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Abstract

This paper builds upon the work of Palmer and Imre exploring the relative motion
of satellites on neighbouring Keplerian orbits. We make use of a general geometrical
setting from Hamiltonian systems theory to obtain analytical solutions of the varia-
tional Kepler equations in an Earth centred inertial coordinate frame in terms of the
relevant conserved quantities: relative energy, relative angular momentum and the rel-
ative eccentricity vector. The paper extends the work on relative satellite motion by
providing solutions about any elliptic, parabolic or hyperbolic reference trajectory, in-
cluding the zero angular momentum case. The geometrical framework assists the design
of complex formation flying trajectories. This is demonstrated by the construction of a
tetrahedral formation, described through the relevant conserved quantities, for which
the satellites are on highly eccentric orbits around the sun to visit the Kuiper belt.
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1 Introduction

The modelling and analysis of the relative motion of two satellites is of immediate relevance

to the design of multiple satellite missions such as constellations and formations. Significant

interest in this area is demonstrated by Xiang and Jørgensen’s recent survey [26] of planned

and existing formation flying missions. This lists as many as 15 current and future missions.

Recent examples include the NASA EO-1 remote sensing mission [6, 8], the GRACE mission

mapping the Earth’s gravity field [20] and the CLUSTER II space weather and environment

mission with four satellites in a tetrahedral formation [4].

Perhaps the best known relative motion model is Hill’s equations [10], adapted to the

problem of relative satellite navigation by Clohessy and Wiltshire [2] in 1960s. This is the

linearisation of Keplerian relative dynamics around a circular reference orbit. However,

six years prior to Clohessy and Wiltshire, Lawden derived the basic equations of relative

motion for the more general case of eccentric orbits [13] (c.f. [1]). Tschauner and Hempel

[22] independently formulated similar solutions to Lawden’s around the same time. The

approach is in fact a generalisation of the Clohessy-Wiltshire equations, solving the same

problem but linearising around an eccentric orbit rather than a circular one. While they still

use Hill’s frame, they employ the true anomaly as the independent variable.

As formation flying missions are becoming a reality, there has been a renewed interest in

relative motion modelling within the last decade. Important and recent references include

[1, 15] for the linear theory, [5, 9, 17, 18, 25] for inclusion of higher order geopotential terms

and [7, 12, 19, 23] for nonlinearity effects. One of the few common threads within the

existing literature on relative motion, is that virtually all of the methods use a rotating and

accelerating local coordinate frame. This approach makes analysis and visualisation of the

motion rather straightforward. However, the perturbations to the Keplerian potential are

usually defined in the Earth Centred Inertial (ECI) frame, or sometimes the rotating Earth

Centred Earth Fixed (ECEF) frame. This is one of the primary reasons why the addition

of the simple J2 perturbation term greatly complicates the equations. The modelling of the
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motion is actually hampered by the employment of this accelerating rotating frame.

Perhaps more importantly, these methods do not explicitly address the issue of constants

of motion. For the motion of a satellite under a Keplerian potential, the energy, the angular

momentum and the eccentricity are all conserved. For the case of the two satellites; the

‘relative energy’, the ‘relative angular momentum’, and the ‘relative eccentricity’ are also

conserved. If these quantities are not conserved, e.g. in numerical integration, the relative

orbits will get distorted over time. For example, any deviation from the relative energy will

manifest itself as an alongtrack drift.

Palmer and Imre [11, 16] incorporated conservation of relative energy and relative angular

momentum. In [16] they solved the linearised relative motion in the ECI coordinate frame

exploiting these quantities, and in [11] a symplectic numerical relative orbit propagator was

developed imposing the conservation laws and incorporating high order geopotentials. The

results demonstrated a 40 % improvement in computational time compared with propagating

separate orbits with a similar level of accuracy.

This paper extends the work by Palmer and Imre in [16] by providing a generalised

mathematical foundation and using the conservation of relative energy, angular momentum

and eccentricity to obtain solutions, expressed only in terms of these conserved quantities and

a time delay. The Keplerian orbits are easily interpreted geometrically through conic sections

and the conserved quantities and this framework provides the variational solutions with a

natural, similar geometry. This geometry is useful in applications of formation flying mission

design which we demonstrate by the construction of a tetrahedron formation. Furthermore,

unlike the other work on the subject of relative motion mentioned above, we present a

complete solution of the variational equations valid for all elliptic, hyperbolic and parabolic

reference trajectories, including the zero angular momentum case.

3



2 The Kepler problem

The two-body problem is given by the Hamiltonian

H(q,p) =
1

2
|p|2 − µ

|q| ,

on the manifold M = T ∗Q ∋ (q,p), where Q = R
3\{0} is the configuration space, endowed

with the symplectic form ω = dq ∧ dp. Kepler’s equations then coincide with Hamilton’s

equations:

q̇ = ∂pH(q,p) = p,

ṗ = −∂qH(q,p) = − µ

q3
q,

where q = |q|, | · | being the Euclidean norm.1 By the rotational invariance, H(Rq,Rp) =

H(q,p) for every rotation matrix R, it follows that

L(q,p) = q ∧ p,

is a conserved quantity. From the conservation of L follows that the motion takes place in a

plane, which is called the orbital plane:

P = {x ∈ R
3|〈x,k〉 = 0}, (1)

where k is a unit vector in the direction of L. If L(q,p) = 0 then q‖p and the motion is

radial and may, depending on the energy, only exist for a finite time.

Due to a more hidden symmetry [3], the eccentricity vector

e(q,p) = − q

|q| +
1

µ
p ∧ L(q,p),

is also conserved.

The seven scalar conserved quantities H(q,p) = h, L(q,p) = l and e(q,p) = ǫ, are

related through two equations:

〈l, ǫ〉 = 0, (2)

ǫ2 − 1 =
2l2

µ2
h, (3)

1We shall use this standard notation henceforth: for every x ∈ R
n we set x = |x|.
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which defines a smooth, five dimensional sub-manifold M in (l, ǫ, h)-space. In other words,

there exists five independent conserved quantities.

It follows from (2) and (3) that the eccentricity vector is in the orbital plane and its

magnitude can be determined from L and H, hence only the direction of the eccentricity

vector is conserved independently. Moreover, by taking the dot product of e with q one finds

that t 7→ q(t) traces out a conic section determined by the norm of the eccentricity: elliptic

ǫ < 1, parabolic ǫ = 1 or hyperbolic if ǫ > 1.

For ǫ < 1 a qualitative description of the relative motion of satellites on Keplerian orbits

can be obtained from Kepler’s third law. This says that the period of the periodic orbit only

depends upon the semi-major axis a, and since the energy constant, h, is directly related to

the semi-major axis:

h = − µ

2a
, (4)

it follows that neighbouring satellites with different energies will evidently drift apart. For

ǫ < 1 variations in the other constants of motion only give rise to bounded relative motion.

In the following section we introduce a general Hamiltonian setting to variational equations.

3 General Hamiltonian setting of variational equations

For any Hamiltonian H on a symplectic manifold (M = T ∗Q,ω), Hamilton’s equations in

local coordinates:

q̇ = ∂pH(q,p),
ṗ = −∂qH(q,p),

can be written more compactly as

u̇ = J∇H(u), (5)

where u = (q,p) and J is the Poisson-matrix

J =

(
0 I

−I 0

)

,
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with I identity in R
n×n. The variational equations may then be written as

˙δu = J∇2H(u)δu, (6)

where ∇2H is the Hessian.

Hamilton’s equations may also be written in a coordinate independent way from the

symplectic form: the Hamiltonian vector field is the unique vector field Xh satisfying

ω(Xh(u),w) = δH(u)(w), ∀w ∈ TuM.

By variations we may define the variational vector field XδH : TM → T (TM) as the unique

vector field satisfying

δω(XδH(u, δu), (w, δw)) = δ(δH(u)(δu))(w, δw), ∀(w, δw) ∈ T(u,δu)(TM). (7)

Here δω is a sympletic form on TM , see e.g. [14], and (7) is the coordinate independent

version of (5) and (6).

Let G be a Lie-group acting smoothly upon M = T ∗Q that leaves H invariant:

H(g · u) = H(u), ∀g ∈ G, ∀u ∈ M. (8)

By Noether’s theorem there exist an associated conserved quantity C = C(u) of dimension

equal to the dimension of G. The G-action lifts naturally to an action on TM , and from (8)

it directly follows that

δH(g · u)(δg · δu) = δH(u)(δu), (9)

and hence any G-invariance of H translates to G-invariance of δH. As a corollary any (G-

equivariant) conserved quantity, C(u), of the original system give rise to a (G-equivariant)

conserved quantity, δC, of the Hamiltonian system (T ∗M, δH, δω). In coordinates:

δC(u)(δu) = 〈∇C(u), δu〉, (10)

For the particular case of

H(q,p) =
1

2
|p|2 − µ

|q| ,
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the variational Hamiltonian is

δH(q,p, δq, δp) = 〈p, δp〉 + µ
q

|q|3 〈q, δq〉, (11)

with δω = dδq ∧ dp + dq ∧ dδp and

XδH =








p

− µ
q3q

δp

− µ
q3

(

I − 3qqT

q2

)

δq








.

Moreover, by (10)

δL(q,p, δq, δp) = δq ∧ p + q ∧ δp, (12)

δe(q,p, δq, δp) = −δq

|q| +
〈q, δq〉q

|q|3 +
1

µ
δp ∧ L(q,p)

+
1

µ
p ∧ δL(q,p, δq, δp), (13)

are also conserved. We call the quantities (11) and (12) and (13) the ‘relative Hamil-

tonian’,‘the relative angular momentum’ and ‘relative eccentricity’, respectively, as in Palmer

and Imre [16]. The variables (δq, δp) are first order approximations to the relative motion

of two neighbouring satellites near their centre of mass orbit at (q,p).

Setting δH(u, δu) = δh, δL(u, δu) = δl and δe(u, δu) = δǫ from (2) and (3) we obtain

the following relations:

〈δl, e〉 + 〈l, δǫ〉 = 0, (14)

2〈ǫ, δǫ〉 =
4〈l, δl〉

µ2
h +

2l2

µ2
δh. (15)

The main tool used in our construction of the variational solutions will rely on the fol-

lowing. Since 2n− 1 (n = the degrees of freedom) independent quantities are conserved, the

Kepler problem falls into the category of maximally super-integrable systems [21], and we

may express its solutions in terms of h, l, ǫ, and time in the form t − t0, i.e.

u := (q,p) = u(h, l, ǫ, t − t0).
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As a consequence of the chain rule and the rule of mixed partials, solutions of the variational

equations can be obtained by taking independent variations with respect to h, l, ǫ and t0,

see also Wiesel and Pohlen [24]. Indeed, let c ∈ R
5 be coordinates on the five dimensional

sub-manifold, M, embedded within (h, l, ǫ)-space and by the identities (2) and (3), and view

u(t − t0) as a vector-valued function on M. Then

δu(t − t0)(c)(δc) =
5∑

i=1

∂ci
u(t − t0)(c)δci, δc ∈ TcM ∼= R

5.

Differentiation with respect to t gives

dt [∂ci
u(t − t0)(c)δci] = ∂ci

u̇(t − t0)δci

= ∂ci
J∇uH(u(t − t0)(c)δci

= J∇2
uH(u(t − t0)(c)) [∂ci

u(t − t0)(c)δci] ,

showing that ∂ci
u(t − t0)(c)δci for i = 1, . . . , 5 solve the variational equations. Fixing c and

instead viewing u(t) as a vector-valued function of t0, which enters in the form t − t0, we

obtain that

δu(t)(t0)(δt0) = u̇δ(−t0) = −u̇δt0, (16)

i.e. the vector field along the reference orbit, is a solution of the variational problem. This is

a well-known fact. In the following section we aim to determine the solution of the variational

equations of Kepler’s problem by exploiting this geometrical setting.

4 Solutions of Kepler’s variational equations

If, for ǫ 6= 0, 1,

δL(u, δu) = δl = δl1i + δl2j + δl3k,

δe(u, δu) = δǫ = δǫ1i + δǫ2j + δǫ3k,
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where i = ǫ
ǫ
, j = l∧ǫ

l∧ǫ
and k = l

l
, see Fig. 1, then we may write (14) and (15) in coordinates

as:

δǫ3 = −ǫ

l
δl1, (17)

ǫ

1 − ǫ2
δǫ1 +

δl3
l

= −δh

2h
. (18)

We shall return to ǫ = 0, 1 later.

k = l
l

i = ǫ
ǫ

j = l∧ǫ
l∧ǫ

q

ν

Figure 1: Orthogonal basis (i, j,k).

For ǫ 6= 1 (17) and (18) show that we may describe every variation using δl, δǫ1 and δǫ2.

Writing

q(t; l, ǫ) = q (i cos ν + j sin ν) ,

where everything on the right hand side is a function of t − t0, l and ǫ, we obtain

δq = δq1i + δq2j + q1

(
δǫ

ǫ
− ǫ

ǫ3
〈ǫ, δǫ〉

)

︸ ︷︷ ︸

δi

+ q2

(
δl ∧ ǫ + l ∧ δǫ

l ∧ ǫ
− l ∧ ǫ

(l ∧ ǫ)3 〈l ∧ ǫ, δl ∧ ǫ + l ∧ δǫ〉
)

︸ ︷︷ ︸

δj

, ǫ 6= 0, 1, (19)

where q1 := q cos ν and q2 := q sin ν with q = l2/(µ(1 + ǫ cos ν)).
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Note that q1 and q2 only depend upon the norm of ǫ and l. Since ǫ = ǫ1 and l = l3 we

obtain:

δq1 = ∂lq1δl3 + ∂ǫq1δǫ1,

δq2 = ∂lq2δl3 + ∂ǫq2δǫ1.

By linearity we can consider the variations independently. Therefore, first let δl3 = 0 and

δǫ1 = 0. Then (19) gives

δq = −q2

ǫ
δǫ1i +

q1

ǫ
δǫ2j −

(

q1δl1 + q2
ǫ

l (l ∧ ǫ)
δl2

)

k, ǫ 6= 0, 1,

or compactly:

δq =
l ∧ q

l ∧ ǫ
δǫ2 +

(l ∧ ǫ) ∧ q

l (l ∧ ǫ)
δl1 +

ǫ ∧ q

l ∧ ǫ
δl2, ǫ 6= 0, 1. (20)

Consider δl1 = 0 = δl2 and δǫ2 = 0, so that δi = 0 = δj. Then (19) becomes:

δq = δq1i + δq2j

= (∂lq1i + ∂lq2j) δl3 + (∂ǫq1i + ∂ǫq2j) δǫ1.

The partial derivatives of q1 and q2 are:

∂lq1 =
2l/µ

1 + ǫ cos ν
cos ν

︸ ︷︷ ︸

2q1/l

+
l2

µ

− sin ν

(1 + ǫ cos ν)2

︸ ︷︷ ︸

=∂νq1

∂lν, (21)

∂lq2 =
2l/µ

1 + ǫ cos ν
sin ν

︸ ︷︷ ︸

2q2/l

+
l2

µ

ǫ + cos ν

(1 + ǫ cos ν)2

︸ ︷︷ ︸

=∂νq2

∂lν, (22)

∂ǫq1 = − l2/µ

(1 + ǫ cos ν)2
cos2 ν +

l2

µ

− sin ν

(1 + ǫ cos ν)2
∂ǫν, (23)

∂ǫq2 = − l2/µ

(1 + ǫ cos ν)2
cos ν sin ν +

l2

µ

ǫ + cos ν

(1 + ǫ cos ν)2
∂ǫν. (24)

To obtain the partial derivatives of ν we separate variables of the differential equation of

ν = ν(t):

ν̇ =
µ2

l3
(1 + ǫ cos ν)2 ,
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which follows from conservation of angular momentum: q2ν̇ = l, to obtain

2

(1 − ǫ2)3/2
arctan

(
(1 − ǫ)(1 − cos ν)√

1 − ǫ2 sin ν

)

=
µ2

l3
(t − t0) +

ǫ

(1 − ǫ2)(1 + ǫ cos ν)
sin ν. (25)

This equality extends to ǫ > 1 upon replacing arctan with arctanh. Differentiation of (25)

with respect to l gives:

∂lν = −3

l

µ2

l3
(1 + ǫ cos ν)2

︸ ︷︷ ︸

=dtν

(t − t0), (26)

which, by continuity of ν as a function of ǫ and l, extends to ǫ = 1, l 6= 0. Next, for ǫ 6= 1

differentiation with respect to ǫ gives, after some manipulations:

∂ǫν = − 3ǫ

1 − ǫ2

µ2

l3
(1 + ǫ cos ν)2 (t − t0) +

sin ν(2 + ǫ cos ν)

1 − ǫ2
, ǫ 6= 1. (27)

Notice the singularities for ǫ = 1 and l = 0. We will return to these cases in section 4.2.

Using (21) and (22) we arrive at:

(∂lq1i + ∂lq2j) δl3 = 2

(

q − 3

2
p(t − t0)

)
δl3
l

, (28)

(∂ǫq1i + ∂ǫq2j) δǫ1 = − 3ǫ

1 − ǫ2
p(t − t0)δǫ1

+
l2/µ

(1 + ǫ cos ν)2

(
ǫ2 cos2 ν − 1 − sin2 ν(1 + ǫ cos ν)

)
i

δǫ1

1 − ǫ2

+
l2/µ

(1 + ǫ cos ν)2
sin ν

(
(ǫ + cos ν)(2 + ǫ cos ν) − cos ν(1 − ǫ2)

)
j

δǫ1

1 − ǫ2
.

(29)

By (18):

−3p(t − t0)
δl3
l

− 3ǫ

1 − ǫ2
p(t − t0)δǫ1 =

3

2
p(t − t0)

−δh

h
,

2q
δl1
l

= q
−δh

h
− 2q

ǫδǫ1

1 − ǫ2
,
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so that, in terms of δh and δǫ1, we finally obtain:

(∂lq1i + ∂lq2j) δl3 + (∂ǫq1i + ∂ǫq2j) δǫ1

=

(

q − 3

2
p(t − t0)

) −δh

h
− 2

ǫ

1 − ǫ2
qδǫ1

+
l2/µ

(1 + ǫ cos ν)2

(
ǫ2 cos2 ν − 1 − sin2 ν(1 + ǫ cos ν)

)
i

δǫ1

1 − ǫ2

+
l2/µ

(1 + ǫ cos ν)2
sin ν

(
(ǫ + cos ν)(2 + ǫ cos ν) − cos ν(1 − ǫ2)

)
j

δǫ1

1 − ǫ2

=

(

q − 3

2
p(t − t0)

) −δh

h

− l2

µ

(

1 +
sin2 ν

1 + ǫ cos ν

)

i
δǫ1

1 − ǫ2

+
l2/µ

1 + ǫ cos ν
sin ν cos νj

δǫ1

1 − ǫ2
,

or compactly:

(∂lq1i + ∂lq2j) δl3 + (∂ǫq1i + ∂ǫq2j) δǫ1

=

(

q − 3

2
p(t − t0)

) −δh

h
−
(

l2

µ
i + sin ν q ∧ k

)
1

1 − ǫ2
δǫ1.

For ǫ 6= 0, 1 we have therefore constructed the variational solution:

δq (t; δt0, δǫ, δl, δh) = −p δt0 + k ∧ q
δǫ2

ǫ
+ j ∧ q

δl1
l

+ i ∧ q
δl2
l

+

(

q − 3

2
p (t − t0)

) −δh

h
−
(

l2

µ
i + sin ν q ∧ k

)
1

1 − ǫ2
δǫ1. (30)

4.1 Circular reference orbits: ǫ = 0

When ǫ = 0 then i and j are not well-defined as the circular motion is completely isotropic,

and hence variations δi and δj are singular in ǫ. As a consequence, one may note that for

ǫ = 0, l ∧ q = l4

µ2p and the solution obtained by differentiating the vector field along the

reference orbit, (16), is therefore proportional to the solution corresponding to variations

in ǫ2 which appears as the second term on the right hand side of (30). However, k is still

well-defined and defines the orbital plane in which we may choose any orthonormal basis

{ι,λ} ⊂ P (1). To account for variations in ǫ at 0 we may take two independent variations
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e.g. along the direction of ι and λ. In detail, we consider two eccentric orbits with eccentricity

vector pointing in the direction of ι and λ:

q =
l2/µ

1 + ǫ cos ν
(cos νι + sin νλ) ,

respectively

q =
l2/µ

1 + ǫ sin ν
(cos νι + sin νλ) ,

see also Fig. 2, and take linear variations with respect to ǫ at ǫ = 0 to obtain:

δq = l2/µ
(
−
(
1 + sin2 ν

)
δǫ1 + cos ν sin ν δǫ2

)
ι

+ l2/µ
(
cos ν sin ν δǫ1 −

(
1 + cos2 ν

)
δǫ2

)
λ.

ι

λ

Figure 2: Two elliptic sections, whose eccentricity vectors are mutually orthogonal in the
orbital plane, near a circular orbit.

The terms in the complete solution (30) describing the variation of δt0, δl1, δl2 and δh
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are still valid for ǫ = 0 when replacing i and j with ι and λ respectively. Therefore for ǫ = 0:

δq (t; δt0, δǫ, δl, δh) = −p δt0 +
λ ∧ q

l
δl1 +

ι ∧ q

l
δl2 +

(

q − 3

2
p (t − t0)

) −δh

h
(31)

+ l2/µ
(
−
(
1 + sin2 ν

)
δǫ1 + cos ν sin ν δǫ2

)
ι (32)

+ l2/µ
(
cos ν sin ν δǫ1 −

(
1 + cos2 ν

)
δǫ2

)
λ. (33)

By moving into a rotating frame it is straightforward to show that the solutions coincide

with the solutions of the Hill-Clohessy-Wiltshire equations.

4.2 Parabolic reference orbits: ǫ = 1

When ǫ = 1 then by (3) either l = 0 or h = 0. If l = 0 then the motion is purely radial,

ν̇ = 0. Let us initially assume that l 6= 0 and therefore h = 0. The solution in (30) does

not extend trivially to ǫ = 1 due to the singularity in ∂ǫν (27). However, the singularity is

removable by continuity of ν as a function of l and ǫ. By successive application of L’Hôpital’s

rule to (25), we arrive at:

∂ǫν|ǫ=1 = −2

5

sin ν(1 + 3 cos ν + cos2 ν)

1 + cos ν
. (34)

Inserting this into (23) and (24) we then obtain the variations in q due to variations in ǫ1:

(∂ǫq1i + ∂ǫq2j) |ǫ=1δǫ1 =
l2/µ

5(1 + ǫ cos ν)2

(
2 + 4 cos ν − 9 cos2 ν − 2 cos3 ν

)
iδǫ1

− l2/µ

5(1 + ǫ cos ν)2
sin ν

(
2 + 2 cos ν + 2 cos2 ν

)
jδǫ1.

On the other hand, ∂lν (26) extends trivially:

∂lν|ǫ=1 = −3

l

µ2

l3
(1 + cos ν)2(t − t0),

and so does the variations with respect l3 (28):

(∂lq1i + ∂lq2j) |ǫ=1δl3 = 2

(

q − 3

2
p(t − t0)

)
δl3
l

.
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For ǫ = 1, h = 0, l 6= 0 we have therefore constructed the following:

δq (t; δt0, δǫ, δl, δh) = −p δt0 + k ∧ qδǫ2 + j ∧ q
δl1
l

+ i ∧ q
δl2
l

+ 2

(

q − 3

2
p(t − t0)

)
δl3
l

+
2l4/µ3

5(1 + cos ν)2

(
2 + 4 cos ν − 9 cos2 ν − 2 cos3 ν

)
iδh

− 2l4/µ3

5(1 + cos ν)2
sin ν

(
11 cos ν + 2(1 + cos2 ν)

)
jδh, (35)

where we have used δǫ1 = 2l2

µ2 δh for ǫ = 1 and h = 0.

Next, we let l = 0 and h 6= 0. Then q is purely radial, having only a component in the

direction of the eccentricity vector, say q = q1ǫ = q1i, q1 > 0, and may, due to the possibility

of collision with the central body only exist for finite time. Letting (j,k) be an orthonormal

basis for the plane perpendicular to the i = ǫ direction it again can be seen that j ∧ q and

k ∧ q are independent solutions corresponding to variations in δǫ2 and δǫ3 respectively. By

insertion one may also verify that (q − 3
2
p(t − t0))

−δh
h

is a solution. Therefore, for l = 0 and

h 6= 0 we have so far four linearly independent solutions of the variational problem:

δq = −pδt0 − k ∧ qδǫ2 + j ∧ qδǫ3 + (q − 3

2
p(t − t0))

−δh

h
. (36)

To obtain the full solution of the linear problem:

δ̇q = δp,

˙δp =
µ

q3
1

diag(2,−1,−1)δq,
(37)

only two additional, linearly independent solutions are required. For these let us assume

δq = (0, δq2, 0), δp = (0, δp2, 0). Then δL explicitly reads:

δL = (0, 0, q1δp2 − p1δq2).

From the conservation of δL = (0, 0, δl3) we obtain, using δp2 = δ̇q2, a first order, ordinary

differential equation for δq2:

˙δq2 =
p1

q1

δq2 +
δl3
q1

= dt(logq1)δq2 +
δl3
q1

.
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Particular and homogeneous solutions are given by δl3q1

∫
q−2
1 dt and q1 respectively. The

homogeneous solution, δq = (0, q1, 0), already enters (36) in the form k∧q and the particular

solution will therefore suffice. By assuming δq = (0, 0, δq3) we similarly obtain the solution

δq3 = δl2q1

∫
q−2
1 dt. We have:

δq = −pδt0 − k ∧ qδǫ2 + j ∧ qδǫ3 + (q − 3

2
p(t − t0))

−δh

h

+ δl3(0, q1

∫

q−2
1 dt, 0) + δl2(0, 0, q1

∫

q−2
1 dt). (38)

For h = 0 we may explicitly solve the reduced equations for q = (q1, 0, 0), p = (q̇1, 0, 0):

q̇2
1 − 2µ

q1

= 0,

by separation of variable to obtain:

q1(t) =

(

q1(t0) ± 3

2

√

2µ(t − t0)

)2/3

. (39)

This only exists for t − t0 ∈ (− 2
3
√

2µ
q1(t0),∞) and t − t0 ∈ (−∞, 2

3
√

2µ
q1(t0)). For radially

expanding and contracting orbits we take + and − in (39) respectively. From this we realise

that the two variational solutions:

(q − 3

2
p(t − t0)) =

2q1(t0)

(±12
√

2µ(t − t0) + 8q1(t0))1/3
i, (40)

and

p =
2
√

2µ

(±12
√

2µ(t − t0) + 8q1(t0))1/3
i,

are proportional to each other. To obtain a sixth linearly independent solution we solve (11)

for the conservation of δh:

δh = p1δp1 +
µ

q2
1

δq1,

δ̇q1 = − µ

p1q2
1

δq1 +
δh

p1

=
ṗ1

p1

δq1 +
δh

p1

= dt(log(p1))δq1 +
δh

p1

.
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The homogeneous solution space is spanned by δq1 = p1 and by separation we obtain an

inhomogeneous solution:

δq1 = p1

∫

p−2
1 dtδh =

1

80µ

(

12
√

2µ(t − t0) + 8q1(t0)
)4/3

δh.

4.3 Summary of results

We are ready to collect the conclusions:

Main result The complete solution of the variational equations of Kepler’s problem for

ǫ 6= 0, 1 with

q =
l2/µ

1 + ǫ cos ν
cos νi +

l2/µ

1 + ǫ cos ν
sin νj, (41)

p = −µ

l
sin νi +

µ

l
(ǫ + cos ν)j, (42)

is

δq (t; δt0, δǫ, δl, δh) = −p δt0 + k ∧ q
δǫ2

ǫ
+ j ∧ q

δl1
l

+ i ∧ q
δl2
l

+

(

q − 3

2
p (t − t0)

) −δh

h
−
(

l2

µ
i + sin ν q ∧ k

)
1

1 − ǫ2
δǫ1, (43)

which lifts to

δp (t; δt0, δǫ, δl, δh) =
µ

q3
q δt0 + k ∧ p

δǫ2

ǫ
+ j ∧ p

δl1
l

+ i ∧ p
δl2
l

−1

2

(

p − 3
µ

q3
q (t − t0)

) −δh

h
−
(
sin ν p ∧ k + µ2/l3(1 + ǫ cos ν)2 cos ν q ∧ k

) 1

1 − ǫ2
δǫ1,

(44)

where the subscripts 1, 2 and 3 refer to the coordinates of i = ǫ
e
, j = ǫ∧l

ǫ∧l
and k = l

l

respectively.
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For a circular reference orbit (ǫ = 0):

δq = −p δt0 +
λ ∧ q

l
δl1 +

ι ∧ q

l
δl2 +

(

q − 3

2
p (t − t0)

) −δh

h

+ l2/µ
(
−
(
1 + sin2 ν

)
δǫ1 + cos ν sin ν δǫ2

)
ι

+ l2/µ
(
cos ν sin ν δǫ1 −

(
1 + cos2 ν

)
δǫ2

)
λ, (45)

δp =
µ

q3
q δt0 +

λ ∧ p

l
δl1 +

ι ∧ p

l
δl2 − 1

2

(

p − 3
µ

q3
q (t − t0)

) −δh

h

+ µ2/l(1 + ǫ cos ν)2
(
−2 cos ν sin νδǫ1 + (cos2 ν − sin2 ν) δǫ2

)
ι

+ µ2/l(1 + ǫ cos ν)2
(
(cos2 ν − sin2 ν) δǫ1 + 2 cos ν sin νδǫ2

)
λ, (46)

where (ι,λ) ⊂ P is any orthonormal basis in the orbital plane and subscripts 1 and 2 now

refer to coordinates with respect to ι and λ respectively.

For a parabolic reference orbit where ǫ = 1, l 6= 0 and h = 0:

δq = −p δt0 + k ∧ qδǫ2 + j ∧ q
δl1
l

+ i ∧ q
δl2
l

+ 2

(

q − 3

2
p(t − t0)

)
δl3
l

+
2l4/µ3

5(1 + cos ν)2

(
2 + 4 cos ν − 9 cos2 ν − 2 cos3 ν

)
iδh

− 2l4/µ3

5(1 + cos ν)2
sin ν

(
11 cos ν + 2(1 + cos2 ν)

)
jδh, (47)

δp =
µ

q3
q δt0 + k ∧ p

δǫ2

ǫ
+ j ∧ p

δl1
l

+ i ∧ p
δl2
l

− 1

2

(

p − 3
µ

q3
q (t − t0)

)
δl3
l

+

+
2l

5µ(1 + cos ν)
sin ν cos ν

(
1 + 3 cos ν + cos2 ν

)
iδh

+
l

5µ

(
7 − 2 cos ν

(
8 + 2 cos ν + cos2 ν

))
jδh. (48)
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For a purely radial reference orbit where ǫ = 1, l = 0 and h 6= 0:

δq = −pδt0 − k ∧ qδǫ2 + j ∧ qδǫ3 + (q − 3

2
p(t − t0))

−δh

h

+ δl3(0, q1

∫

q−2
1 dt, 0) + δl2(0, 0, q1

∫

q−2
1 dt), (49)

δp =
µ

q3
qδt0 − k ∧ pδǫ2 + j ∧ pδǫ3 − 1

2
(p − 3

µ

q3
q(t − t0))

−δh

h

+ δl3(0, p1

∫

q−2
1 dt +

1

q1

, 0) + δl2(0, 0, p1

∫

q−2
1 dt +

1

q1

). (50)

When ǫ = 1, l = 0 and h = 0 then (q−3
2
p(t−t0))

−δh
h

in (49) is replaced with δh(p1

∫
p−2

1 dt, 0, 0),
∫

p−2
1 dt = 1

80µ

(
±12

√
2µ(t − t0) + 8q1(t0)

)4/3
where + and − refer to radially expanding and

contracting reference solutions respectively.

For ǫ 6= 1 the solution is in agreement with the solutions obtained by Palmer and Imre in

[16] (see equations (41)-(44) and note that A and B are related to the conserved quantities

through: A = −µ2δt0/l
3 and B = δǫ2/ǫ).

As expected, and discussed in section 2, only the variation in h gives rise to unbounded

relative motion for ǫ < 1. Obviously, the unboundedness is not physical and is only a result

of our linearisation. An illustration of the effects of the variations in the six quantities t0, l1,

l2, ǫ2, ǫ1 and h in terms of conic sections is seen in Fig. 3 for ǫ < 1. For ǫ ≥ 1 the reference

trajectory (q,p) is no longer periodic, in fact q(t) → ∞ as t → ∞ for ǫ > 1 and ǫ = 1

with h ≥ 0. Therefore, the variational solutions around hyperbolic and parabolic orbits

may grow unbounded even if δh = 0. Moreover, the implication of infinitesimal difference in

energies for the case of a parabolic and hyperbolic reference is no longer straightforward. For

parabolic and hyperbolic orbits the velocities converge to 0 or a constant ±v∞ respectively

as t → ±∞, cf. e.g. (42). Hence q − 3
2
p(t − t0), the variational solution corresponding to

variations in h, can either approach ±∞ or 0 when t → ±∞.

For sufficiently large t we may neglect the azimuthal variation since ν̇ → 0 for ν → ν∗,

where ν∗ is such that 1 + ǫ cos ν∗ = 0, and the drift to infinity is asymptotically radial.
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Similarly for t → −∞. For h = 0 it then directly follows from (40) that

q − 3

2
p(t − t0) := |q − 3

2
p(t − t0)| → 0, for t → ∞, h = 0,

for t → ±∞. For h > 0, limt→∞ q̇ = v∞ =
√

2h < ∞ and hence q −
√

2ht → const. for

t → ∞, so that

|
(

q − 3

2
p(t − t0)

) −δh

h
| − |δh|√

2h
t → ±const. for t → ∞, h > 0, δh 6= 0.

It follows that only for parabolic reference orbits will neighbouring satellites, whose orbits

are only separated by an infinitesimal difference in energy, catch up at infinity.

In the following section we shall demonstrate the usefulness of having solutions that are

easily interpreted geometrically in the design of formation flying trajectories.

5 Design of formation flying trajectories

We construct orbits for four satellites so they in position space form a regular tetrahedral

formation. Any inter-satellite formation will obviously, at least in general, be distorted over

the period of the orbit. The aim is therefore to obtain the tetrahedral formation at a certain

stage of the orbit and, in the theme of the paper, it will be constructed by determining the

required values of the conserved quantities. An application might be a mission orbiting the

Sun to visit the Kuiper belt.

The Cluster mission II is currently flying and operating successfully in its ninth year

exploiting the benefits of a tetrahedral formation. Furthermore, several future missions

are planning to use such formations. This interest is due to the fact that the tetrahedral

formations allow for resolving three dimensional gradients, for example in the context of

space weather and environment. This mission scenario therefore provides a realistic example

where the use of our solutions can be demonstrated.

We shall choose our formation so that the four satellites are all at aphelion when at the

Kuiper belt and, perhaps most importantly, all reach their aphelion at the same time. The
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(a) Variation in t0: satellites on same conic
section but with a delay

(b) Variations in l1: rotation of orbital
plane about l ∧ ǫ

(c) Variations in l2: rotation of orbital
plane about ǫ

(d) Variations in ǫ1: changing magnitude of
ǫ

(e) Variations in ǫ2: rotation of conic sec-
tion about l

(f) Variations in h: changing semi-major
axis

Figure 3: An illustration of the effects of the six independent variations in terms of conic
sections for ǫ < 1. The first five result in bounded relative motion whereas variation in energy
results in unbounded solutions of variational equations in accordance to Kepler’s third law.
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former will maximise the duration of the formation, whereas the latter is enforced by δt0 = 0

and fixing the energy h or, equivalently, the semi-major axis a cf. (4). Note, however, that

δt0 6= 0, δh 6= 0 would allow for different injection times which in certain applications might

be useful.

Changing l2, within the first order approximation, does not change anything at aphelion

and perihelion, see e.g. Fig. 3, and therefore we may, at least initially, set δl2 = 0. We

are left with three variations δǫ1, δǫ2 and δl1, which respectively have the effect of changing

the magnitude of the eccentricity, changing the orientation of the conic section within the

orbital plane, and rotating the orbital plane about j, the direction of semilatus rectum. For

δt0 = 0, δh = 0 and δl2 = 0 (43) reads

δq = k ∧ q
δǫ2

ǫ
+ j ∧ q

δl1
l

−
(

l2

µ
i + sin ν q ∧ k

)
1

1 − ǫ2
δǫ1.

In particular at aphelion:

δq|ν=π = −aδǫ1i − a(1 + ǫ)
δǫ2

ǫ
j + a(1 + ǫ)

δl1
l

k, (51)

where we have made use of l2/µ = a(1 − ǫ2).

The configuration of the regular tetrahedron at aphelion is given by a centre point and a

rotation matrix Rα,β,γ mapping the inertial frame to a body fixed frame: Rα,β,γ : (i, j,k) 7→

(i′, j′,k′). We let the reference orbit pass through the centre point and let Rα,β,γ depend on

three Euler angles α, β and γ. As illustrated in Fig. 4, α is the angle between i and the line

of nodes n, β is the angle between k and k′ and finally γ is the angle between the line of

nodes and i′. With these definitions Rα,β,γ reads:

Rα,β,γ =





cαcγ − sαcβsγ −cαsγ − sαcβcγ sβsα

sαcγ + cαcβsγ −sαsγ + cαcβcγ −sβcα

sβsγ sβcγ cβ



 ,

where we have used the usual compact notation: sv = sin v and cv = cos v for every v.

In Fig. 5 the tetrahedron is shown in the body frame (i′, j′,k′). We let k′ be directed

through one of the vertices, which we call 1. The axes i′ and j′ are defined so that 2’s
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Figure 4: Euler angles.

projection onto the plane

{x ∈ R
3|〈x,k′〉 = 0},

equals ci′ for c = cos(π/2 − θ∗), where θ∗ = arccos(−1/3) ≈ 109.5◦ is the angle between

the segments joining the centre with the vertices. Here 3 is the vertex located a positive

2π/3, i.e. 120◦, rotation about k′ from 2. The four satellites are coloured respectively black,

green, red and cyan in Fig. 5. Straightforward geometry shows that the distance from the

tetrahedron centre to the vertices is R =
√

3/8ℓ, where ℓ is the side-length.

We let the satellites, 1,2,3 and 4, be positioned at δq(i), i = 1, 2, 3 and 4 from the centre
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Figure 5: The tetrahedron in the body frame. The four satellites, 1, 2, 3 and 4, are coloured
respectively black, green, red and cyan.

point. Then in the body frame we have:

δq(1) = Rk′,

δq(2) = R (sin θ∗i′ + cos θ∗k′) ,

δq(3) = R

(

−1

2
sin θ∗i′ +

√
3

2
sin θ∗j′ + cos θ∗k′

)

,

δq(4) = R

(

−1

2
sin θ∗i′ −

√
3

2
sin θ∗j′ + cos θ∗k′

)

,

which may be related to the inertial frame through Rα,β,γ .

Using (51) we obtain the following equations for the formation to have the configuration

specified by Rα,β,γ at aphelion:

〈δq(i), i〉 = −aδǫ
(i)
1 ,

〈δq(i), j〉 = −a(1 + ǫ)
δǫ

(i)
2

ǫ
,

〈δq(i),k〉 = a(1 + ǫ)
δl

(i)
1

l
,
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for i = 1, 2, 3 and 4, where δl
(i)
1 , δǫ

(i)
1 , δǫ

(i)
2 are the variations in the three constants of motion

for satellite i. Solving the linear equations gives

δǫ
(i)
1 = −1

a
〈δq(i), i〉,

δǫ
(i)
2 = − ǫ

a(1 + ǫ)
〈δq(i), j〉,

δl
(i)
1 =

l

a(1 + ǫ)
〈δq(i),k〉.

In Fig. 6, the evolution of a formation is visualised. Here we have for simplicity chosen

Rα,β,γ = I, and:

δǫ
(1)
1 = 0, δǫ

(1)
2 = 0, δl

(1)
1 =

Rl

a(1 + ǫ)
,

δǫ
(2)
1 = −R sin θ∗

a
, δǫ

(2)
2 = 0, δl

(2)
1 =

Rl cos θ∗

a(1 + ǫ)
,

δǫ
(3)
1 =

R sin θ∗

2a
, δǫ

(3)
2 = −

√
3ǫR sin θ∗

2a(1 + ǫ)
, δl

(3)
1 =

Rl cos θ∗

a(1 + ǫ)
,

δǫ
(4)
1 =

R sin θ∗

2a
, δǫ

(4)
2 =

√
3ǫR sin θ∗

2a(1 + ǫ)
, δl

(4)
1 =

Rl cos θ∗

a(1 + ǫ)
.

The units on the axes in Fig. 6 are such that 1 equals the semi-major axis. We have set ǫ = 1
2

and the side length of the tetrahedron to ℓ = 1
2

which corresponds to half the semi-major

axis and is obviously physically unreasonable, but it is convenient in terms of visualisation.

As expected, the formation is distorted as the satellites move away from aphelion. At

perihelion the formation has, when compared to aphelion, been slightly distorted and re-

flected about the orbital plane. At semilatus rectum, the satellites are all in the same orbital

plane, which is also in agreement with Fig. 3. By varying l2 one may move the satellites out

of this common plane, see e.g. Fig. 3. This variation will not change the configuration at

aphelion and perihelion.
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(a) Satellite formation at aphelion.
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(b) Satellite formation at semilatus rectum.
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(c) Satellite formation at perihelion.

Figure 6: A visualisation of a formation near an elliptic orbit. The formation is designed to
be a regular tetrahedron at aphelion. The formation is distorted as it moves around the Sun
and they will all be in the same orbital plane at semilatus rectum.

6 Discussion on perturbations

The approach developed rely on the super-integrability of the Kepler problem. Any per-

turbation will in general destroy the symmetries and the integrability, let alone the super-
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integrability. Particularly, the formation dynamics predicted by the solution above will even-

tually differ significantly from the true formation. However, the net effect of perturbations

depends on the size of the perturbation and also on time scales. Therefore, the solutions

may in fact be a good approximation to the true formation dynamics near certain reference

trajectories over a large period of time. For example, the effect of the oblateness of the Earth

decreases as q increases as q−4 and is therefore primarily significant for near Earth orbiting

formations. Moreover, for highly eccentric orbits, parabolic or hyperbolic orbits this effect is

only important through the short duration flight through perigee such that a significant effect

may not even be expected on a time scale of many orbital periods. In this latter scenario

the third body effects might obviously contribute with more important perturbations.

Several references account for the oblateness of the Earth, see [5, 9, 11, 17, 18, 25].

For example in [11] this perturbation was included in a numerical formation propagator by

separating the solution into the analytical Keplerian part (11) and a sympletic numerical

part.

7 Conclusion

We obtained analytical solutions of the variational equation of the Kepler problem about any

reference orbit in a compact form by relying on the super-integrability of the Kepler problem.

The solutions were written in terms of the relevant conserved quantities: relative energy,

relative angular momentum and relative eccentricity vector and the geometrical setting,

in which the solutions were derived, allowed for a straightforward design of tetrahedral

formations on highly eccentric orbits.
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