonic Coefficients 

 
R. H. Gooding  ·  C. A. Wagner 

           
Submitted to Celest Mech Dyn Astr: 7 November 2009 

 

 

 

 

 

Abstract  The authors describe a Fortran subroutine that rotates the coefficients of a given 

spherical-harmonic model (in particular the geopotential). It is based on a paper by T. Risbo, 

working with the d-functions fundamental to axis rotations in quantum mechanics, his 

approach being equally applicable to the inclination functions of satellite geodesy. The 

subroutine applies Risbo's approach to evaluate, for a given inclination, stably and 

accurately, the necessary d-functions up to a specified degree, whilst at the same time 

'rotating' (for each degree in turn) the values of the harmonic coefficients.  

   We follow Risbo's helpful example by supplying a listing of the new subroutine. 
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1 Introduction 

 

From the advent of Earth satellites and the study of their orbital perturbations, it was 

foreseen how vital this study would become to a vast increase in accurate knowledge of the 

geopotential. The outcome has included a flood of papers on the role and computation of the 

so-called inclination functions, these being fundamental to the expression of the geopotential 

in an arbitrary axis system - in practice obtained by three successive Euler rotations from the 

Earth's 'natural' axis system (defined by the equator and Greenwich meridian) to a system 

based on the current orbital plane of a satellite of interest. The effective role of the functions 

is to 'rotate' the familiar spherical harmonics that model the geopotential, from the natural 

system to the required one, and one of the recent papers on these functions has been our own 

(Gooding and Wagner, 2008), which for brevity will from now on be referred to as G&W. 

   In spite of the considerable literature on the subject, there has been a striking absence of 

papers on a complementary one, the rotation of all the spherical-harmonic coefficients (now 

referred to as CS-coefficients) in a given geopotential model, as opposed to the harmonic 

functions themselves. The first author was reminded of this absence, after reading the paper 

by Risbo (1996), which expounded an approach that would be far more appropriate to 

tackling the complementary task than the ones we were familiar with. 

   The result has been a new Fortran subroutine that is based on one of Risbo's own, but 

extends it in two ways. First, the new subroutine does not (for each degree) merely compute 

the d-functions that are so crucial for Euler-based axis rotations in quantum mechanics and 

other fields - in addition it uses them (in parallel) to obtain the necessary quantities closely 

related to the inclination (or F-) functions. Second, these quantities are then used to 'rotate' 

the CS-coefficients. 

   Section 2 of the paper adds substantially more to this introductory background, whilst 

Section 3 (in sub-sections for the main components of the procedure) effectively provides a 

manual for using the subroutine. Section 4 summarizes results via a pair of graphs; Section 5 

is devoted to how the subroutine can be modified to provide the actual F-functions; and 

Section 6 concludes the paper. The Fortran code itself is listed in supplementary material.     

 

 

2 Further background 

 

The seminal textbook on 'satellite geodesy' was by Kaula (1966). Inter alia, he introduced a 

version of the inclination functions as essential to the task of rotating the geopotential to an 

axis system based on a satellite's orbital plane. In retrospect, there were weaknesses in 

Kaula's approach to the functions' definition and notation, which are worth summarizing. 

First, the formula for getting each F from the relevant spherical-harmonic functions  

involved three series-summations, where, as anticipated by Allan (1965), a single series 

would suffice. 
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   The second and third weaknesses were that Kaula defined the functions asymmetrically and 

with unhelpful signs that caused other authors to make unnecessary appeal to the so-called 

entier function to express them. The asymmetry weakness arose from Kaula's  notation, 

Flmp(I), where l and m are the degree and order of the coefficients Clm and Slm, and I is the 

inclination of the assumed satellite orbit. That left us with 'p', a third integer, taking all values 

from 0 to l. The first of the present authors, having observed the asymmetry, which will be 

referred to again later, suggested (Gooding, 1966) the switch to a different 'mate' for m, to be 

denoted by k and such that its relation to Kaula's p is implied by 

 

 2p = l – k ;                     (1) 

 

k, like p (and m), takes l + 1 possible values, but the conventionally legitimate ones (to keep 

p integral) must have the same parity as l. 

   Allan's signs were an improvement on Kaula's, but not ideal, as the entier function could 

only be eliminated at the expense of making half the F 's pure imaginary and, unfortunately, 

this was defined by the parity of l–m, not that of l–k. Resolution of this (third) weakness only 

came when Allan (1973), by introducing the appropriate power of i = √(–1), arrived at an  

optimal definition for the F 's. It was actually a return to the original definition by Izsak 

(1964), who anticipated Allan's adoption of the single-series summation (though he referred 

to the now universal "F 's" as "K 's"). It only remained for the present authors to recommend 

in G&W that (to make the notation entirely unambiguous) the index k should become a 

superscript, rather than a subscript. The relation of Kaula's original F 's to these possibly final 

ones can now be expressed via 

 

 Flmp(I) = (–1)
E[½(l–m+1)]

)(IF k
lm ,                  (2) 

 

where the entier function, E(x), supplies the integer part of x. We can illustrate the symmetry 

introduced by the use of k, via the relation connecting F 's for opposite values of k (Eq. 10 of 

G&W): 

 

)(IF
lm
k  = (–1)

l–m )( IπF ml
k .                   (3) 

 

   There remain two Kaula weaknesses to be remarked upon, though it is important to 

stress that this term is not meant to imply disdain - his book remains a tour de force! The 

first is that our journey through the "F-world" had effectively been taken much earlier when,  

starting with Wigner (1959, from 1931), the quantum physicists journeyed through the "d-

world".
1
 Our F 's are little more than a tailored subset of the d's for a given degree l, where  

________________________________ 
1 It is not easy to find a simple definition of the d-functions in the literature. Though they were introduced in 

Wigner's book, he did so (at his Eq. 15.E.1) in a rather oblique way. A somewhat clearer definition may be 

found in other books, with Appendix V of Brink and Satchler (1993) as good a source as any; and Risbo 
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summarizes the origins of the functions. Alternatively, Eq. 7 in the present paper may be regarded as 

providing a definition by series. 

 

the complete set of d's constitute the elements of an orthogonal matrix; the rows and columns  

of this matrix are effectively labelled by m and k, both running from –l to +l. The 'tailoring' 

amounts to a simple relation between the conventionally normalized F 's and the relevant d's 

(which can be regarded as being already normalized). This may be expressed, as in Eq. 16 of 

G&W, by 

 

)(IF k
lm  = i

k–l
 )(Idkm

l
klP (0) {(2 – δ0m)/(2 – δ0k)}

½
 ,                (4) 

 

where klP (0) is the usual associated Legendre function, evaluated  for I = 0 (that is, on the 

equator) and normalized on the same basis as )(IF k
lm . The functions of the two Kronecker-

deltas in Eq. 4 were explained in G&W, Eq. 16 there being the same as Eq.4 here. 

 

   But it is the effect of the initial i
k–l

 that is of most interest in Eq. 4: it leads to a real quantity 

only when l and k are of the same parity; but, since klP (0) = 0 when l and k are of opposite 

parity, we have the gratifying fact that )(IF k
lm , as well as )(Idkm

l , is confirmed as always real!   

 

 

If, in addition, we move the factor i
k–l

 from its present position in Eq. 4 and define an 

academic function by combining it with klP (0), this new function will always be positive in 

the 'same-parity' case, and the 'opposite-parity' zeroes can be replaced by smoothly-

interpolated positive values. The F  values in the former case are what G&W described as 

'legitimate', whilst the others were described (with irony) as 'forbidden'. 

   Kaula's final omission arose from confining his attention to the transformation of the 

harmonic functions themselves, ignoring their coefficients. This neglect of the 

transformation of the CS-values has been widespread, though Goldstein (1984) provides a 

notable exception (at the cost of having to extend the three Euler rotations to five). 

 

 

3 Subroutine's basic components 

 

We are describing a single subroutine, which we therefore refer to as "the SR", called 

RisboBasedCSrotation and largely based on the subroutine pecurs of Risbo. We explain its 

code via 'components', avoiding the words 'phase' and 'stage' because the components are 

(necessarily) intermingled, to produce an integrated subroutine. 

 

3.1 In/out components 

 

The SR's four dummy arguments are xi , ambda0 and ambdapr0 (three Euler angles, all in 
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degrees), and Lmax: xi is the inclination I of the primed plane Ox'y' (often the orbital plane of 

an Earth satellite) to the unprimed initial plane Oxy (in practice the Earth's equator with Ox 

towards Greenwich); ambda0 specifies λ0, the (unprimed) 'longitude' of the primed plane's 

ascending node; and ambdapr0 is λ'0, the 'primed' longitude-equivalent of that node (now 

seen as descending). Finally, Lmax is the degree, lmax, to which the geopotential model is 

being taken. In Section 4, we explain how and why a small adjustment is effectively made to 

the input value of I. 

   The geopotential model is read from unit 3 as a formatted file, with GeopotentialModel.txt 

its default name. The file is immediately rewound after being opened, so that the SR can be 

entered more than once in the same computing session. 

   The only output (apart from monitor prints and test output to unit 2) is to unit 4, for the 

formatted file PostRotationModel.txt. This output consists of l, k, C 'lk, S'lk, for each l and 

every relevant k in turn, where k is the order of the specified (primed) harmonic pair. Since 

the standard notation, Clm and Slm, is used for the original model, one might have expected 

the adopted notation (relative to the primed plane) to be m' rather than k; but, not only would 

this be cumbersome, the whole point of using k is that it ties in with the notations )(IF k
lm  and 

)(Idmk
l  (or )(Idkm

l ). 

   Apropos the preceding line, textbook inconsistency in notation between mk
ld  and km

ld can be 

confusing, as is noted in G&W, just before its Eq. 5; in the listing of the present SR, it 

should be borne in mind that Risbo uses 'k' for the second argument of the array 'd ', whereas 

the additional code here effectively uses 'k' for the first argument. That remark is relevant to 

the expression of 'd ' by series in Section 3.3. Note: there is no real need for unnormalized 

versions of C and S, so the unbarred notation is used (throughout the paper) for normalized 

coefficients. 

  

3.2 Risbo component 

 

Risbo (1996) lists two subroutines, but only one (pecurs) was required here and we have 

modified it substantially as a component of our own SR. From our viewpoint its function is 

just to develop all the matrices of d-functions (up to lmax) recursively. Thus the functions 

)(Idmk
l , stored as the Fortran-array d(0:2l, 0:2l) of dimension (2l+1)×(2l+1) with m and k 

ranging from -l to l, are built from  the functions )(½ Idmk
l . But this cannot be done in situ, due 

to unavoidable interference, so Risbo builds an independent array, dd, only overwriting the 

existing d-array (of degree l-½) when dd (of degree l) is ready to replace it. 

   The procedure has to be initialized, and Risbo starts with l = ½, involving a 2×2 array for 

d. The Fortran assignments for the four array elements are  d(0,0) = d(1,1) = c  and  d(0,1) = 

– d(1,0) = s, where c = cos (½I) and s = sin (½I); the Fortran-array subscripts 0 and 1 there 

correspond to subscripts –½ and +½ in the d-matrix. As d evolves, the orthogonality of the 

matrix persists, with the aid of square roots where required. 

   The concept of matrix convolution is crucial, but Risbo does not explain it and it may be as 

unfamiliar to most mathematicians as it was to us. The concept may be defined via the 



 6 

general formula for the convolution product of a pair of (arbitrary) matrices, say A and B, of 

dimensions MxN and PxQ, respectively, where all four (array) subscripts start from zero and 

the maximum row-subscript of A (for example) is M–1. Then if the convolution product of A 

and B is to be C, with its subscripts again starting from zero, the dimension of C has to be 

(M+P–1)x(N +Q –1) and the formula for the general element is  cij = Σ amn bpq , where the 

summation is over all m and p that add to i, and all n and q that add to j. 

   If matrix B is of dimension 2x2, the rows and columns of A can be thought of as being 

increased in length by 1 as a result of evolution to C; and the new multiplication (unlike the 

familiar matrix multiplication) is automatically commutative. Applying this to the present 

context, starting from the specific 2x2 d-matrix above, we can multiply it indefinitely by 

itself to generate matrices of dimension 3x3, 4x4, 5x5, etc, in turn. They correspond to  l = 1, 

1½, 2, etc, with general l (integer or half-integer) corresponding to dimension (2l+1)x(2l+1); 

moreover, by multiplying each element by a simple (and appropriate) factor, we can preserve 

orthogonality. The matrices generated in this way are precisely the d-matrices, with l going 

from the initialized ½ up through 1, 1½, 2, etc. 

   Risbo covered the procedure by four lines of code inside three do-loops. Their 

mathematical equivalents, as equations for increments (Δ) of the relevant quantities, are 

 

 

            Δdd(i, k) = (2l – i)
½
 (c /2l) (2l – k)

½
 d(i, k) ,             (5a) 

 

      Δdd(i +1, k ) = –(i +1)
½
 (s/2l) (2l – k)

½
 d(i, k) ,             (5b) 

 

      Δdd(i, k +1 ) = (2l – i)
½
 (s/2l) (k +1)

½
 d(i, k) ,              (5c) 

 

 Δdd(i +1, k +1 ) = (i +1)
½
 (c/2l) (k +1)

½
 d(i, k) .              (5d) 

 

 

We present Eqs. 5 in this way, with pairs of square roots separated and Risbo's code 

modified accordingly, to minimize the danger of overflow when l is very large. Another 

modification was made while the paper was being reviewed . It takes advantage (as Risbo 

did not), of some simple symmetries  (with 'anti-symmetries' covered) in the dd's; they are 

given by Sneeuw (1992), for example. The advantage emanates from considerable saving in 

time (for large l) when more than 50% of the dd-computation can be obtained with Eqs. 5 

bypassed. 

 

3.3 Unsophisticated proof of Risbo's tacit recurrence relation 

 

We can validate Eqs. 5 by reformulating them as a recurrence relation for nm
ld . In generating 

the required single equation, we decrease l by ½ and replace the computer-array 'subscripts' i 

and k by the mathematical subscripts m = i – l and n = k – l, running from –l to +l instead of 0 



 7 

to 2l. (It was to avoid a clash with Risbo's use of k as in Eqs.5 that we are temporarily using n 

as the second mathematical subscript of d.) Then our new equation (with implicit arguments I 

for the d-functions) is 

 

 nm
ld  =  A ++ ½,½ 

½
nm

ld  + A –+ ½,½ 

½
nm

ld  + A +– ½,½ 

½
nm

ld  + A – – ½,½ 

½
nm

ld  ,            (6) 

 

where for brevity we omit the actual expressions for the A's. If either of a pair of d-subscripts 

on the right-hand side (RHS) of Eq. 6 numerically exceeds l–½, that d is itself then zero, so in 

particular cases there are only two or three non-zero terms on the RHS. These cases 

correspond (in the computer's d-array) to elements on the boundary of the putative "d 

l
 array" 

and outside the square of the "d 

l–½
 array". 

   We regard our proof of Eq. 6 as unsophisticated because we can validate it by use of a 

standard series for )(Id nm
l , given, e.g, by Wigner (1959, from 1931) or by Brink and Satchler 

(1993). With c and s already defined, the series is 

 

)(Id nm
l  =

)!()!(

)!()!(

mlml

nlnl
 Σj (–1)

j
 ( j

ml )(
jnl

ml ) c
2l–n+m–2j

 s
n–m+2j

,           (7) 

 

where the summation is effectively from –∞ to +∞, because the product of the binomial 

coefficients is always zero outside limits that need not be specified explicitly. (This, as an 

aside, is relevant to the remarks after Eq. 6.) 

   The crux of the proof of Eq. 6 is to work with the general summation index j when its left-

hand side (LHS) is expanded by Eq. 7. From the corresponding expansions of the terms on 

the RHS of Eq. 6, we can infer the summation index needed for all to give the same powers 

of c and s. Though Eq.7 (with l replaced by l – ½) gives powers only adding to 2l – 1, an 

extra c or s comes from Eqs. 5 via the A's of Eq. 6. We can then simplify the five coefficients 

of c
2l–n+m–2j

 s
n–m+2j

 we are seeking, by cancelling (from all of them) the overall (j-

independent) square-root factor in Eq. 7. This leaves us with far simpler coefficients than the 

original A's, in particular with just (–1)
j
 [(l + m)! / j! (l + m – j)] for the LHS of Eq. 6, and this 

factor can then itself be cancelled from both sides of the reduced equation. 

   The final coefficients on the RHS of the reduced Eq. 6 are then (l – n – j)/2l,  j/2l, (n – m + 

j)/2l and (l + m – j)/2l, which combine to unity, the value we have forced on the LHS. This 

warrants a "QED" for the recurrence relation, since the starting point for induction is trivial, 

being Risbo's values for l = ½, given earlier and easily confirmed via Eq. 7. 

 

3.4 Getting-the-partials component 

 

The 'partials' here are (for given I and l, and each m and k) the values of the four partial 

derivatives ∂C 'lk/∂Clm, ∂C 'lk/∂Slm, ∂S'lk/∂Clm, ∂S'lk/∂Slm, which are the linear multiples of the 

Clm and Slm, required to transform to C 'lk and S'lk. They are derived from simple combinations 

of the d-functions for each pair, k and m, of indexes (l being assumed given).  
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   To enlarge, the d-functions involve index values of both m and k that can be negative as 

often as they are positive. The ,s'F  on the other hand, lack this symmetry, since only k is 

allowed to be negative. Further, the usual F application (to satellite-orbits) is limited to the 

primed plane itself, whereas in the present d-application there is no such limitation (with the 

rotated coefficients applying universally), though the values of both m and k are eventually 

restricted to being non-negative. The requirement is that to compute the partials for given l, 

m and k, we need two values of d, both involving the given k but one for the given m and the 

other for –m, the values being identical if m = 0. The two values are coded as d+ and d– , with 

division by √2 if either m or k is zero and by a 'full 2' if they are both zero. The sign of d– 

must be reversed when m is odd, after which the SR sets the quantities Ccoef and Scoef from d+ 

+ d– and d+ – d– respectively.  

   Since the longitude of the desired node has been supplied to the SR as λ0, we might expect 

the first step in computing the partials to be a rotation by this angle, but two points arise 

here. First (and as noted in Section 1), the SR assumes a trio of rotations based on the 

conventional Euler angles, with the middle rotation about the y-axis, which then at once 

becomes the y'-axis; this means that the initial x-axis has only to be rotated through λ0 – 90º 

for the y-axis to be automatically at the right place. Secondly, the longitude-factors of the 

spherical harmonic functions are based on the angle mλ, not just λ, with no rotation at all 

necessary for the 'zonals', so the angle really required (via its cosine and sine) is m(λ0 – 90º).  

In the same way, the angle k(λ'0 – 90º) is required in connection with the final rotation, but 

(because there is little need for longitude flexibility in the primed plane) a user may want to 

use the same value of λ'0 on all occasions.  

   On the basis of the three Euler rotations, the required partials for each pair of m and k are 

computed via the quantities Ccoef and Scoef referred to above. 

 

3.5 Final component 

 

This involves the accumulation of the values for each pair of rotated harmonics, C 'lk and S'lk, 

via an inner loop corresponding to m, within an outer one corresponding to k. That happens 

in parallel with the 'partials component', with everything controlled by the main 'j-loop',  

where j (following Risbo in pecurs) is effectively 2l and hence integral even when l is not. 

   The scope of this final component has been limited in two obvious ways, due to the limited 

needs of the geopotential expansion. First, there is no need for non-integral l, so everything 

is now bypassed when j is odd. Second, the given harmonics are for m ≥ 0 only, and the 

rotated harmonics are for k ≥ 0 only; so the k-based and m-based loops do not cover negative 

values of either index. 

 

 

4 Results 

 

The SR has been tested for values of lmax up to 2000 for an artificial geopotential model 
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based on values of the (normalized) Clm and Slm compatible with Kaula's rule of thumb (as in 

Eq. 5.15 of Kaula (1966)) for these harmonics. Testing was based on the property for the 

harmonic coefficients that the sum of their squares is unchanged after any arbitrary rotation 

of the 3-axis reference system and specifically that, for each individual degree l, 

 

 
l

k 0

(C'lk
2
 + S 'lk

2
) =

l

m 0

(Clm
2
 + Slm

2
)  .                (8) 

 

So the quantity chosen as test criterion, for selected values of l, was the proportionate deficit 

of the LHS of Eq. 8 relative to its RHS, i.e. (RHS – LHS)/RHS. (Assessment via relative 

deficit, rather than excess, was adopted on the naive basis, remarked upon in G&W, that if 

underflow was a major aspect of a computation, then it would be preferable to have most of 

any test results with a positive sign.) 

   We can now explain what was referred to in the first paragraph of Section 3.1, which is 

that the accuracy of the SR can be significantly improved via an insignificantly small change 

to the input I, effectively to xi itself but in reality to the value of one of c and s after they 

have been initially set from ½I (following Risbo). With neither c nor s ever negative (and in 

general not equal), the SR replaces the smaller of them by the square root of (1–r)(1+r), 

where r is the larger one. The goal here is the consistency of c and s by making c
2
 + s

2
 = 1 as 

accurately as possible. This goal is different from the one described in Section 10.1 of G&W, 

since there it was the cosine and sine of I itself that needed to be as consistent as possible. 

The least advantage is gained (in each case) when cosine and sine are numerically equal, 

with I = 90º here, and 45º or 135º in the G&W procedure. 

   Results for the relative deficit are summarized by two figures. Figure 1 displays the 

significant improvement in accuracy resulting from the effective adjustment of the input I 

(via c and s, as just explained). For a particular value of l, specified by lmax = 1000, two 

curves are shown for the full range of I from 0º to 180º, the other input angles (λ0 and λ'0) 

being fixed (at 90º) along both curves - fixed because they are not critical in testing for 

large lmax, and 90º because this corresponds to zero for the two longitudes of the primed 

polar direction (z' axis). The dashed curve shows relative deficit when no adjustment has 

been made, whilst the continuous curve shows the vast improvement that can follow when 

one has. 

 
 

 

[space for .ps Fig somewhere here, with note on this at the very end of this .doc file] 
 

Fig.1 Variation of relative deficit (R.D) with I, for degree l = 1000 

 

   Though the dashed curve's points in Figure 1 are, in principle, at 10º intervals in I, a few 

extra points were added at both ends, and we see that the terminal points (at 0º and 180º) 

both involve 'overshoots' of relative deficit to about 25×10-15
. The phenomenon disappears 
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with the other curve, so the explanation seems to arise from the 'trigonometric inconsistency' 

(when not adjusted) that has been described. 

   Figure 2 complements Figure 1 by plotting four curves of relative deficit against l, for 

somewhat arbitrary values of I. Each curve terminates (at l = 1000) consistently with the 

continuous curve of Figure 1. 

 

 
 

[space for .ps Fig 2, etc, as for Fig 1 above] 
 

Fig.2  Variation of relative deficit (R.D.) with l, for four values of I  

 

   The most significant feature of the curves in Figure 2 is that there is a common trend 

towards linearity as l increases. It is likely that this trend emanates from the intrinsic stability 

of the process, strongly indicated even for results (not shown) from before the consistency 

adjustment was introduced. This slow, linear increase in relative deficit seems the more 

remarkable when one recalls that the number of computing operations (to produce a 

complete set of C' and S' for a given l) increases quadratically (with l), not just linearly. 

   To sum up, we conclude that the accuracy and stability of the rotation process are 

excellent. In Section 5 we conclude that this is also true when the option is taken to output 

F functions. 

 

 

5 Results from added subroutine option 

 

The role of the F functions in the SR has effectively been as a link between the explicitly 

computed d-functions and the goal of rotating a set of spherical-harmonic coefficients. 

Recognizing Risbo's success in his accurate derivation of the d's, we asked ourselves: is it 

not a simple matter to compute, directly from the d's, the s'F  themselves?  

   The answer is yes, apart from the objection that there is rarely a demand for a 'complete' set 

of three-index s'F  in the same way as for the two-index CS-coefficients. What is more often 

required (for given I) is just a subset for a range of l-values and fixed values of m and k. 

   However, a small amount of additional software suffices to generate subsets of s'F  of 

better accuracy than was achieved in G&W, in particular with no longer any major error due 

to the onset of excessive underflow (or overflow), this being the bugbear of G&W. The core 

of our own additional code (within the usual subroutine RisboBasedCSrotation) is the 

optional statement "Fbar = FbarViaEqHarm(j/2,k-j/2,i-j/2,d(i,k))" , which  uses the current 

)(Idkm
l to obtain the required value of )(IF k

lm  by the use of Eq. 4. Suitable code for the 

function  FbarViaEqHarm is listed in supplementary material, together with a further 

function, EqHarm, based on code by Wagner (1983), to provide klP (0) as required in Eq. 4.  
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We include in the basic subroutine's code all the extra statements needed for the actual 

procedure that will now be described; they appear as comments, to be activated whenever the 

extension is wanted. 

   To validate the extra software, the results for a particular example were compared with 

those from Table 3 of G&W. The essence of that table had been the identity (or invariance) 

satisfied by the complete set of F 's for a given degree, l, namely: 

 
l

lk

l

m 0

2])([ IF
lm
k

 = 2l +1 .                                                                                          (9) 

 

We used that identity (as Eq. 17 in G&W) before, to assess our "rapid stable procedure" by 

defining R.D (Eq. 34 in G&W) as a relative deficit, different from that of Section 4 here. The 

definition, based on Eq. 9 is  

 

R.D  = 1 – 
l

lk

l

m 0

2])([ IF
lm
k /(2l + 1) .                                                                   (10) 

 

   We had expected (in G&W) a preponderance of (very small) positive values for R.D, since 

a major source of minor discrepancy in the two sides of Eq.9 was underflow in 2])([ IF
lm
k . 

Such underflows (for a few values of m and k) occurred, even for quite small values of l, 

being intrinsic to the recurrence formula (in l) we were using for (denormalized) F, in spite 

of which our procedure compared favourably with others in the field. 

   Table 1 here is a version of the G&W Table 3 with results added from the extended new 

subroutine, noting that the value of I (as chosen before) is 1º. 

 
   Table 1  Comparison of R.D and underflow counts (U.C)  between the authors' previous study and the  

                     present one 

 

 

 
[Space for this Table, at end of the file] 

 

Table 1 has some striking features. The most obvious one reflects the main weakness in the 

earlier (G&W) algorithm, viz., the sudden catastrophic rise in R.D when l reaches 1024. As 

explained on pages 265-266 of G&W, this is the value of l at which (for the assumed 

precision) the I-independent factor in the initializing of the G&W recurrence relation 

happens to underflow when both m and k are also 1024 (only by coincidence a power of 2). 

In the new algorithm there are, overall for this value of l, 289 more underflows than before, 

but they are now all totally inconsequential, occurring in Risbo's implicit recurrence (not in 

its initialization). The single crucial underflow from the earlier algorithm is now avoided, the 

value of )º1(1024
1024,1024F  being 7.861934, the square of which (61.80996...) is consistent with Eq. 
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9 and the earlier underflow. 

   A second striking (and surprising) observation from Table 1 is that, despite the entirely 

different approach from G&W's, the new underflow counts are almost the same. This is 

largely because inconsequential underflows in the d-computation are inevitable when either c 

or s is small (see Section 4), and here s = sin 0.5º. The important thing, in comparison with 

the first observation, is the difference between the two sources of underflow. Thus, the 

importance of I-consistency in the G&W procedure has given way to the importance of ½I-

consistency in the present paper and it is possible that the virtual halving of sin ½I (in 

comparison with sin I) accounts for the slightly greater number of (inconsequential) 

underflows when using the current SR for such a low inclination. 

   The most gratifying observation from Table 1 is that (for this inclination) the new R.D is 

consistently so very much smaller than the old one from G&W. For higher inclinations, in 

particular for I = 90º, where c = s, the position is likely to be reversed, with the new R.D 

much larger than was found for the Table 1 of G&W 

 

 

6 Conclusion 

 

The paper has described  a subroutine for the rotation of the CS-coefficients of a given 

spherical-harmonic model (here an assumed geopotential). Thanks to access to Risbo's 

subroutine, which generates the elegant d-functions (usually associated with quantum 

mechanics but actually of far wider application), the new subroutine is extremely stable, 

accurate, fast, and essentially unlimited in regard to the degree and order of the coefficients 

to be rotated. 

 

   It was not the authors' original intention to add 'flexibility' to the subroutine's other virtues, 

but we soon saw how easy it was to introduce optional code to generate satellite-geodesy's 

(normalized) F-functions themselves, being already barely bypassed en route to the rotated 

coefficients. As another possible application for optional code, it might be required to rotate 

all the coefficients of a given degree, as opposed to up to a given degree. 

   In regard to the first point, readers will be aware that (despite the logic inherent in the 

authors' preference for a particular definition, there is still no unanimity as to how the F 's 

and F 's should be defined. Fortunately, however, the rotation of C's and S's does not depend 

on those definitions, but on their own intrinsic definition, the coefficients being assumed to 

be normalized in accord with usual practice. 
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Appendix  A               Listing of Fortran Subroutine RisboBasedCSrotation 
     
subroutine RisboBasedCSrotation (xi,ambda0,ambdapr0, Lmax) 

!    First 3 (dummy) inputs are Euler angles, in unconventional order 

! beta, alpha and gamma (beta being inclination of primed plane, with  

! alpha & gamma the "longitudes" of the "beta-rotation node"); fourth  

! input is the final degree to which coefficient rotation is required. 

!    File-input array is GeopotentialModel.txt, containing C,S pairs. 

!    File-output array is PostRotationlModel.txt, getting C',S' pairs.  

!    There is also some printing to Unit 2. 

   implicit real*8 (A-H,O-Z) 

   parameter (ndim=1000, sqrt2=1.4142135623731, radian=57.295779513082320,     & 

  &   halfpi = 90./radian) 

   dimension sqt(0:2*ndim+2),d(0:2*ndim+2,0:2*ndim+2),dd(0:2*ndim+3,0:2*ndim+3) 

   dimension CEGM(1:ndim, 0:ndim), SEGM(1:ndim, 0:ndim) 

!o   logical lTest  ! see later re the F-option of Section 5 

   write (2,*) 'xi, Lmax, ambda0, ambdapr0 are  ', xI, Lmax, ambda0, ambdapr0 

   open(3,Form='Formatted', MODE='read', FILE='GeopotentialModel.txt') 

   open(4,Form='Formatted', MODE='write', FILE='PostRotationModel.txt') 

   rewind 3 

   read (3,1) ((CEGM(i,j), SEGM(i,j), j=0,i), i=1,Lmax) 

 1 format (10X, 2E25.15) 

   write (4,2) xi, Lmax, ambda0, ambdapr0 
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 2 format ('Rotated C/S values for I, Lmax, ambda0, ambdapr0  = ', F8.3, I5,   & 

  &  2F8.3 / '   L    k             C_Lk                      S_Lk') 

   thet = xi/radian       ! 1st of 3 lines converting Euler angles from degrees 

   amb0 = ambda0/radian 

   ambpr0 = ambdapr0/radian 

   jmax = 2*abs(Lmax) 

   do i=0,jmax 

     sqt(i) = sqrt(real(i)) 

   end do 

   s = sin(thet/2.) 

   c = cos(thet/2.) 

   if (s*s.lt.0.5) then ! consistency for I/2 is set up in these 5 lines 

     s = sqrt((1d0 - c)*(1d0 + c))  ! xImod from 2*asin(s)*radian if wanted 

    else 

     c = sqrt((1d0 - s)*(1d0 + s))  ! xImod from 2*acos(c)*radian if wanted 

   end if 

! --- initialize d-matrix degree 1/2 (Risbo comment) 

   d(0,0) = c 

   d(0,1) = s 

   d(1,0) = -s 

   d(1,1) = c 

! --- MAIN LOOP: combination of Risbo (for key d-file) & Gooding (for rotation) 

   do j=2,jmax 

     L = j/2 

     fj = j 

     do i=0,j  !**23.5.10 1st of 2 lines with "j+1" repaced by "j" 

       do k=0,j  !**23.5.10 2nd, validity having been checked 

         dd(i,k) = 0. 

       enddo 

     enddo 

!o     lTest = mod (j,2).eq.0 .and. mod(l,50).eq.0 

!    Example of selecting a subset of L values for printing in the F-option] 

!o  if (lTest) then  ! "!o" is used for comments stopping the F-option 

!o    SumFsq = 0. 

!o    numUdrs = 0 

!o  end if 

! --- recursion in two directions from d to dd (Risbo comment) 

     do i= 0,j-1 

  kp = max(0,i-1)   ! 1st of 3 lines exploiting symmetries ignored by Risbo 

  kq = j-1-kp 

       do k=kp,kq 

         dd(i,k) = dd(i,k) + sqt(j-i)/fj*sqt(j-k)*d(i,k)*c 

         dd(i+1,k) = dd(i+1,k) - sqt(i+1)/fj*sqt(j-k)*d(i,k)*s 

         dd(i,k+1) = dd(i,k+1) + sqt(j-i)/fj*sqt(k+1)*d(i,k)*s 

         dd(i+1,k+1)= dd(i+1,k+1)+ sqt(i+1)/fj*sqt(k+1)*d(i,k)*c 

       enddo 

     enddo 

     do i=0,L        ! next 10 lines complete the symmetry exploitation 

  do k= i,j-i 

         if (i.le.k.and.dd(i,k).ne.0.) then 

       dd(j-k,j-i) = dd(i,k) 

      dd(k,i) = dd(i,k) 

       if (mod(k-i,2).eq.1) dd(k,i) = -dd(i,k) 

           dd(j-i,j-k) = dd(k,i) 

    end if 

       enddo 

     enddo 

     do i=0,j 

       do k=0,j 

         d(i,k) = dd(i,k) 

!o  if (lTest.and.k.ge.j/2 .and. mod(j-i,2).eq.0) then 
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!o    Fbar = FbarViaEqHarm(j/2,k-j/2,i-j/2,d(i,k)) 

!o    if (Fbar.eq.0d0) numUdrs = numUdrs + 1      

!o    SumFsq = SumFsq + Fbar**2 

!o  end if  

       enddo 

     enddo 

!o     if (lTest) then 

!o       crit = j + 1d0             ! because j = 2L 

!o       RelDef = 1d0 - SumFsq/crit 

!o       write (2,4) j/2,RelDef,NumUdrs 

!o   4    format ('L, RelDef, G&Wudrs = ', I4, F22.16, I9) 

!o     end if 

!--- do the rotation (Gooding), ignoring half-integer degrees 

     if (mod(j,2).eq.0) then 

       Sos = 0.                     ! initialize for Eq. 8 

       SosPrime = 0.                ! ditto 

       L= j/2 

       do jj=0,L 

         Sos = Sos + CEGM(L,jj)**2     

         if (jj.ne.0) Sos =  Sos + SEGM(L,jj)**2 

       end do 

       do k=0,L 

         Crot = 0. 

         Srot = 0. 

         kK = k + L 

         do m=0,L 

           dplus = d(kK,L+m) 

           dminus = d(kK,L-m) 

           ambdam = (amb0 - halfpi)*m 

           ambdak =  (ambpr0 - halfpi)*k 

           if (m.eq.0) then 

             dplus = dplus/sqrt2 

             dminus = dminus/sqrt2 

           end if 

           if (k.eq.0) then 

             dplus = dplus/sqrt2 

             dminus = dminus/sqrt2 

           end if 

           if (mod(m,2).eq.1) dminus = -dminus 

           Ccoef = dplus + dminus 

           Scoef = dplus - dminus 

           Cm = cos(ambdam) 

           Sm = sin(ambdam) 

           Cprimed = cos(ambdak) 

           Sprimed = sin(ambdak) 

           cc = Cm*Ccoef 

           cs = Sm*Ccoef 

           sc = -Sm*Scoef 

           ss = Cm*Scoef 

           dCdC = Cprimed*cc - Sprimed*sc 

           dCdS = Cprimed*cs - Sprimed*ss 

           dSdC = Sprimed*cc + Cprimed*sc 

           dSdS = Sprimed*cs + Cprimed*ss 

           Crot = Crot + dCdC*CEGM(L,m) + dCdS*SEGM(L,m) 

           Srot = Srot + dSdC*CEGM(L,m) + dSdS*SEGM(L,m) 

         end do 

         SosPrime = SosPrime + Crot**2 + Srot**2 

         write (4,3) L, k, Crot, Srot 

       3 format (2I5, 2E25.15) 

       end do 

       RelDef = 1. - SosPrime/Sos 
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       if (L.eq.Lmax)  write (2,*) 'L, Sos, SosPrime & RelDef =  ',            & 

  &      L, Sos, SosPrime, RelDef      ! Delete "if (...)" to output for every L 

     end if 

   enddo    

   return 

   end                         !of subroutine RisboBasedCSrotation 
 

 

Appendix  B               Listing of two supplementary Fortran Functions 
 

   function FbarViaEqHarm(L,m,k,d) 

!    First three (dummy) inputs are the usual indexes; the fourth is a d-matrix element. 

!    The only output is FbarViaEqHarm itself, being F(bar) for I = 0 (equatorial). 

   implicit real*8 (a-h,o-z) 

   FbarViaEqHarm = EqHarm(L,k)*d  ! Use 'equatorial harmonic' 

   if (k.eq.0) FbarViaEqHarm = FbarViaEqHarm*sqrt(2.) 

   if (m.eq.0) FbarViaEqHarm = FbarViaEqHarm/sqrt(2.) 

   return 

   end                            ! of function FbarViaEqHarm(L,m,k,d) 

 

   function EqHarm(L,k)  ! (From SR 'pnm' of Wagner, & relevant to "Fbar's via d's") 

!    The two (dummy) inputs are the usual indexes 

!    The only output is FbarViaEqHarm itself, being the (fully normalized) associated 

! Legendre functions for I = 0 or zero when L and m are of opposite parity 

   implicit real*8 (a-h,o-z) 

   m = abs(k)                      ! as when used for P_Lk(0), k may be negative 

   if (mod(L-m,2).eq.1) then 

     EqHarm = 0d0                 ! need extra code for non-zero 'forbidden whites' 

     return 

   end if 

!    Set starter for (P_mm)sq by recurrence relation 

   EqHsq = 1d0 

   do i=1,m 

     EqHsq = EqHsq*(2d0*i+1d0)/2d0/dble(i) 

     if (i.eq.1) EqHsq = 2d0*EqHsq 

   end do 

!    Get desired even-parity result via the recursion of Wagner (1983) 

   do i=m+2,L,2                ! using coefficient of CAW's Eq'n (6) 

     EqHsq=EqHsq*(i-m-1d0)/dble(i-m)*(i+m-1d0)/dble(i+m)*(2d0*i+1d0)/(2d0*i-3d0) 

   end do 

   EqHarm = dsqrt(EqHsq) 

   if (mod(L-m,4).eq.2)  EqHarm = -EqHarm 

   if (k.lt.0.and.mod(m,2).eq.1) EqHarm = -EqHarm 

   return 

   end                         ! of function EqHarm(L,k) 

 
Legends for Figures    (Actual .ps figures in separate attachments ?) 
 
Figs 1 & 2 were originally submitted in .pdf format (against CelM instructions), because 

our attempts to include them in .ps failed. I (RHG) have the .ps files from my co-author 

{CAW), who has the software to read them (as Figs!) but I don't. For me to insert them 

(VERY long files in pure txt format) now seems unlikely to be acceptable, so the best 

idea may be for CAW to send his .ps files directly, attached to a separate email (to 

Deepan Selvaraj). One reviewer stressed that the .pdf quality is not up to the standard 

of .ps (whence the formal CELE instructions no doubt). But in this version  

 

 

 
Fig.1 Variation of relative deficit (R.D) with I, for degree l = 1000    [space for .ps above] 
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Fig.2  Variation of relative deficit (R.D.) with l, for four values of I    [space for .ps above] 

 

 

 

Table 1 

 
   Table 1  Comparison of R.D and underflow counts (U.C)  between the  

authors' previous study and the present one 
 

    _______________________________________________________________________________________________________________ 

                     Results from previous study       Results from present study 
      l                          R.D×10

16
       U.C           R.D×10

16 
              U.C  

    _______________________________________________________________________________________________________________ 

 100               284      286         0         287 

 200               943    10793         0       10791 

 300               204    38201        32       38199 

 400               486    83347        17       83381 

 500               732   146641        28      146696 

 550               -87   185170         4      185239 

 600              -442   228323         0      228376 

 650              -624   276107         0      276201 

 700              -253   328558        32      328636 

 750              -564   385664        79      385764 

 800             -1006   447445        62      447575 

 850             -1636   513945        58      514049 

 900             -1086   585096        98      585278 

 950              -355   660994       109      661149 

1000              -484   741521        77      741775 

1023             -1159   780167        92      780448 

1024   301659391441197   781866       115      782155 

1025   301466320492436   783564       109      783870 

1026   375107328406188   785264       182      785583 

1027   Fails due to Overflow!          24      787295 

1100   So no more values available    144      917223 

1200       etc   etc   etc            148     1111593 

1300                                  225     1325006 

1400                                  168     1557422 

1500                                  129     1808922 

1600                                  163     2079471 

1700                                  223     2369157 

1800                                   98     2678003 

1900                                  212     3006022 

2000                                  298     3353224 
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