

AM1* parameters for manganese and iron Hakan Kayi, Timothy Clark

▶ To cite this version:

Hakan Kayi, Timothy Clark. AM1* parameters for manganese and iron. Journal of Molecular Modeling, 2009, 16 (6), pp.1109-1126. $10.1007/s00894\text{-}009\text{-}0614\text{-}\mathrm{y}$. hal-00568333

HAL Id: hal-00568333 https://hal.science/hal-00568333

Submitted on 23 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Editorial Manager(tm) for Journal of Molecular Modeling Manuscript Draft

Manuscript Number: JMM01039R1

Title: AM1* parameters for manganese and iron

Article Type: Original paper

Keywords: AM1*; Iron parameters; Manganese parameters; Semiempirical MO-theory

Corresponding Author: Prof. Tim Clark,

Corresponding Author's Institution: Universitaet Erlangen-Nurnberg

First Author: Hakan Kayi

Order of Authors: Hakan Kayi; Tim Clark

Abstract: We report the parameterization of AM1* for the elements manganese and iron. The basis sets for both metals contain one set each of s-, p- and d orbitals. AM1* parameters are now available for H, C, N, O and F (which use the original AM1 parameters), Al, Si, P, S, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Zr, Mo, I and Au. The performance and typical errors of AM1* are discussed for Mn and Fe and compared with available NDDO Hamiltonians.

Response to Reviewers: All the suggestions of the reviewer have been incorporated

1

AM1* parameters for manganese and iron

Received: 28.09.2009 / Accepted: 22.10.2009

Hakan Kayi and Timothy Clark[⊠]

Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany

[™]E-mail: Tim.Clark@chemie.uni-erlangen.de

Abstract

We report the parameterization of AM1* for the elements manganese and iron. The basis sets for both metals contain one set each of *s*-, *p*- and *d*-orbitals. AM1* parameters are now available for H, C, N, O and F (which use the original AM1 parameters), Al, Si, P, S, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Zr, Mo, I and Au. The performance and typical errors of AM1* are discussed for Mn and Fe and compared with available NDDO Hamiltonians.

Keywords AM1* · Iron parameters · Manganese parameters · Semiempirical MO-theory

Introduction

We have introduced AM1* [1-7] as an extension of AM1 [8] that uses *d*-orbitals for the elements P, S, Cl, [1] Al, Si, Ti and Zr, [2] Cu and Zn, [3] Br and I, [4] V and Cr, [5] Co and Ni, [6] and Au [7]. The AM1* parameters that are available for molybdenum are a slight modification of Voityuk and Rösch's AM1(d) parameter set [9] to include the AM1* corecore parameters for interactions between Mo and new AM1* elements. The rationalization behind AM1* is to retain the advantages of AM1 (good energies for hydrogen bonds, higher rotation barriers for π -systems than MNDO [10, 11] or PM3 [12-14]) for the first-row elements and improve the performance over AM1 for compounds that contain second-row and heavier elements and to provide a published parameterization for an AM1-like method for the transition metals. As a continuation of this work, we now report AM1* parameters for manganese and iron. Both manganese and iron are important in the chemistry of organometallic and biological catalysts and they play a very important role in biochemical systems especially in the active sites of the enzymes [15, 16].

Theory

AM1* for the two new elements uses the same basic theory as outlined previously. [1, 2] As for other element-H interactions, the core-core repulsion potential for the Mn-H and Fe-H interactions use a distance-dependent term δ_{ij} , rather than the constant term used for core-core potentials for most other interactions in AM1*. [1] This distance-dependent δ_{ij} was also used for the Mo-H and interaction in AM1(d) [9] and for Ti-H, V-H, Cr-H, Co-H, Ni-H, Cu-H, Zn-H, Br-H, Zr-H, Mo-H, I-H and Au-H in AM1* [2-7]. The core-core terms for Mn-H and Fe-H are thus:

$$E^{core}(i-j) = Z_i Z_j \rho_{ss}^0 \left[1 + r_{ij} \delta_{ij} \exp\left(-\alpha_{ij} r_{ij}\right) \right]$$
(1)

where all terms have the same meaning as given in reference [1].

The standard MNDO/d formula is used for all other core-core interactions:

$$E^{core}(i-j) = Z_i Z_j \rho_{ss}^0 \left[1 + \delta_{ij} \exp\left(-\alpha_{ij} r_{ij}\right) \right]$$
(2)

The parameterization techniques were those reported in references [1] and [2] and will not be described further here.

Parameterization Data

The target values used for parameterization and their sources are defined in Tables S1, S2 and S3 of the Supplementary Material. We have used heats of formation, Koopmans' theorem ionization potentials, dipole moments and geometrical variables as we did for the Ti, Zr, Cu, Zn, Br, I, V, Cr, Co, Ni and Au parameterizations. [2-7] Because the experimental data for heats of formation of compounds of these two metals are relatively sparse, we have also extended our parameterization data using a small series of model compounds whose heats of formation we have derived from DFT calculations. [17] As before, [1-7] we checked that experimental values for heats of formation were reasonable using DFT calculations.

DFT calculations used the Gaussian 03 suite of programs [18] with the LANL2DZ basis set and standard effective core potentials [19-22] augmented by a set of polarization functions [23] (designated LANL2DZ+pol) and the B3LYP hybrid functional. [24-26]

Experimental parameterization data for manganese and iron were taken largely from the NIST Webbook, [27] but also from the OpenMopac collection [28] and the other experimental and theoretical sources given in the Supplementary Material.

The energetic parameterization data and their sources are given in Table S1 of the Supplementary Material. In addition to the energetic data, geometries, dipole moments and ionization potentials taken from the above sources, crystal structures from the Cambridge Structural Database (CSD) [29] were also used in the parameterization to ensure that not only the energetic and electronic properties for the "prototype" compounds, but also the structures of large manganese and iron compounds are well produced.

Results

Table 1 shows the optimized AM1* parameters. Geometries were optimized with the new AM1* parameterization using VAMP 10.0, [30] while the PM5 calculations used LinMOPAC2.0. [31] Since PM5 was not parameterized for manganese, it was only used for iron compounds. The calculations with PM6 used MOPAC2009. [32] We give related errors for each property, *i.e.*, heats of formation, ionization potentials, dipole moments, geometries as the mean unsigned error (MUE) and mean signed error (MSE). MUE is used to measure the scatter of the calculated results relative to the experimental values, whereas MSE indicates the direction of any systematic deviation of the predictions from experiment.

- Table 1 about here -

Manganese

Heats of formation

The calculated heats of formation for our training set of manganese compounds are shown in Table 2. We have compared our results with Stewart's published PM6 method. [33]

- Table 2 about here -

AM1* reproduces the heats of formation for the training set of manganese compounds used in parameterization better than PM6. However, we note that this comparison is not strictly valid as it is based on the current parameterization data. As can be seen from Table 2, the AM1* parameterization data set contains 78 compounds, of which 44 are taken from original PM6 parameterization data set. These data convincingly demonstrate the influence of the extent of the training data. AM1* performs significantly better for its extended training set, whereas PM6 performs better for the subset for which it was trained. This situation is unavoidable and is a direct consequence of the relative paucity of data for parameterizing semiempirical MO techniques for transition metals.

Both AM1* and PM6 tend to give positive systematic errors for manganese-containing compounds. For AM1* with a mean signed error (MSE) of 2.3 kcal mol⁻¹, this tendency is less pronounced than for PM6 (MSE of 9.8 kcal mol⁻¹).

The mean unsigned error (MUE) for the AM1* parameterization dataset is $32.3 \text{ kcal mol}^{-1}$, compared with 51.0 kcal mol⁻¹ for PM6. PM6 produces especially large errors for the compounds that were not included in its original training set.

The largest errors for AM1* are mainly found for Mn³⁺, Mn²⁺ and Mn⁺ (-167.3, 161.1 and 95.8 kcal mol^{-1} , respectively). Since the ionization potentials (and hence the heats of formation of the cations) of manganese are important determinants of the reactivity of manganese centers, these errors are important. However, we could not detect serious systematic trends caused by these errors. Molecules that give the largest positive errors for AM1* are MnF_3^{-1} (113.7 kcal mol⁻¹), $MnCl_2O$ (89.5 kcal mol⁻¹), MnF_2^{-1} (79.5 kcal mol⁻¹), $MnCl_2$ (76.5 kcal mol⁻¹), MnF2 (75.8 kcal mol⁻¹), MnC7H5SO4 ($Mn(Cp)(CO)_2(SO_2)$), CPCSMN,) (68.2 kcal mol⁻¹), MnO_2^{-} (59.1 kcal mol⁻¹), MnH (58.1 kcal mol⁻¹) and MnH^{-1} (55.5 kcal mol⁻¹). The largest negative errors are found for $MnC_7N_2H_{12}S_4^{-1}$ $(Mn(C_3N_2H_4)(C_2H_4S_2)_2^-, COWHOL)$ (-141.9 kcal mol⁻¹), trans-Mn(H₂O)₄Cl₂ (-121.5 kcal mol^{-1}), MnZr (-93.2 kcal mol^{-1}), MnC₉H₁₂O (Mn(CO)(C₄H₆)₂, BUTMNC) (-65.5 kcal mol^{-1}), trans-Mn(H₂O)₄Br₂ (-61.2 kcal mol⁻¹) and MnF₅⁻ (-60.3 kcal mol⁻¹). AM1* uses the unchanged AM1 parameterization for the elements H, C, N, O and F, which limits the possible accuracy of the parameterization. The large errors with the compounds containing these elements are not surprising as we have pointed out in our previous parameterizations. [3-6] As found for other metals, the large errors in pure AM1* element-containing compounds are likely to be a consequence of our sequential parameterization strategy, in contrast to the simultaneous parameterization used for PM6. [33]

Ionization potentials and dipole moments

A comparison of the calculated and experimental Koopmans' theorem ionization potentials and dipole moments for AM1* and PM6 are given Table 3.

- Table 3 about here -

AM1* with an MUE of 1.66 eV performs better than PM6 (MUE of 2.07 eV) for Koopmans' theorem ionization potentials. Both AM1* and PM6 tend to underestimate ionization potentials for manganese-containing compounds. However, this tendency is more serious for PM6 with an MSE of -2.02 eV, compared to the AM1* MSE of -0.77 eV.

Large AM1* errors are found for MnF_2 (-3.06 eV), MnF_3 (-4.00 eV) and MnF_4 (-3.88 eV). This may be an indirect result of using the original AM1 parameters for fluorine. But, however, PM6 also produces very large errors for MnF2 (-2.84 eV), MnF_3 (-4.45 eV) and MnF_4 (-6.59 eV). Since, both methods produce these large errors in the same direction, this may be a result of possible erroneous reference values given in NIST. [27]

AM1* with an MSE of 0.03 Debye shows no significant tendency to systematic errors for dipole moments of manganese compounds, whereas PM6 gives a positive systematic error of 0.14 Debye (MSE). AM1* and PM6 perform comparably, with MUEs of 1.25 and 1.27 Debye, respectively. The largest AM1* errors are found for MnOF₂ (4.03 Debye), MnOI₂ (3.36 Debye) and MnI (-2.57 Debye). The large error for MnOF₂ may be an indirect result of using original AM1 parameters for oxygen and fluorine. However, the large errors for iodine-containing compounds are not surprising and result from the known weakness [4, 5] of the AM1* parameterization in reproducing dipole moments for iodine-containing compounds.

Geometries

Table 4 shows a comparison of AM1* and PM6 results in reproducing the geometries of the manganese-containing compounds.

- Table 4 about here -

Both AM1* and PM6 overestimate bond lengths to manganese systematically by 0.02 and 0.14 Å, respectively. AM1*, with an MUE of 0.13 Å performs better than PM6 (MUE of 0.24 Å) for bond lengths. Here we note that PM6 reproduces bond lengths to be very long for the manganese-transition metal diatomic compounds. Parameterization dataset of PM6 clearly does not cover these model compounds which seriously affects statistics. For the bond angles, PM6 with an MUE of 5.0° performs quite well, compared with AM1* (MUE=12.2°). AM1* and PM6 reproduce bond angles for manganese-containing compounds that are on average 3.0° and 2.1° too small.

Iron

Heats of formation

The results obtained for heats of formation of iron-containing compounds are shown in Table 5. We have compared our results with Stewart's published PM6 method [33] and also the unpublished PM5 method implemented in LinMopac [31].

- Table 5 about here -

AM1* reproduces the heats of formation of the training set of iron compounds used in parameterization better than both PM6 and PM5. Once again, one must consider that this comparison is not strictly valid as it is based on the current parameterization data, which sometimes differ from those used in PM6 and PM5. As can be seen from Table 5, the AM1* parameterization data set contains 98 compounds, of which 55 are taken from the original PM6 parameterization data set. Since PM5 is unpublished, we do not know whether these data cover original PM5 parameterization dataset. These data demonstrate the influence of the extent of the training data. AM1* with the mean unsigned error of 26.5 kcal mol⁻¹ performs significantly better for its extended training set than PM6 and PM5 (MUEs of 31.6 and 34.5 kcal mol⁻¹, respectively), whereas PM6 performs better (MUE = 17.8 kcal mol⁻¹) than AM1* and PM5 (MUEs of 32.4 and 33.8 kcal mol⁻¹, respectively) for the subset for which it was trained. As before, we note that, this situation is unavoidable.

AM1* and PM5 underestimate heats of formation for iron compounds by only 3.1 and 5.5 kcal mol⁻¹, respectively. On the other hand, PM6 systematically predicts the heats of formation of iron compounds to be too positive with a mean signed error of 13.7 kcal mol⁻¹. The largest positive errors for AM1* are found for the compounds $FeC_{10}H_{14}O_4$ (bis(acetylacetonate)iron) (100.8 kcal mol⁻¹), $FeC_{36}N_6H_{24}^{2+}$ (ferrous tris(*ortho* phenantholine)) (84.3 kcal mol⁻¹), Fe_2I_4 (72.1 kcal mol⁻¹), Fe^- (68.3 kcal mol⁻¹) and $FeCI_2$ (67.4 kcal mol⁻¹). The largest negative errors for AM1* are found for $Fe(CN)_6^{3-}$ (-217.8 kcal mol⁻¹), $Fe(CN)_6^{4-}$ (-123.3 kcal mol⁻¹), $Fe(H_2O)_5Br^+$ (-73.8 kcal mol⁻¹), $Fe(H_2O)_6^{2+}$ (-69.1 kcal mol⁻¹) and $Fe(H_2O)_5F^+$ (-67.9 kcal mol⁻¹). The large negative errors with oxygen-containing compounds are not surprising as we have pointed out in our previous parameterizations. [5, 6] Generally large errors in AM1* for iron are given by the compounds that contain original AM1 elements or AM1 elements with chlorine, bromine or iodine. We attribute this to a weakness in the

AM1* parameterization for the halogens and also general weakness of the original AM1 parameterization.

Ionization potentials and dipole moments

A comparison of the calculated and experimental ionization potentials and dipole moments of iron-containing compounds for AM1*, PM6 and PM5 are shown in Table 6.

- Table 6 about here -

AM1* and PM5 overestimate Koopmans' theorem ionization potentials of iron-containing compounds with MSEs of 0.42 and 0.52 eV, respectively for the dataset used, whereas PM6 underestimates them by 0.63 eV. AM1* with an MUE of 0.93 eV performs better than both PM5 (MUE=1.03 eV) and PM6 (1.29 eV) for ionization potentials of iron compounds. The large errors for AM1* are mainly found for iron-carbonyl compounds, which is once again an indirect result of using original AM1 parameters for carbon and oxygen.

Both AM1* and PM5 tend to give positive systematic errors for dipole moments of ironcontaining compounds with MSEs of 0.31 and 0.34 Debye, respectively, whereas PM6 underestimates by 0.35 Debye. AM1* with an MUE of 0.96 Debye performs slightly better than PM5 (MUE=1.01 Debye) and far better PM6 (1.79 Debye) for dipole moments of ironcontaining compounds. The large errors for AM1* are mainly obtained from the compounds containing hydrogen, carbon, oxygen and nitrogen. This is not unexpected because AM1* uses the original AM1 parameters for these elements.

Geometries

The geometrical variables used to parameterize AM1* for iron and a comparison of the AM1*, PM6 and PM5 results are shown in Table 7.

- Table 7 about here -

AM1* shows no systematic error trend for for bond lengths in iron compounds, whereas both PM5 and PM6 overestimate them by 0.08 Å and 0.12 Å, respectively. AM1* with a mean unsigned error of 0.09 Å performs better than PM5 (MUE=0.15 Å) and far better than PM6 (MUE=0.27 Å) for bond lengths. Here once again we note that the large PM6 errors for bond

lengths resulted from iron-transition metal diatomic model compounds and these compounds are not covered by PM6 parameterization dataset.

All three available methods produce negative systematic errors for bond angles of ironcontaining compounds. While AM1* underestimates them by 1.3°, PM5 and PM6 also underestimate by 1.7° and 2.6°, respectively. The performance of AM1* for bond angles in iron-containing compounds is comparable to PM5 and better than PM6. The MUEs for AM1* and PM5 are 5.8° and 4.0°, respectively, and for PM6 10.4°. Here the performance of relatively old method PM5 is surprisingly comparable to or better than more modern methods.

Discussion

In this work, we have presented our new AM1* parameters for manganese and iron providing important additional elements for the chemistry of organometallic and biological catalysts and for biochemical systems especially in the active sites of the enzymes. Since the experimental data for the compounds of these two metals are relatively sparse and sometimes of poor quality, we have extended the range of the parameterization dataset and made it more reliable by checking experimental data by including results from DFT calculations. We aim to produce a parameter set that is more robust and generally applicable than the ones trained only using experimental data. For our extended training set used, AM1* parameterizations for manganese and iron give very good energetic and electronic results and also perform very well for the structural properties. Both AM1* and PM6 extend the range of applicability of NDDO-based MNDO-like techniques and provide good starting points for reaction-specific local parameterizations and comparison calculations.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft by an individual grant (Cl85/17-1) and as part of GK312 "*Homogeneous and Heterogeneous Electron Transfer*" and SFB583 "*Redox-Active Metal Complexes: Control of Reactivity via Molecular Architecture*".

We thank Dr. Paul Winget, Dr. Bodo Martin, Dr. Cenk Selçuki and Anselm Horn for support with the parameterization database.

Supplementary material

The values and the sources of the parameterization data

References

- 1. Winget P, Horn AHC, Selçuki C, Martin B, Clark T (2003) J Mol Model 9:408-414
- 2. Winget P, Clark T (2005) J Mol Model 11:439-456
- 3. Kayi H, Clark T (2007) J Mol Model 13:965-979
- 4. Kayi H, Clark T (2009) J Mol Model 15:295-308
- 5. Kayi H, Clark T (2009) J Mol Model 15:1253-1269
- 6. Kayi H, Clark T (2009) J Mol Model 15 (online first) DOI: 10.1007/s00894-009-0503-4
- 7. Kayi H (2009) J Mol Model 15, in the press
- 8. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902-3909
- 9. Voityuk AA, Rösch N (2000) J Phys Chem A 104:4089-4094
- 10. Dewar MJS, Thiel W (1977) J Am Chem Soc 99(15):4899-4907
- Thiel W (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of Computational Chemistry. Wiley, Chichester, p 1599
- 12. Stewart JJP (1989) J Comp Chem 10:209-220
- 13. Stewart JJP (1989) J Comp Chem 10:221-264
- Stewart JJP (1998), In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR (eds) Encyclopedia of Computational Chemistry. Wiley, Chichester, p 2080
- 15. Rutkowska-Zbik D, Witko M (2006) J Mol Catal A: Chem 258:376-380
- 16. Carrasco R, Morgernstern-Badarau I, Cano J (2007) Inorg Chim Acta 360:91-101
- 17. Winget P, Clark T (2004) J Comput Chem 25:725-733
- 18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T,

Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc, Wallingford CT

- Dunning Jr TH, Hay PJ, (1976) In: Schaefer III HF (ed) Modern Theoretical Chemistry, vol 3. Plenum, New York, pp 1-28
- 20. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):270-283
- 21. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):284-298
- 22. Hay PJ, Wadt WR (1985) J Chem Phys 82(1):299-310
- 23. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265-3269
- 24. Becke AD (1988) Phys Rev A 38:3098
- 25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785
- 26. Becke AD (1993) J Chem Phys 98:5648-5652
- 27. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, (http://webbook.nist.gov/), Linstrom P, Mallard W, National Institute of Standards and Technology: Gaithersburg MD, 20899, 2003
- 28. Stewart JJP, http://openmopac.net/files.html
- 29. Cambridge Structural Database, Version 5.28 (2007) Cambridge Crystallographic Data Centre, Cambridge, UK
- Clark T, Alex A, Beck B, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2008) Computer-Chemie-Centrum, Universität Erlangen-Nürnberg: Erlangen
- 31. Stewart JJP, (2002) LinMOPAC2.0, FQS Poland: Krakow
- Stewart JJP, (2008) MOPAC2009, Stewart Computational Chemistry, Colorado Springs, CO, USA; http://OpenMOPAC.net
- 33. Stewart JJP (2007) J Mol Model 13:1173-1213

Demonster	NA	F -
	<u>IVIN</u>	Fe
	-33.2275445	-99.00
	-27.2535784	-38.200
	-69.8244104	-83.10
ζ_{s} [bohr]	1.9646322	2.8351398
ζ_p [bohr]]	18.8965365	37.1808614
ζ _d [bohr ⁻ ']	1.2348158	2.2895425
β _s [eV]	-8.1782339	-20.4335137
β _p [eV]	-21.7780791	-66.1689990
β _d [eV]	-6.2336234	-26.5282533
g _{ss} [eV]	5.0059282	8.4047951
g _{pp} [eV]	13.6386827	10.4447975
g _{sp} [eV]	12.3772691	7.6833614
g _{p2} [eV]	96.0815576	13.9440172
h _{sp} [eV]	4.5810741	1.6747978
z_{sn} [bohr ⁻¹]	26.0703955	75.1015032
z_{nn} [bohr ⁻¹]	1 9830213	0 7086051
z_{dn} [bohr ⁻¹]	1 9132012	1 4519328
$o(core) [bohr^{-1}]$	1 2307875	1.0769040
$\Delta H^{\circ}(atom)$ [kcal mol ⁻¹]	67 701	00 3
E^0 [e]/]	2 2270202	14 1017174
G^2 $[OV]$	3.3270203	12 4790410
	1.0790412	13.4709419
α(I J)	4.4047000	0.0400400
н	4.1317380	3.6162132
C	2.814/514	4.0432263
N	1.8883089	3.8755726
O	3.0560315	4.9080254
F	2.5828364	5.3397259
Al	3.5620838	2.0238999
Si	4.2623991	2.6259521
P	2.4072008	2.9339288
5	2.7156160	2.7835642
	2.5923979	2.4937637
II V	2.3993007	1.4490317
Cr	2 7010078	2 0835714
Mn	3 1647134	2 4029678
Fe	2.4029678	3.3225842
Co	2.2792673	2.6623880
Ni	4.5772694	4.4251916
Cu	2.2179615	4.1806484
Zn	4.5907029	4.4519730
Br	3.6890036	2.8134065
Zr	2.6907788	1.7761525
Мо	3.0996586	1.9309316
I	4.1561815	3.5275630
Au	3.0829513	2.8842586
δ(ij)	1	1
н	-12.2571050	-10.2036220
С	3.8500280	41.7471647
N	0.6216587	18.5709816

Table 1AM1* parameters for the elements Mn and Fe

	<u>.</u>	
0	6.1303519	98.7945881
F	1.8592303	98.4859864
AI	32.1147597	4.4417867
Si	79.1063414	7.6467930
Р	2.9611118	21.4786698
S	3.7385117	8.4757133
CI	2.4354976	3.7093945
Ti	1.5477850	1.1499629
V	127.1273363	5.0747072
Cr	7.1369564	3.3205625
Mn	5.9226904	4.7319791
Fe	4.7319791	20.2552175
Со	2.1958330	8.1077071
Ni	265.4707317	178.9982694
Cu	1.8893296	96.7779734
Zn	87.3866849	52.0532649
Br	25.1186833	4.3023002
Zr	3.2445347	2.7554220
Мо	14.0341168	3.2515086
I	53.7439446	43.5771427
Au	10.1393842	7.0870550

 Table 2
 Calculated AM1* and PM6 heats of formation and errors compared
 15

 with our target values for the manganese-containing compounds used to

 parameterize AM1* (all values kcal mol⁻¹). Errors are classified by coloring the boxes in which they appear. Green indicates errors lower than 10 kcal mol⁻¹, yellow 10-20 kcal mol⁻¹ and pink those greater than 20 kcal mol⁻¹. The codenames within parentheses indicate the CSD-names of the compounds

	Target	AM1	*	PM6		
Compound	∆H° _f	∆H° _f	Error	∆H° _f	Error	
Mn	67.7	67.7	0.0	67.7	0.0	
Mn	90.2	151.8	61.6	97.9	7.7	
Mn⁺	239.1	334.9	95.8	224.8	-14.3	
Mn ²⁺	599.8	760.9	161.1	566.7	-33.1	
Mn ³⁺	1376.0	1208.7	-167.3	1053.2	-322.8	
Mn ₂	184.3	203.7	19.4	128.2	-56.1	
MnH	57.3	115.4	58.1	114.2	56.9	
MnH ⁻	41.2	96.7	55.5	124.2	83.0	
MnH ₂	114.1	117.0	2.9	114.6	0.5	
$Mn(C_5H_5)_2$	66.2	100.8	34.6	95.4	29.2	
MnN	123.1	121.1	-2.0	99.2	-23.9	
$Mn(NH_{3})_{6}^{2+}$	269.5	275.4	5.9	229.9	-39.6	
MnO ₂ ⁻	-62.1	-3.0	59.1	-35.3	26.8	
MnO ₃ ⁻	-127.1	-97.5	29.6	-127.7	-0.6	
MnO ₄ ⁻	-158.4	-149.7	8.7	-168.8	-10.4	
$Mn(H_2O)_6^{2+}$	65.7	9.6	-56.1	50.6	-15.1	
Mn(CO) ₃	-54.8	-58.6	-3.8	-113.0	-58.1	
Mn(CO) ₄ ⁻	-122.3	-131.1	-8.7	-157.7	-35.3	
Mn(CO)₅	-178.0	-152.9	25.1	-174.4	3.6	
Mn(CO)₅H	-176.8	-180.2	-3.4	-170.4	6.4	
Mn(CO) ₆ ⁺	-49.7	-67.8	-18.1	-78.8	-29.1	
Mn(CO)₅CH ₃	-179.5	-196.5	-17.0	-179.5	0.0	
Mn(CO) ₅ C ₆ H ₅	-140.8	-169.9	-29.1	-151.3	-10.5	
$Mn(CO)_5(C_6H_5CH_2)$	-151.9	-173.7	-21.8	-154.6	-2.7	
Mn(CO)₅COCH ₃	-215.3	-228.5	-13.2	-230.3	-15.0	
Mn(CO) ₅ (C ₆ H ₅ CO)	-173.2	-195.1	-21.9	-192.3	-19.1	
$MnC_{15}H_{21}O_6$ (Mn(acac) ₃)	-285.2	-280.0	5.2	-267.2	18.0	
$MnC_6H_8O_{10}^{-}$ (KAMMND)	-543.1	-576.9	-33.8	-537.4	5.7	
MnC ₉ H ₁₂ O (BUTMNC)	11.9	-53.6	-65.5	22.8	10.9	
MnC ₈ H ₅ O ₃ (cyclopentadienyl manganese	-115.2	-65.3	49.9	-81.5	33.7	

tricarbonyl)					
MnC ₉ H ₇ O ₃ (HEXMNC)	-95.5	-89.4	6.1	-83.9	11.6
Mn ₂ (CO) ₉	-314.5	-310.0	4.5	-323.3	-8.8
Mn ₂ (CO) ₁₀	-385.9	-378.7	7.2	-336.8	49.1
Mn(NO)	8.5	47.9	39.4	98.1	89.6
Mn(CO)(NO) ₃	-60.6	-52.9	7.7	-23.0	37.6
$MnC_{10}N_{2}H_{12}O_{8}^{-}$ (EDTMNK01)	-388.3	-407.0	-18.7	-413.1	-24.8
MnF ₂	-126.2	-50.4	75.8	-76.8	49.4
MnF ₂ ⁻	-226.0	-146.5	79.5	-106.1	119.9
MnF ₃	-188.0	-173.3	14.7	-139.0	49.0
MnF ₃ ⁻	-272.2	-158.5	113.7	-164.8	107.4
MnF ₄	-231.0	-280.9	-49.9	-170.0	61.0
MnF ₄ ⁻	-343.6	-308.5	35.1	-250.3	93.3
MnF ₅ ⁻	-373.0	-433.3	-60.3	-300.3	72.7
$Mn_2F_5^-$	-448.3	-440.7	7.6	-257.2	191.1
$Mn_2F_7^-$	-600.0	-630.6	-30.6	-392.6	207.4
MnOF ₂	-125.8	-120.5	5.3	-114.7	11.1
$Mn(H_2O)_4F_2$ trans	-333.2	-366.8	-33.6	-315.4	17.8
$MnC_7HO_5F_2$ (CDFVMN)	-252.2	-273.1	-20.9	-314.4	-62.2
Mn(CO) ₅ CF ₃	-330.5	-355.7	-25.2	-363.7	-33.2
Mn(CO)₅COCF ₃	-359.7	-378.5	-18.8	-381.9	-22.2
MnC ₇ O ₇ F ₃ (FACMNA)	-437.0	-437.3	-0.3	-431.9	5.1
MnAl	116.5	115.6	-0.9	77.3	-39.2
MnF ₃ AlF ₄	-704.0	-734.6	-30.6	-220.0	484.0
MnSi	153.2	127.8	-25.4	-275.3	-428.5
MnSiH	93.9	108.2	14.3	-30.9	-124.8
MnSiH ₂	85.2	91.6	6.4	131.5	46.3
MnP	81.9	81.9	0.0	110.0	28.1
MnPH	67.6	77.4	9.8	82.1	14.5
MnC ₉ H ₁₁ SO ₂ (VALXAI)	-76.7	-109.1	-32.4	-54.7	22.0
$MnC_7H_5SO_4$ (CPCSMN)	-125.0	-56.8	68.2	-119.5	5.5
$MnC_7N_2H_{12}S_4^{-}$ (COWHOL)	-19.9	-161.8	-141.9	-37.2	-17.3
$MnC_7H_{10}S_2CIO_3$ (GEQLUJ)	-179.2	-198.5	-19.3	-161.0	18.2
MnCl	11.3	69.7	58.4	40.9	29.6
Mn(CO)₅CI (ZOSWEJ)	-219.5	-240.6	-21.1	-220.0	-0.5
MnCl ₂	-63.0	13.5	76.5	-31.2	31.8
$Mn(H_2O)_4Cl_2$ trans	-263.1	-384.6	-121.5	-275.3	-12.2
Mn ₂ Cl ₄	-168.2	-163.0	5.2	-30.9	137.3

MnCl ₂ O	-136.0	-46.5	89.5	-67.7	68.3	
MnTi	148.8	141.8	-7.1	106.2	-42.6	
MnV ₂	228.3	228.3	0.0	196.1	-32.2	
MnCr	184.4	184.4	0.0	173.3	-11.1	
MnCo	158.9	158.8	-0.1	93.3	-65.6	
MnNi	80.9	80.9	0.0	168.3	87.4	
MnCu	158.2	158.2	0.0	133.6	-24.6	
MnZn	89.3	90.4	1.1	-34.3	-123.6	
MnOBr ₂	-37.0	2.5	39.5	-22.2	14.8	
$Mn(H_2O)_4Br_2$ trans	-244.3	-305.5	-61.2	-240.4	3.9	
Mn(CO)₅Br	-210.9	-208.5	2.4	-214.7	-3.8	
MnBr ₄ ^{2–} (PYDMNB)	-174.7	-174.4	0.3	-75.9	98.8	
MnZr	173.7	80.5	-93.2	190.4	16.7	
MnMo	191.5	191.5	0.0	222.7	31.2	
Mnl	65.8	84.9	19.1	59.1	-6.7	
MnOl ₂	-7.0	37.1	44.1	6.0	13.0	
$Mn(H_2O)_4I_2$ trans	-213.7	-267.0	-53.3	-209.7	4.0	
Mn(CO)₅I (VUCFAA)	-199.4	-193.5	5.9	-204.2	-4.8	
MnC ₁₃ N ₂ H ₈ O ₃ I (YOMHEN)	-83.2	-68.7	14.5	-80.7	2.5	
		AM1 ³	*	PM	6	
N=78						
Most positive error		161.1		484.0		
Most negative error		-167.3	3	-428	8.5	
MSE		2.3		9.8		
MUE		32.3		51.	0	
RMSD		49.7		95.5		
Results for the	PM6 paramete	rization set	(<i>N</i> =44)			
MSE		-7.5		0.1		
MUE		31.1		15.	8	
RMSD		43.7		20.9		

 Table 3
 Calculated
 AM1* and
 PM6
 Koopmans'
 theorem
 ionization
 potentials
 and
 dipole
 manganese-containing
 compounds.
 The

 errors are color coded as follows: green up to 0.5 eV or 0.5 Debye; yellow between 0.5 and 1.0; pink larger than 1.0

		AM1*		PM6		
Compound	Target	Error			Error	
Koopmans' Theorem Ionization Potentials for	[.] Mangane	ese Comp	ounds (e\	/)		
MnH	7.80	9.39	1.59	5.82	-1.98	
MnO	8.70	10.58	1.88	7.66	-1.04	
Mn(CO)₅	8.10	9.18	1.08	7.44	-0.66	
Mn(CO)₅H	8.85	8.71	-0.14	8.44	-0.41	
MnF ₂	11.40	8.34	-3.06	8.56	-2.84	
MnF ₃	12.60	8.60	-4.00	8.15	-4.45	
MnF ₄	13.50	9.62	-3.88	6.91	-6.59	
MnCl ₂	11.03	9.67	-1.36	8.11	-2.92	
Mn(CO)₅Br	8.83	8.52	-0.31	8.74	-0.09	
MnBr ₂	10.30	9.70	-0.60	8.78	-1.52	
Mn(CO)₅I	8.40	8.71	0.31	8.65	0.25	
		AN	11*	PN	16	
N=11						
MSE		-0.	77	-2.	02	
MUE		1.66		2.07		
Dipole Moments for Manganese Compounds	(Debye)					
MnH	0.50	0.75	0.25	0.99	0.49	
MnN	3.07	4.38	1.31	3.98	0.91	
MnNO	5.89	4.46	-1.43	4.45	-1.44	
MnO	4.72	4.57	-0.15	3.74	-0.98	
MnOH	0.40	1.64	1.24	3.13	2.73	
MnF	2.27	0.67	-1.60	4.23	1.96	
MnOF ₂	0.53	4.56	4.03	0.61	0.08	
MnAl	1.67	1.60	-0.07	0.19	-1.48	
MnSi	3.27	2.85	-0.42	4.03	0.76	
MnSiH	3.15	2.75	-0.40	4.03	0.88	
MnSiH ₂	3.22	2.54	-0.68	3.96	0.74	
MnP	2.54	2.88	0.34	2.70	0.16	
MnPH	4.34	3.12	-1.22	2.97	-1.37	
MnS	4.22	3.91	-0.31	1.56	-2.66	

MnCl	2.36	0.81	-1.55	3.59	1.23	
MnBr	4.29	3.10	-1.19	7.72	3.43	
MnOBr ₂	0.51	2.12	1.61	0.56	0.05	
Mnl	4.25	1.68	-2.57	2.13	-2.12	
MnOl ₂	0.94	4.30	3.36	0.30	-0.64	
		AN	11*	PM6		
N=19						
MSE		0.03		0.14		
MUE		1.25		1.27		

Table 4 Calculated AM1* and PM6 bond lengths and angles for manganese- containing compounds. The codenames within parentheses indicate the CSDnames of the compounds. The errors are color coded as follows: green up to 0.05 Å or 0.5°; yellow between 0.05-0.1 Å or 0.5-1.0°; pink larger than 0.1 Å or 1°

			AM1*		PM6		
Compound	Variable	Target		Error		Error	
Mn ₂	Mn-Mn	2.29	2.40	0.11	2.89	0.60	
MnH	Mn-H	1.74	1.91	0.18	1.68	-0.05	
MnH	Mn-H	1.77	1.83	0.06	1.66	-0.11	
$Mn(C_5H_5)_2$	Mn-C	2.42	2.79	0.37	2.37	-0.05	
MnO ₂ ⁻	Mn-O	1.62	1.86	0.24	1.63	0.02	
MnO ₃ ⁻	Mn-O	1.59	1.85	0.26	1.62	0.03	
MnO ₄ ⁻	Mn-O	1.64	1.86	0.22	1.63	-0.01	
$Mn(H_2O)_6^{2+}$	Mn-O	2.14	2.21	0.07	2.15	0.01	
	Mn-O	2.19	2.23	0.04	2.17	-0.02	
	Mn-O	2.20	2.27	0.07	2.17	-0.03	
Mn(CH ₃)O ₃	Mn=O	1.59	1.84	0.25	1.60	0.01	
	Mn-C	1.99	1.91	-0.08	1.93	-0.06	
Mn(CO) ₃	Mn-C	1.82	1.97	0.16	1.82	0.01	
Mn(CO) ₅	Mn-C	1.82	1.89	0.07	1.85	0.03	
	Mn-C	1.86	1.90	0.04	1.89	0.03	
Mn(CO)₅H	Mn-C	1.86	1.93	0.07	1.84	-0.02	
	Mn-C	1.85	1.92	0.07	1.86	0.01	
	H-Mn-C	85.5	90.7	5.2	83.5	-2.0	
Mn(CO)₅CH ₃	Mn-C	1.83	1.90	0.07	1.85	0.02	
	Mn-C	1.85	1.94	0.09	1.85	0.00	
	Mn-C	2.19	1.99	-0.21	2.08	-0.12	
Mn(CO) ₆ ⁺	Mn-C	1.91	1.95	0.04	1.89	-0.02	
Mn(CO) ₅ C ₆ H ₅	Mn-C	1.83	1.90	0.07	1.85	0.02	
	Mn-C	1.85	1.94	0.09	1.86	0.01	
	Mn-C	2.15	1.99	-0.16	1.99	-0.16	
$Mn(CO)_5(C_6H_5CH_2)$	Mn-C	1.82	1.90	0.08	1.85	0.03	
	Mn-C	1.85	1.94	0.09	1.85	0.00	
	Mn-C	2.26	2.02	-0.24	2.09	-0.17	
Mn(CO) ₅ COCH ₃	Mn-C	1.84	1.91	0.07	1.85	0.01	
	Mn-C	1.85	1.93	0.08	1.88	0.03	
	Mn-C	2.17	2.02	-0.15	1.97	-0.20	
$Mn(CO)_5(C_6H_5CO)$	Mn-C	1.84	1.90	0.07	1.86	0.02	

	Mn-C	1.85	1.93	0.08	1.87	0.02
	Mn-C	2.18	2.03	-0.15	1.97	-0.20
$MnC_6H_8O_{10}$ (KAMMND)	Mn-O	1.90	2.07	0.17	1.93	0.03
	Mn-O	2.30	2.28	-0.02	2.44	0.14
	O-Mn-O	91.7	74.1	-17.6	88.3	-3.4
MnC ₉ H ₁₂ O (BUTMNC)	Mn-C	1.81	1.92	0.11	1.81	0.00
	Mn-C	2.15	1.98	-0.17	2.11	-0.04
Mn(CO) ₃ Cp (CPMNCO)	Mn-C(ring)	2.14	2.21	0.07	2.16	0.02
	Mn-C(O)	1.79	1.93	0.14	1.81	0.02
	C-Mn-C	91.4	101.0	9.6	92.6	1.2
MnC ₉ H ₇ O ₃ (HEXMNC)	Mn-C	2.15	2.12	-0.03	2.17	0.02
	Mn-C	1.78	1.92	0.14	1.82	0.04
Mn ₂ C ₈ H ₁₂ O ₈ (Mn ₂ (Ac) ₄)	Mn-Mn	3.31	2.43	-0.88	3.28	-0.03
Mn ₂ (CO) ₁₀	Mn-Mn	2.89	2.36	-0.53	2.70	-0.19
Mn ₂ (CO) ₁₀ C ₂ (JIPVOT)	Mn-C	1.86	1.93	0.07	1.84	-0.02
	Mn-C	1.83	1.90	0.07	1.83	0.00
	C-Mn-C	85.9	87.6	1.7	85.4	-0.5
MnN	Mn#N	1.59	1.52	-0.07	1.57	-0.02
MnNO	Mn-N	1.73	1.76	0.03	1.74	0.01
$Mn(NH_{3})_{6}^{2+}$	Mn-N	2.16	2.21	0.05	2.15	-0.01
Mn(CO)(NO) ₃	Mn-N	1.70	1.67	-0.03	1.64	-0.06
	Mn-C	1.87	1.94	0.06	1.93	0.06
	C-Mn-N	106.0	92.9	-13.1	107.7	1.8
$MnC_{10}N_2H_{12}O_8^{-}$ (EDTMNK01)	Mn-O	2.02	2.15	0.13	1.95	-0.07
	Mn-O	1.89	2.16	0.27	1.98	0.09
	Mn-N	2.24	2.11	-0.13	2.10	-0.14
	O-Mn-O	88.3	89.7	1.4	84.2	-4.1
	N-Mn-O	77.5	82.2	4.7	83.7	6.2
$MnC_{12}N_2H_{12}O_6$ (XOYHAU)	Mn-O	2.15	2.19	0.04	2.33	0.18
	Mn-N	2.26	1.81	-0.45	1.84	-0.42
	O-Mn-O	85.4	66.7	-18.7	62.5	-22.9
$MnC_{12}N_2H_{16}O_4$ (Mn phenanthroline tetrahydrate)	Mn-O	2.16	2.33	0.17	3.45	1.29
MnF	Mn-F	1.82	2.14	0.32	1.87	0.05
MnF ₂	Mn-F	1.79	1.84	0.05	1.78	-0.01
MnF_2^-	Mn-F	1.86	1.88	0.03	1.83	-0.03
MnOF ₂	Mn-O	1.55	1.89	0.34	1.57	0.02
	Mn-F	1.72	1.79	0.06	1.73	0.01

	O-Mn-F	121.3	102.0	-19.3	124.1	2.8
$Mn(H_2O)_4F_2$ trans	Mn-F	1.98	1.87	-0.11	1.78	-0.20
	Mn-O	2.13	2.35	0.22	2.34	0.21
MnC7HO5F2 (CDFVMN)	Mn-C	1.72	1.90	0.18	1.85	0.13
	Mn-C	1.77	1.94	0.17	1.86	0.09
	Mn-C	1.94	2.03	0.09	1.97	0.03
	C-Mn-C	93.8	87.6	-6.2	93.3	-0.5
MnF ₃	Mn-F	1.79	1.79	0.00	1.76	-0.03
	F-Mn-F	120.0	141.7	21.7	136.1	16.1
MnC ₇ O ₇ F ₃ (FACMNA)	Mn-C	1.81	1.89	0.08	1.82	0.01
	Mn-O	2.03	2.29	0.26	2.05	0.02
Mn ₂ (CO) ₈ (CF ₂) ₂ (DOFPET)	Mn-Mn	2.66	2.42	-0.24	2.73	0.07
	Mn-C(F ₂)	2.02	2.10	0.08	1.98	-0.04
	Mn-C(O)	1.88	1.96	0.08	1.87	-0.01
	C-Mn-Mn	49.4	54.8	5.4	46.4	-3.0
MnAl	Mn-Al	2.34	2.34	0.00	2.05	-0.28
Mn(AIH ₂) ₂	Mn-Al	2.41	2.42	0.00	2.15	-0.26
MnSi	Mn-Si	2.34	2.25	-0.10	2.45	0.11
MnSiH	Mn-Si	2.34	2.34	0.00	2.51	0.17
MnSiH ₂	Mn-Si	2.38	2.44	0.06	2.60	0.22
MnSi ₂ C ₉ H ₁₅ O ₅ (KIRYUF)	Mn-Si	2.34	2.39	0.05	2.34	0.00
	Mn-O	2.95	2.99	0.04	2.99	0.04
	Si-Mn-Si	71.2	81.5	10.3	68.8	-2.4
MnP	Mn-P	1.97	2.06	0.09	2.15	0.18
MnPH	Mn-P	2.22	2.21	-0.02	2.23	0.01
MnS	Mn-S	1.99	2.14	0.15	2.01	0.02
MnS ₂	Mn-S	2.20	2.00	-0.20	2.02	-0.18
MnC ₉ H ₁₁ SO ₂ (VALXAI)	Mn-S	2.27	2.25	-0.02	2.18	-0.09
	Mn-C(O)	1.77	2.01	0.24	1.79	0.02
	Mn-C(C ₄)	2.12	2.10	-0.02	2.19	0.07
MnC ₇ H ₅ SO ₄ (CPCSMN)	Mn-S	2.04	2.38	0.34	2.10	0.06
	Mn-C	1.79	1.99	0.20	1.82	0.03
	Mn-C'	2.10	2.10	0.00	2.18	0.08
	S-Mn-C	91.0	80.8	-10.1	92.6	1.6
$MnC_7N_2H_{12}S_4^{-}$ (COWHOL)	Mn-S	2.32	2.33	0.01	2.28	-0.04
	S-Mn-S	157.5	144.9	-12.6	156.2	-1.3
$MnC_7H_{10}S_2CIO_3$ (GEQLUJ)	Mn-S	2.39	2.35	-0.04	2.26	-0.13
	Mn-C	1.80	1.92	0.12	1.79	-0.01

	Mn-Cl	2.38	2.17	-0.21	2.31	-0.07
	S-Mn-Cl	92.2	87.7	-4.5	88.6	-3.6
MnC ₄ N ₂ H ₈ S ₂ O ₆ (WIFSEJ)	Mn-S	2.61	2.26	-0.35	2.21	-0.40
	Mn-O	2.20	2.23	0.03	2.13	-0.07
	O-Mn-S	87.3	111.8	24.5	80.6	-6.7
MnCl	Mn-Cl	2.12	2.31	0.19	2.13	0.01
Mn(CO)₅CI (ZOSWEJ)	Mn-Cl	2.37	2.13	-0.24	2.23	-0.14
	Mn-C	1.81	1.91	0.10	1.83	0.02
	Mn-C	1.89	1.94	0.05	1.86	-0.03
$Mn(H_2O)_4Cl_2$ trans	Mn-Cl	2.36	2.21	-0.15	1.98	-0.38
	Mn-O	2.10	2.33	0.23	2.21	0.11
	Mn-O	2.50	2.41	-0.09	3.70	1.20
	Mn-O	2.52	2.59	0.07	3.79	1.27
Mn ₂ Cl ₄	Mn-Mn	2.29	2.38	0.09	2.49	0.20
	Mn-Cl	2.13	2.10	-0.03	1.96	-0.18
MnCl ₂ O	Mn-O	1.55	1.89	0.34	1.57	0.02
	Mn-Cl	2.10	2.08	-0.02	1.87	-0.23
	O-Mn-Cl	121.5	86.3	-35.1	119.1	-2.3
MnC ₁₂ N ₄ H ₁₂ Cl ₂ O (MUPYUR)	Mn-Cl	2.47	2.12	-0.35	2.15	-0.32
	Mn-N(py)	2.26	1.81	-0.45	1.92	-0.34
	Mn-N'	2.34	1.94	-0.40	1.94	-0.40
	N-Mn-N'	95.2	96.2	1.0	94.7	-0.5
MnTi	Mn-Ti	2.25	2.25	0.00	3.62	1.37
MnV ₂	Mn-V	2.28	2.21	-0.07	4.90	2.62
MnCr	Mn-Cr	2.35	2.35	0.00	5.90	3.55
MnCo	Mn-Co	2.44	2.27	-0.18	3.39	0.95
MnNi	Mn-Ni	2.50	2.41	-0.08	6.02	3.52
MnCu	Mn-Cu	2.50	2.50	0.00	7.67	5.17
MnZn	Mn-Zn	2.62	2.62	0.00	2.29	-0.33
MnBr	Mn-Br	2.25	2.41	0.16	2.56	0.31
MnBr ₂	Mn-Br	2.34	2.33	-0.01	2.23	-0.11
MnOBr ₂	Mn-Br	2.24	2.29	0.05	2.31	0.07
	Mn-O	1.55	1.88	0.33	1.56	0.01
	O-Mn-Br	120.7	104.2	-16.5	125.5	4.8
$Mn(H_2O)_4Br_2$ trans	Mn-Br	2.50	2.40	-0.10	2.45	-0.05
	Mn-O	2.10	2.23	0.13	2.08	-0.02
Mn(CO)₅Br	Mn-Br	2.56	2.39	-0.17	2.49	-0.07
	Mn-C	1.82	1.90	0.09	1.82	0.01

	Mn-C'	1.88	1.94	0.07	1.86	-0.01
MnBr ₄ ²⁻ (PYDMNB)	Mn-Br	2.50	2.43	-0.07	2.44	-0.06
MnAIC ₆ Br ₃ O ₅ (CMNCXA10)	Mn-Al	3.53	3.63	0.10	3.45	-0.08
	Mn-C	1.95	1.97	0.02	1.92	-0.03
	Mn-C'	1.87	1.93	0.06	1.87	0.00
	Br-Al-Mn	140.2	117.0	-23.2	126.9	-13.3
MnZr	Mn-Zr	2.43	2.43	0.00	3.02	0.59
MnMo	Mn-Mo	2.27	2.27	0.00	4.71	2.44
Mnl	Mn-I	2.46	2.49	0.04	2.29	-0.17
MnOl ₂	Mn-I	2.45	2.33	-0.12	2.44	-0.01
	Mn-O	1.55	1.89	0.34	1.55	0.00
	O-Mn-I	120.1	112.7	-7.4	116.1	-4.0
$Mn(H_2O)_4I_2$ trans	Mn-I	2.73	2.44	-0.29	2.52	-0.21
	Mn-O	2.08	2.27	0.19	2.24	0.16
Mn(CO)₅I (VUCFAA)	Mn-I	2.69	2.39	-0.30	2.62	-0.07
	Mn-C	1.84	1.91	0.07	1.82	-0.02
MnC ₁₃ N ₂ H ₈ O ₃ I (YOMHEN)	Mn-I	2.72	2.36	-0.36	2.70	-0.02
	Mn-N	2.05	1.98	-0.07	1.92	-0.13
	Mn-C	1.77	1.93	0.16	1.84	0.07
	I-Mn-N	87.7	87.1	-0.6	83.3	-4.4
Mn ₂ (CO) ₈ I ₂ (SIZYUV)	Mn-Mn	3.98	3.98	0.00	3.96	-0.02
	Mn-I	2.70	2.51	-0.19	2.66	-0.04
	Mn-C	1.88	1.93	0.05	1.85	-0.03
	I-Mn-Mn	42.6	37.8	-4.8	43.6	1.0
MnI(SH)	Mn-I	2.41	2.36	-0.05	2.41	0.00
	Mn-S	2.10	2.27	0.17	2.05	-0.05
	I-Mn-S	115.6	146.2	30.6	101.6	-14.0
MnI(F)(PH ₂)(SH)	Mn-I	2.50	2.39	-0.12	2.46	-0.04
	Mn-F	1.75	1.79	0.04	1.73	-0.02
	Mn-P	2.27	2.25	-0.02	2.28	0.01
	Mn-S	2.16	2.22	0.06	2.16	0.00
			AM	1*	PN	16
N=151						
MSE bond length			0.0)2	0.1	14
MUE bond length			0.1	13	0.2	24
N=25						
MSE bond angle			-3	.0	-2	.1
MUE bond angle			12.2		5.0	

	Target	AM1	*	PM	6	Р	M5
Compound	∆H° _f	∆H° _f	Error	∆H° _f	Error	∆H° _f	Error
Fe	99.3	99.3	0.0	99.3	0.0	99.3	0.0
Fe⁺	281.6	251.5	-30.1	262.3	-19.3	282.2	0.6
Fe⁻	92.0	160.3	68.3	201.3	109.3	140.7	48.7
Fe ²⁺	654.6	697.5	42.9	637.4	-17.2	647.3	-7.3
Fe ³⁺	1361.0	1361.6	0.6	1358.0	-3.0	1349.7	-11.3
Fe ₂	180.0	164.3	-15.7	210.5	30.5	207.5	27.5
FeH	113.9	90.4	-23.5	145.9	32.0	123.7	9.8
FeH⁻	91.1	100.4	9.3	193.0	101.9	102.2	11.1
FeCH ₃	71.0	51.7	-19.3	109.6	38.6	79.9	8.9
FeC₅H₅	88.0	82.5	-5.5	110.7	22.7	142.6	54.6
$Fe(C_5H_5)_2$	57.9	67.2	9.3	49.3	-8.6	102.3	44.3
$Fe(C_5H_5)_2^+$	210.2	250.4	40.2	252.0	41.8	294.3	84.1
FeO	60.0	32.8	-27.2	69.2	9.2	61.0	1.0
FeO⁺	265.0	289.8	24.8	246.0	-19.0	259.3	-5.7
FeO⁻	31.0	81.7	50.7	94.1	63.1	44.0	13.0
FeO ₂ ⁻	-30.0	-26.9	3.1	48.0	78.0	-18.8	11.2
FeOH	32.0	13.5	-18.5	28.5	-3.5	37.6	5.6
Fe(OH) ₂	-79.0	-83.3	-4.3	-56.5	22.5	-50.4	28.6
$Fe(H_2O)_4(OH)_2$	-294.0	-327.1	-33.1	-334.5	-40.5	-294.5	-0.5
$Fe(H_2O)_5(OH)$	-162.2	-222.7	-60.5	-194.9	-32.7	-183.3	-21.1
$Fe(H_2O)_6^{2+}$	64.8	-4.3	-69.1	90.8	26.0	39.4	-25.4
Fe(H ₂ O) ₆ ³⁺	492.6	466.0	-26.7	455.0	-37.6	415.8	-76.8
Fe(CO) ₄ H ₂	-131.0	-129.8	1.2	-82.7	48.3	-130.9	0.1
Fe(CO)	63.9	26.1	-37.8	59.1	-4.8	60.4	-3.5
Fe(CO) ⁻	34.8	2.0	-32.8	94.1	59.3	42.4	7.6
Fe(CO) ₂	0.2	6.7	6.5	-3.4	-3.6	1.9	1.7
Fe(CO)2 ⁻	-27.3	-76.6	-49.3	15.9	43.2	-43.8	-16.5
Fe(CO) ₃	-55.8	-57.3	-1.5	-32.0	23.8	-41.0	14.8
Fe(CO) ₃ ⁻	-99.2	-124.1	-24.9	-50.2	49.0	-103.6	-4.4
Fe(CO) ₄	-105.1	-148.7	-43.6	-127.5	-22.4	-108.0	-2.9

Fe(CO) ₄	-160.9	-205.1	-44.2	-139.2	21.7	-173.0	-12.1
Fe(CO) ₄ ²⁻	-115.1	-125.9	-10.8	-114.6	0.5	-127.3	-12.2
Fe(CO) ₅	-174.0	-181.1	-7.2	-188.4	-14.4	-138.1	35.8
$FeC_6O_{12}^{3-}$ (Fe(III)(Ox) ₃)	-506.7	-554.5	-47.8	-510.4	-3.7	-618.7	-112.0
$FeC_{6}H_{3}O_{12}(H_{3}Fe(III)(Ox)_{3})$	-516.8	-481.2	35.6	-501.4	15.4	-505.4	11.4
Fe(CO) ₄ C ₂ H ₄	-129.2	-142.1	-12.9	-133.4	-4.2	-128.5	0.7
FeC ₈ H ₂ O ₆ (FCPENO)	-173.8	-211.7	-37.9	-170.4	3.4	-210.0	-36.2
FeC ₁₀ H ₁₄ O ₄ (bis(acetylacetonate)iron)	-198.0	-97.2	100.8	-178.2	19.8	-150.6	47.4
$FeC_{15}H_{21}O_6^{-}$ (Fe(II)(Acac)3 anion)	-340.2	-331.6	8.6	-317.9	22.3	-340.3	-0.1
Fe ₂ (CO) ₉	-319.2	-322.7	-3.5	-378.8	-59.6	-324.1	-4.9
$Fe(NH_3)_6^{2+}$	266.4	258.1	-8.3	284.2	17.8	247.0	-19.4
$Fe(CN)_6^{3-}$	374.3	156.5	-217.8	337.0	-37.3	126.8	-247.5
Fe(CN) ₆ ⁴⁻	484.5	361.2	-123.3	494.5	10.0	318.1	-166.4
$FeC_6N_6H_{24}^{2+}$ (Fe(II)en) ₃)	283.9	290.6	6.7	286.9	3.0	283.8	-0.1
$FeC_{36}N_6H_{24}^{2+}$ (Ferrous tris(ortho							
phenantholine)	451.2	535.5	84.3	428.1	-23.1	489.1	37.9
FeC ₈ NH ₅ O ₂ (ACODUR)	-12.1	-12.0	0.1	-9.2	2.9	-5.1	7.0
FeC ₉ NH ₈ O ₂ ⁺ (CPACFE)	113.2	147.1	33.9	96.1	-17.1	145.4	32.2
Fe(CO) ₂ (NO) ₂	-75.0	-72.8	2.2	-62.3	12.7	-2.9	72.1
FeC ₁₆ N ₅ H ₁₁ O ₄	-53.9	8.2	62.1	-54.8	-0.9	-31.2	22.7
FeC7NH5O5 (CNOFEA)	-89.2	-57.0	32.2	-94.6	-5.4	-65.6	23.6
$FeC_{10}N_2H_{12}O_8^-$ (Iron(III)EDTA)	-405.6	-377.8	27.9	-404.1	1.5	-425.7	-20.1
FeN	174.3	139.8	-34.5	113.5	-60.8	159.5	-14.8
FeN⁺	348.8	340.5	-8.3	294.5	-54.3	326.5	-22.3
FeN⁻	123.7	147.8	24.1	162.4	38.7	135.0	11.3
FeF	11.4	44.6	33.2	22.1	10.7	9.9	-1.5
$Fe(H_2O)_5F^+$	-184.7	-252.6	-67.9	-214.0	-29.3	-212.6	-27.9
FeF ₂	-93.1	-97.1	-4.0	-80.7	12.4	-95.8	-2.7
FeF ₃	-196.2	-159.3	36.9	-162.1	34.1	-185.6	10.6
FeF ₆ ^{3–}	-175.3	-175.3	0.0	-177.2	-1.9	-323.5	-148.2
FeAl	157.8	161.1	3.3	181.0	23.2	181.6	23.8
Fe(AIH ₂) ₂	216.8	214.8	-2.0	299.6	82.8	169.9	-46.9
FeSiH	133.7	121.6	-12.1	190.5	56.8	162.1	28.4
FeSiH ₂	125.6	122.9	-2.7	184.7	59.1	146.7	21.1
Fe(SiH ₃) ₂	126.7	133.4	6.7	234.7	108.0	136.0	9.3
FeP	156.9	157.0	0.1	29.8	-127.1	174.0	17.1
FePH	104.6	104.4	-0.2	56.8	-47.8	126.3	21.7
FeS	88.6	55.0	-33.6	137.0	48.4	101.1	12.5

FeC ₉ H ₁₀ SO ₂ (CEYTFE)	-59.3	-42.6	16.7	-39.5	19.8	-36.1	23.2	
FeC ₁₂ H ₁₄ S ₄ O ₂ (CIBGAV10)	-73.1	-73.1	0.0	-88.8	-15.7	-64.0	9.1	
FeCl	60.0	51.4	-8.6	52.5	-7.5	50.7	-9.3	
FeCl ₂	-33.7	33.7	67.4	12.6	46.3	-24.0	9.7	
FeCl ₃	-60.5	-5.7	54.8	-37.9	22.6	-59.8	0.7	
FeCl ₄ ^{2–} (GOXLUA)	-105.2	-106.9	-1.7	-100.8	4.4	-187.2	-82.0	
FeCl ₆ ^{3–}	-56.5	-109.4	-52.9	-54.3	2.2	-177.8	-121.3	
Fe(H ₂ O) ₅ Cl ⁺	-148.4	-208.0	-59.6	-146.3	2.1	-175.4	-27.0	
FeC ₆ N ₂ H ₁₈ Cl ₃ (FINJIV)	-91.7	-74.4	17.3	-104.0	-12.3	-126.7	-35.0	
FeTi	179.7	179.8	0.1	140.2	-39.5	153.7	-26.0	
FeV	146.0	146.0	0.0	250.8	104.8	171.9	25.9	
FeCr	215.2	215.2	0.0	216.4	1.2	-20.1	-235.3	
FeCo	158.4	158.4	0.0	133.9	-24.5	-11.3	-169.7	
FeNi	93.6	93.6	0.0	199.4	105.8	178.5	84.9	
FeCu	140.7	140.7	0.0	180.0	39.3	83.8	-56.9	
FeZn	119.7	129.6	9.9	113.1	-6.6	180.9	61.2	
FeBr	44.7	51.9	7.2	83.7	39.0	58.6	13.9	
FeBr ₂	-9.9	-16.5	-6.6	55.9	65.8	62.3	72.2	
Fe ₂ Br ₄	-60.5	-60.5	0.0	-23.5	37.0	-35.2	25.3	
FeC ₆ H ₅ BrO ₃ (ALCFEA)	-110.8	-122.7	-11.9	-119.6	-8.8	-132.4	-21.6	
Fe(H ₂ O) ₅ Br ⁺	-137.9	-211.7	-73.8	-141.7	-3.8	-165.0	-27.1	
Fe(H ₂ O) ₄ Br ₂	-248.8	-239.4	9.5	-293.3	-44.5	-281.1	-32.3	
FeZr	206.1	180.3	-25.8	311.3	105.2	314.0	107.9	
FeMo	251.3	251.2	-0.1	242.5	-8.8	317.4	66.1	
Fe(CO) ₃ (C ₃ H ₅)I	-82.1	-86.7	-4.6	-81.0	1.1	-67.1	15.0	
FeC ₆ H ₅ IO ₃ (ALCOFE10)	-97.1	-79.1	18.0	-100.2	-3.1	-108.1	-11.0	
Fe(CO) ₄ I ₂	-151.9	-127.6	24.3	-140.5	11.4	-166.4	-14.5	
Fe ₂ I ₄	2.0	74.1	72.1	16.5	14.5	18.8	16.8	
Fel ₂	21.0	77.7	56.7	125.4	104.4	47.3	26.3	
Fel	52.9	91.2	38.3	107.2	54.3	78.3	25.4	
FeMn	126.6	126.7	0.1	161.6	35.0	-	-	
		AM1	*	PM	6	P	M5	
N=98								
Most positive error		100.8	3	109.	.3	1(07.9	
Most negative error		-217.	8	-127	.1	-247.5		
MSE		-3.1		13.	7	-5.5		
MUE		26.5		31.	6	34.5		
RMSD		41.4		43.	6	57.4		

Results for the PM6 parameterization set (<i>N=55</i>)									
MSE	-6.3	1.6	-13.5						
MUE	32.4	17.8	33.8						
RMSD	48.9	23.5	57.6						

Table 6 Calculated AM1*, PM6 and PM5 Koopmans' theorem ionization potentials and dipole moments for iron-containing compounds. The errors are color coded as follows: green up to 0.5 eV or 0.5 Debye; yellow between 0.5 and 1.0; pink larger than 1.0

		AN	11*	PI	/16	PM5	
Compound	Target		Error		Error		Error
Koopmans' Theorem Ionization Potentials fo	r Mangane	ese Comp	ounds (e\	/)			
Fe(CO) ₄ H ₂	9.65	9.36	-0.29	9.70	0.05	9.72	0.07
Fe(CO) ₂	6.68	8.01	1.33	8.07	1.39	8.51	1.83
Fe(CO) ₄	8.48	9.90	1.42	9.02	0.54	9.78	1.30
Fe(CO) ₅	8.60	9.76	1.16	9.23	0.63	9.21	0.61
FeBr ₂	9.70	10.05	0.35	9.23	-0.47	11.02	1.32
Fe ₂ Br ₄	12.60	11.04	-1.56	7.11	-5.49	10.53	-2.07
Fe(CO) ₄ H ₂	9.65	9.46	-0.19	9.70	0.05	9.72	0.07
FeCl ₂	10.10	11.21	1.11	8.38	-1.72	11.09	0.99
		AN	11*	PI	<i>l</i> 16	PN	/15
N=8							
MSE		0.4	42	-0.	63	0.52	
MUE		0.93		1.29		1.0	03
Dipole Moments for Manganese Compounds	(Debye)						
FeO	7.50	6.62	-0.88	4.44	-3.06	4.95	-2.55
FeCH ₃	0.90	0.67	-0.23	0.48	-0.42	1.58	0.68
Fe(CO) ₄ C ₂ H ₄	1.50	2.02	0.52	3.25	1.75	1.16	-0.34
FeO ₂ (3B1)	2.00	0.91	-1.09	3.33	1.33	0.74	-1.26
FeO ₂ (5B2)	3.40	5.06	1.66	2.10	-1.30	4.94	1.54
Fe(CO) ₃ C ₄ H ₆	2.10	0.36	-1.74	4.41	2.31	1.73	-0.37
FeC ₆ NH ₃ O ₄ (Fe(CO) ₄ acetonitrile)	5.00	7.67	2.67	5.13	0.13	6.61	1.61
FeF	4.19	3.82	-0.37	5.00	0.81	4.53	0.34
FeO ₂ F ₂	1.60	3.04	1.44	2.00	0.40	2.34	0.74
FeC ₁₀ PH ₁₅ O ₄ (Fe(CO) ₄ (PEt ₃)	5.20	5.93	0.73	1.56	-3.64	5.10	-0.10
FeCl	4.51	5.98	1.47	1.06	-3.45	4.59	0.08
FeCl ₂ O ₂	0.22	0.42	0.20	2.70	2.48	1.65	1.43
FeBr	4.18	4.41	0.23	1.12	-3.06	6.17	1.99
Fel	4.20	3.97	-0.23	5.05	0.85	5.24	1.04
		AN	11*	PI	//6	PI	<i>l</i> 15
N=14							
MSE		0.3	31	-0.35		0.34	
MUE		0.9	96	1.	79	1.	01

 Table 7 Calculated AM1*, PM6 and PM5 bond lengths and angles for iron 30

 containing compounds. The codenames within parentheses indicate the CSD
 names of the compounds. The errors are color coded as follows: green up to 0.05 Å or 0.5°; yellow between 0.05-0.1 Å or 0.5-1.0°; pink larger than 0.1 Å or 1°

			AN	11*	PI	M6	P	M5
Compound	Variable	Target		Error		Error		Error
Fe ₂	Fe-Fe	2.19	2.02	-0.17	2.35	0.17	1.83	-0.36
FeH	Fe-H	1.63	1.63	0.00	1.08	-0.55	1.70	0.07
FeH ⁻	Fe-H	1.69	1.69	0.00	1.98	0.29	1.70	0.01
FeH⁺	Fe-H	1.60	1.53	-0.07	1.16	-0.44	1.58	-0.02
FeCH ₃	Fe-C	1.97	1.90	-0.07	2.12	0.15	1.94	-0.03
FeC₅H₅	Fe-C	2.17	2.05	-0.13	2.06	-0.11	2.03	-0.14
$Fe(C_5H_5)_2$	Fe-C	2.06	2.12	0.06	2.06	0.00	2.22	0.16
Fe(III)Cp ₂ ⁺	Fe-C	2.06	1.99	-0.07	2.05	-0.01	2.08	0.02
FeO	Fe-O	1.62	1.76	0.14	1.66	0.04	1.63	0.00
FeO ⁻	Fe-O	1.69	1.74	0.05	1.79	0.10	1.73	0.04
FeO⁺	Fe-O	1.56	1.75	0.19	1.65	0.09	1.65	0.09
FeO ₂ ⁻	Fe-O	1.71	1.77	0.06	1.71	0.00	1.72	0.01
FeOH	Fe-O	1.83	1.83	0.00	1.61	-0.22	1.77	-0.06
Fe(OH) ₂	Fe-O	1.78	1.85	0.08	1.81	0.03	1.79	0.02
Fe(H ₂ O) ₄ (OH) ₂	Fe-O	2.02	1.93	-0.09	1.66	-0.36	1.94	-0.08
	Fe-O	2.08	2.13	0.05	3.17	1.09	2.32	0.24
$Fe(H_2O)_5(OH)$	Fe-O	1.95	1.85	-0.10	1.83	-0.12	1.92	-0.03
	Fe-O	2.05	2.05	0.00	2.17	0.12	2.10	0.05
$Fe(H_2O)_6^{2+}$	Fe-O	2.07	1.99	-0.08	2.01	-0.06	2.15	0.08
	Fe-O	2.15	2.08	-0.07	2.53	0.38	2.22	0.07
Fe(H ₂ O) ₆ ³⁺	Fe-O	2.06	2.01	-0.05	2.05	-0.01	2.08	0.02
FeCH ₅ O ₂ (methyl iron(III)dihydroxide)	Fe-O	1.75	1.83	0.08	1.75	0.00	1.71	-0.04
	Fe-C	1.93	1.92	-0.01	1.64	-0.29	1.93	0.00
Fe(CO)	Fe-C	1.72	1.80	0.08	1.63	-0.09	1.76	0.04
Fe(CO) ⁻	Fe-C	1.79	1.85	0.06	1.80	0.01	1.19	-0.60
Fe(CO) ₂	Fe-C	1.84	1.88	0.04	1.76	-0.08	1.84	0.00
Fe(CO) ₂ ⁻	Fe-C	1.79	1.85	0.06	1.75	-0.04	1.82	0.03
Fe(CO) ₃	Fe-C	1.67	1.82	0.15	1.67	-0.01	1.82	0.14
Fe(CO) ₃	Fe-C	1.82	1.88	0.06	1.40	-0.42	1.92	0.09
Fe(CO) ₄	Fe-C	1.78	1.89	0.11	1.71	-0.07	1.84	0.05
	Fe-C	1.82	1.89	0.08	1.80	-0.02	1.84	0.02

Fe(CO) ₄	Fe-C	1.78	1.88	0.10	1.66	-0.13	1.84	0.06
$\operatorname{Fe(CO)_4^{2-}}$	Fe-C	1.75	1.84	0.09	1.46	-0.29	1.78	0.03
Fe(CO) ₄ H ₂	Fe-C	1.81	1.89	0.09	1.81	0.00	1.84	0.03
	Fe-H	1.56	1.58	0.02	1.36	-0.20	1.62	0.06
	H-Fe-C	89.9	89.9	0.0	56.9	-33.0	90.0	0.1
Fe(CO)₅	Fe-C(eq)	1.81	1.92	0.11	1.77	-0.04	1.82	0.01
	Fe-C(ax)	1.81	1.92	0.11	1.83	0.02	1.85	0.04
Fe(CO) ₄ C ₂ H ₄	Fe-C	1.81	1.89	0.08	1.75	-0.06	1.84	0.03
	Fe-C	2.13	1.98	-0.15	2.33	0.20	2.00	-0.13
$FeC_6O_{12}^{3-}$ (Fe(III)(Ox) ₃)	Fe-O	1.97	1.97	0.00	1.99	0.02	2.04	0.07
	O-Fe-O	83.2	80.8	-2.4	99.8	16.6	82.1	-1.1
FeC ₆ H ₃ O ₁₂ (H ₃ Fe(III)(Ox) ₃)	Fe-O	1.92	1.93	0.01	1.89	-0.03	2.02	0.10
	Fe-O	2.03	2.02	-0.01	1.98	-0.05	2.22	0.19
FeC ₇ H ₄ O ₃ (cyclobutadiene iron tricarbonyl)	Fe-C(C=O)	1.79	1.92	0.13	1.74	-0.05	1.78	-0.01
	$Fe-C(C_4H_4)$	2.06	2.00	-0.06	2.08	0.02	2.34	0.28
	C-Fe-C	99.3	83.0	-16.3	88.5	-10.8	97.6	-1.7
FeC ₈ H ₂ O ₆ (FCPENO)	Fe-C	1.81	1.90	0.09	1.82	0.01	1.86	0.05
	Fe-C	2.02	1.95	-0.07	1.83	-0.19	2.02	0.00
FeC ₉ H ₁₂ O (BUDFEC01)	Fe-C(O)	1.77	2.05	0.28	1.67	-0.10	1.82	0.05
	Fe-C	2.06	2.05	-0.01	2.08	0.02	2.13	0.07
	C-Fe-C	125.6	117.9	-7.7	109.5	-16.2	118.4	-7.2
FeC ₉ H ₁₂ O (FeCO(1,3-C ₄ H ₆) ₂)	Fe-C	2.11	2.00	-0.11	2.20	0.09	2.07	-0.04
	C-Fe-C	88.8	83.3	-5.5	79.2	-9.5	82.9	-5.9
Fe ₂ (CO) ₉	Fe-C	1.83	1.94	0.11	1.80	-0.03	1.85	0.02
	Fe-C	1.98	1.96	-0.02	2.02	0.04	2.03	0.05
	Fe-C#O	180.0	175.2	-4.8	177.0	-3.0	179.9	-0.1
	Fe-C#O	140.7	138.9	-1.8	141.8	1.1	139.1	-1.7
$FeC_{10}H_{14}O_4$ (Fe(II)(Acac) ₂)	Fe-O	1.90	1.91	0.01	1.92	0.02	1.94	0.04
	O-Fe-O	93.9	90.9	-3.0	73.4	-20.6	92.4	-1.5
$FeC_{15}H_{21}O_6^-$ (Fe(II)(Acac) ₃)	Fe-O	1.97	1.98	0.01	2.03	0.06	2.02	0.05
	O-Fe-O	95.1	90.2	-4.9	91.3	-3.7	94.7	-0.4
FeN	Fe-N	1.56	1.72	0.16	1.33	-0.23	1.62	0.06
FeN⁺	Fe-N	1.58	1.66	0.08	1.36	-0.22	1.54	-0.04
FeN	Fe-N	1.58	1.80	0.22	1.36	-0.22	1.71	0.13
Fe(NH ₃) ₆ ²⁺	Fe-N	2.10	2.07	-0.03	2.04	-0.06	2.19	0.09
Fe(CN) ⁴⁻	Fe-C	1.99	1.98	-0.01	1.98	-0.01	1.95	-0.04
	C-Fe-C	180.0	179.9	-0.1	179.9	-0.1	180.0	0.0

$Fe(CO)_2(NO)_2$	Fe-C	1.82	1.97	0.15	1.78	-0.04	1.88	0.05
	Fe-N	1.68	1.79	0.11	1.66	-0.02	1.69	0.01
	C-Fe-C	98.7	83.8	-14.9	90.5	-8.2	86.8	-11.9
	N-Fe-N	109.0	146.7	37.8	92.5	-16.5	118.7	9.7
$FeC_6N_6H_{24}^{2+}$ (Fe(II)en) ₃)	Fe-N	2.13	2.00	-0.14	2.13	0.00	2.19	0.06
FeC ₇ NH ₅ O ₅ (CNOFEA)	Fe-C	1.79	1.89	0.10	1.93	0.14	1.82	0.03
	Fe-C	2.09	2.06	-0.03	2.07	-0.02	2.27	0.18
	Fe-O	1.97	1.97	0.00	1.84	-0.13	2.06	0.09
FeC ₈ NH₅O ₂ (ACODUR)	Fe-C	1.91	1.90	-0.01	1.92	0.01	1.96	0.05
	Fe-C	1.78	1.90	0.12	1.76	-0.02	1.81	0.03
	Fe-C	2.19	2.11	-0.08	2.07	-0.12	2.23	0.04
	C-Fe-C	89.2	83.0	-6.2	74.2	-15.0	89.2	0.0
$FeC_9NH_8O_2^+$ (CPACFE)	Fe-N	1.91	1.95	0.04	1.83	-0.08	2.04	0.13
	Fe-C	1.77	1.91	0.14	1.78	0.01	1.84	0.07
$FeC_{10}N_4H_{10}O_6$ (Diaqua-								
bis(pyrazinecarboxylato)-iron)	Fe-O	2.11	1.93	-0.18	1.99	-0.12	2.08	-0.03
	Fe-N	2.12	1.95	-0.17	1.92	-0.20	2.08	-0.04
	Fe-OH ₂	2.14	2.14	0.00	2.07	-0.07	2.09	-0.05
	O-Fe-N	78.1	83.4	5.3	76.5	-1.6	79.7	1.6
$FeC_{10}N_2H_{12}O_8^{-}$ (Iron(III)EDTA)	Fe-N	2.03	2.21	0.18	2.19	0.16	2.32	0.29
FeC ₁₆ N ₅ H ₁₁ O ₄	Fe-O	2.12	2.60	0.48	2.08	-0.04	2.26	0.14
	Fe-O	1.92	1.87	-0.05	1.95	0.03	2.01	0.09
	Fe-N	1.89	1.83	-0.06	1.88	-0.01	2.02	0.13
	O-Fe-O	81.4	78.8	-2.6	73.4	-8.0	77.9	-3.5
FeC ₁₇ N ₂ H ₁₆ (Toluene-(2,2'-bipyridine)-iron)	Fe-N	1.90	1.84	-0.06	1.86	-0.04	1.90	0.00
	Fe-C	2.11	2.07	-0.04	2.07	-0.04	2.28	0.17
	N-Fe-N	81.9	86.3	4.4	76.5	-5.4	82.7	0.8
	N-Fe-C	122.8	114.7	-8.1	107.3	-15.5	128.2	5.4
FeC ₂₀ H ₁₂ N ₄ (iron porphyrin)	Fe-N	1.97	1.93	-0.04	1.92	-0.05	2.02	0.05
$FeC_{36}N_6H_{24}^+$ (ferrous tris(ortophenantholine)	Fe-N	2.05	1.97	-0.08	1.95	-0.10	2.14	0.09
FeF	Fe-F	1.76	1.80	0.04	1.75	-0.01	1.77	0.01
$Fe(II)(H_2O)_5F^+$	Fe-F	1.89	1.70	-0.19	1.82	-0.07	1.90	0.01
	Fe-O	2.05	2.04	-0.01	2.15	0.10	2.10	0.05
FeF ₂	Fe-F	1.77	1.71	-0.06	1.76	-0.01	1.79	0.02
FeO ₂ F ₂ (iron(VI)difluoride dioxide)	Fe-F	1.74	1.71	-0.03	1.74	0.00	1.81	0.07
	Fe=O	1.58	1.85	0.27	1.55	-0.03	1.66	0.08
FeF₃	Fe-F	1.78	1.75	-0.03	1.73	-0.05	1.77	-0.01
FeF ₆ ³⁻	Fe-F	2.06	1.85	-0.21	1.94	-0.12	2.02	-0.04

FeAl	Fe-Al	2 30	2 27	-0.03	2 65	0 35	2 28	-0.03
Fe(AIH ₂) ₂	Fe-Al	2.00	2.27	-0.08	3.06	0.59	2.20	0.00
FeSiH	Fe-Si	2.30	2.00	0.00	3.96	1.66	2.00	0.22
FeSiH ₂	Fe-Si	2.26	2.31	0.05	4 24	1.98	2 48	0.22
Fe(SiH ₂) ₂	Fe-Si	2.52	2.52	0.00	4 47	1.95	2.52	0.00
FeP	Fe-P	2 23	2 20	-0.03	1 85	-0.38	2.30	0.06
FePH	Fe-P	2 20	2 30	0.10	2 05	-0.15	2 35	0.15
FeC ₄₂ P ₄ H ₂₄ S ₂ (JIYFAY)	Fe-S	2.35	2.33	-0.02	2.10	-0.25	2.33	-0.02
	Fe-P	2 23	2 64	0.41	2 26	0.03	2 49	0.26
	P-Fe-S	89.4	90.8	1.4	83.1	-6.4	70.5	-18.9
FeS	Fe-S	2.04	2.10	0.06	1.99	-0.05	2.06	0.02
Fe(SH) ₂	Fe-S	2.25	2.26	0.02	1.82	-0.43	2.26	0.01
FeC ₀ H ₁₀ SO ₂ (CEYTFE)	Fe-S	2.30	2.32	0.02	2.00	-0.30	2.34	0.04
	Fe-C(O)	1.75	1.89	0.14	1.74	-0.01	1.80	0.05
	Fe-C(C₄)	2.12	2.12	0.00	2.04	-0.08	2.25	0.13
	C-Fe-S	90.7	85.0	-5.7	102.3	11.6	91.9	1.2
$FeC_{16}N_2H_{18}S_2O_2$ (dicarbonyl ethylenediamine								
bis(phenylthiolato)iron)	Fe-S	2.33	2.37	0.04	2.26	-0.07	2.38	0.05
	Fe-S	2.34	2.37	0.03	2.13	-0.21	2.39	0.04
	Fe-N	2.04	1.96	-0.08	2.15	0.11	2.15	0.11
	Fe-N	2.03	1.97	-0.06	1.95	-0.08	2.15	0.12
	Fe-C	1.76	1.88	0.12	1.73	-0.03	1.79	0.03
	N-Fe-S	86.8	88.2	1.4	80.1	-6.7	82.0	-4.8
	C-Fe-S	93.2	84.9	-8.3	96.1	2.9	98.0	4.8
FeC ₉ N ₃ H ₁₈ S ₃ O ₃ (tris(N,N-								
dimethylthiocarbamato)iron(III))	Fe-S	2.43	2.44	0.01	2.49	0.06	2.52	0.09
	Fe-O	2.09	1.99	-0.10	1.88	-0.21	2.07	-0.02
	S-Fe-O	68.9	70.5	1.6	72.1	3.2	66.9	-2.0
	S-Fe-S	103.1	96.0	-7.1	98.0	-5.1	101.5	-1.6
Fe ₄ S ₄	Fe-S	2.27	2.27	0.00	2.28	0.01	2.37	0.10
$FeC_{12}H_{14}S_4O_2$ (CIBGAV10)	Fe-S	2.31	2.35	0.04	2.23	-0.08	2.36	0.05
	Fe-C	1.80	1.89	0.09	1.73	-0.07	1.81	0.01
	S-Fe-S	85.2	85.7	0.4	108.8	23.6	87.8	2.6
	C-Fe-S	90.1	89.4	-0.7	83.1	-7.0	90.7	0.6
$FeC_{14}N_6H_{16}S_6$ (diisothiocyanato-bisthiazoline								
iron(II))	Fe-N	2.19	2.09	-0.10	1.87	-0.32	2.06	-0.13
	Fe-N(CS)	2.08	1.87	-0.21	1.84	-0.24	1.98	-0.10
	N-Fe-N	73.9	81.3	7.4	101.9	28.0	78.1	4.2
	SCN-Fe-	97.4	94.3	-3.1	99.8	2.4	89.0	-8.4

	NCS							
FeCl	Fe-Cl	2.13	2.23	0.10	1.55	-0.58	2.16	0.02
Fe(II)(H ₂ O) ₅ Cl ⁺	Fe-Cl	2.29	2.17	-0.12	2.45	0.16	2.29	0.00
	Fe-O	2.06	2.06	0.00	2.07	0.01	2.10	0.04
FeCl ₂	Fe-Cl	2.16	2.17	0.01	1.94	-0.22	2.15	-0.01
FeCl ₃	Fe-Cl	2.16	2.17	0.02	2.18	0.03	2.17	0.02
FeC ₆ N ₂ H ₁₈ Cl ₃ (FINJIV)	Fe-Cl	2.23	2.35	0.12	2.34	0.11	2.25	0.02
	Fe-N	2.27	1.93	-0.34	1.96	-0.31	2.28	0.01
	CI-Fe-CI	121.0	120.1	-0.9	119.4	-1.6	119.8	-1.3
FeCl ₄	Fe-Cl	2.19	2.22	0.03	2.11	-0.08	2.18	-0.01
FeCl ₄ ²⁻ (GOXLUA)	Fe-Cl	2.34	2.33	-0.01	2.35	0.01	2.36	0.02
FeCl ₆ ³⁻	Fe-Cl	2.53	2.54	0.01	2.51	-0.02	2.41	-0.12
FeTi	Fe-Ti	2.54	2.54	0.00	3.67	1.13	-	-
FeV	Fe-V	2.31	2.31	0.00	3.50	1.19	2.04	-0.27
FeCr	Fe-Cr	2.27	2.06	-0.21	3.65	1.38	1.60	-0.67
FeMn	Fe-Mn	2.40	2.40	0.00	5.21	2.81	-	-
FeCo	Fe-Co	2.31	2.30	-0.01	4.68	2.38	1.70	-0.61
FeNi	Fe-Ni	2.33	2.21	-0.12	4.69	2.36	2.05	-0.29
FeCu	Fe-Cu	2.31	2.31	0.00	7.36	5.05	2.05	-0.26
FeZn	Fe-Zn	2.53	2.37	-0.16	2.98	0.45	2.63	0.10
FeBr	Fe-Br	2.23	2.16	-0.07	2.17	-0.06	2.31	0.08
FeBr ₂	Fe-Br	2.31	2.13	-0.18	2.13	-0.18	2.31	0.00
FeC ₆ H ₅ BrO ₃ (ALCFEA)	Fe-Br	2.50	2.20	-0.30	2.46	-0.04	2.43	-0.07
	Fe-C(C ₂)	2.13	2.03	-0.10	2.14	0.01	2.13	0.00
	Fe-C(O)	1.79	1.91	0.12	1.83	0.04	1.85	0.06
	C-Fe-Br	88.6	87.6	-1.0	108.9	20.3	84.9	-3.7
Fe(H ₂ O) ₅ Br ⁺	Fe-Br	2.42	2.14	-0.28	2.47	0.05	2.38	-0.04
	Fe-O	2.06	2.10	0.04	2.07	0.01	2.24	0.18
Fe(H ₂ O) ₄ Br ₂	Fe-O	2.07	1.99	-0.08	2.15	0.08	2.09	0.02
	Fe-Br	2.50	2.20	-0.30	2.71	0.21	2.48	-0.02
FeC ₄ H ₈ BrO ₇ (Diaquabromo(oxydiacetato- O,O',O")-iron(III))	Fe-Br	2.37	2.17	-0.20	2.38	0.01	2.36	-0.02
	Fe-O	2.00	2.07	0.07	1.85	-0.15	1.98	-0.02
	Br-Fe-O	105.6	94.5	-11.1	98.6	-7.0	111.5	5.9
FeBr ₂ O ₂	Fe-Br	2.27	2.15	-0.12	2.56	0.29	2.38	0.11
	Fe=O	1.58	1.74	0.16	1.55	-0.03	1.52	-0.06
	Br-Br-Fe	110.6	110.0	-0.6	129.6	19.0	98.1	-12.5
FeZr	Fe-Zr	2.59	2.59	0.00	2.84	0.25	3.04	0.46

		35						
FeMo	Fe-Mo	2.21	2.14	-0.07	3.29	1.08	11.58	9.37
Fel	Fe-I	2.44	2.46	0.02	2.70	0.26	2.38	-0.06
$Fe(CO)_3(C_3H_5)I$	Fe-I	2.75	2.61	-0.14	2.80	0.05	2.48	-0.27
	Fe-C(O)	1.80	1.96	0.16	1.73	-0.07	1.84	0.04
	C-Fe-I	81.6	81.7	0.1	75.3	-6.3	76.2	-5.4
Fe(CO) ₃ (C ₃ H ₅)I (ALCOFE10)	Fe-I	2.75	2.59	-0.16	2.80	0.05	2.59	-0.16
	Fe-C	1.80	1.95	0.15	1.73	-0.07	1.83	0.03
	C-Fe-I	81.6	96.5	14.9	75.3	-6.3	81.8	0.2
Fel ₂	Fe-I	2.50	2.49	-0.01	2.55	0.05	2.43	-0.07
			AM1*		PM6		PM5	
N=153								
MSE bond length			0.0	00	0.1	12	0.	08
MUE bond length			0.0	09	0.2	27	0.15	
N=33								
MSE bond angle			-1	.3	-2.6		-1.7	
MUE bond angle			5.	.8	10	.4	4.0	

AM1* Parameters for Manganese and Iron

Hakan Kayı and Timothy Clark

Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany

E-mail: clark@chemie.uni-erlangen.de

Supplementary Material

		Page
Table S1	Sources and calculation details for the heats of formation	2
	used to parameterize.	
Table S2	Sources and calculation details for the ionization potentials	5
	and dipole moments used to parameterize.	
Table S3	Sources and calculation details for the geometrical variables	6
	used to parameterize.	
References		14

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Heat of Formation for Manganese Containing Compounds				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			-	Total Energy	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Compound	Target(kcal/mol)	Source	(a.u.)	
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Mn	67.7	S1		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mn ⁻	90.2	S2		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mn⁺	239.1	S2		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mn ²⁺	599.8	S2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn ³⁺	1376.0	S2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mn ₂	184.3	S3	-207.6091449	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MnH	57.3	S3	-104.4496606	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnH⁻	41.2	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnH ₂	114.1	S3	-104.9516412	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Mn(C_5H_5)_2$	66.2	S1		
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	MnN	123.1	S3	-158.5358747	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Mn(NH_3)_6^{2+}$	269.5	S4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnO ₂ ⁻	-62.1	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnO ₃ ⁻	-127.1	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnO ₄ ⁻	-158.4	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Mn(H_2O)_6^{2+}$	65.7	S4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mn(CO) ₃	-54.8	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn(CO) ₄ ⁻	-122.3	S1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mn(CO) ₅	-178.0	S1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mn(CO) ₅ H	-176.8	S1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Mn(CO)_{6}^{+}$	-49.7	S4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mn(CO) ₅ CH ₃	-179.5	S1		
$\begin{array}{c ccccc} Mn(CO)_5(C_6H_5CH_2) & -151.9 & S1 & \\ Mn(CO)_5(C_6H_5CO) & -215.3 & S1 & \\ Mn(CO)_5(C_6H_5CO) & -173.2 & S1 & \\ MnC_{15}H_2O_6 (Mn(acac)_3) & -285.2 & S4 & \\ MnC_{15}H_2O_6 (Mn(acac)_3) & -285.2 & S4 & \\ MnC_{9}H_1O_1 & S4 & \\ MnC_{9}H_1O_1 & S4 & \\ MnC_{9}H_1O_3 & (UC) & 11.9 & S4 & \\ MnC_{9}H_1O_3 & (UC) & 11.9 & S4 & \\ MnC_{9}H_1O_3 & (UC) & -115.2 & S1 & \\ MnC_{9}H_1O_3 & (UC) & -95.5 & S4 & \\ MnC_{9}H_1O_3 & (UC) & -95.5 & S4 & \\ MnC_{9}H_1O_3 & (UC) & -95.5 & S4 & \\ Mn_2(CO)_9 & -314.5 & S1 & \\ Mn_2(CO)_10 & -385.9 & S5 & \\ Mn(NO) & 8.5 & S3 & -233.8033629 & \\ Mn(C_0)(NO)_3 & -60.6 & S4 & \\ MnC_{10}N_2H_{12}O_8^- & (EDTMNK01) & -388.3 & S4 & \\ MnF_2 & -126.2 & S6 & \\ MnF_2 & -126.2 & S6 & \\ MnF_3 & -188.0 & S6 & \\ MnF_3 & -188.0 & S6 & \\ MnF_4 & -231.0 & S6 & \\ MnF_4 & -231.0 & S6 & \\ MnF_4^- & -343.6 & S1 & \\ MnF_5^- & -373.0 & S1 & \\ MnF_4^- & -343.6 & S1 & \\ MnC_{10}O_{2} & -333.2 & S4 & \\ Mn(CQ)_5CF_3 & -330.5 & S1 & \\ Mn(CO)_5CF_3 & -330.5 & S1 & \\ MnCO_{10}O_{2}COF_3 & -359.7 & S1 & \\ MnCA_{10}O_{$	Mn(CO) ₅ C ₆ H ₅	-140.8	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Mn(CO)_5(C_8H_5CH_2)$	-151.9	S1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mn(CO) ₅ COCH ₃	-215.3	S1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mn(CO) ₅ (C ₆ H ₅ CO)	-173.2	S1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$MnC_{15}H_{21}O_6$ (Mn(acac) ₃)	-285.2	S4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$MnC_{e}H_{e}O_{10}^{-}$ (KAMMND)	-543.1	S4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MnC _o H ₁₂ O (BUTMNC)	11.9	S4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnC ₈ H ₅ O ₃ (cvclopentadienvl manganese				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	tricarbonyl)	-115.2	S1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MnC ₉ H ₇ O ₃ (HEXMNC)	-95.5	S4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mn ₂ (CO) ₉	-314.5	S1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Mn_2(CO)_{10}$	-385.9	S5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn(NO)	8.5	S3	-233,8033629	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn(CO)(NO) ₃	-60.6	S4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$MnC_{10}N_2H_{12}O_8^-$ (EDTMNK01)	-388.3	S4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnF ₂	-126.2	S6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnF ₂	-226.0	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnF ₃	-188.0	S6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnF ₃ ⁻	-272.2	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnF ₄	-231.0	S6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MnF ₄ ⁻	-343.6	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnF ₅	-373.0	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Mn_2F_5^-$	-448.3	S1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Mn_2F_7^-$	-600.0	<u>S1</u>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnOF ₂	-125.8			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mn(H ₂ O) ₄ F ₂ trans	-333.2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnC ₇ HO ₅ F ₂ (CDFVMN)	-252.2			
Mn(CO) ₅ COCF ₃ -359.7 S1 MnC ₇ O ₇ F ₃ (FACMNA) -437.0 S4 MnAl 116.5 S3 -105.8283338	Mn(CO)₅CF₂	-330 5	<u></u>		
MnC ₇ O ₇ F ₃ (FACMNA) -437.0 S4 MnAl 116.5 S3 -105.8283338	Mn(CO)₅COCF₂	-359 7	<u>S1</u>		
MnAl 116.5 S3 -105.8283338	$MnC_2O_7E_2$ (FACMNA)	-437 0	.54		
	MnAl	116.5	<u> </u>	-105.8283338	

Table S1: Sources and calculation details for the heats of formation used to parameterize.

$MnF_3AIF_4^-$	-704.0	S1	
MnSi	153.2	S3	-107.645974
MnSiH	93.9	S3	-108.3333477
MnSiH ₂	85.2	S3	-108.9445051
MnP	81.9	S3	-110.3663624
MnPH	67.6	S3	-110.9840119
MnC ₉ H ₁₁ SO ₂ (VALXAI)	-76.7	S4	
MnC ₇ H ₅ SO ₄ (CPCSMN)	-125.0	S4	
$MnC_7N_2H_{12}S_4^-$ (COWHOL)	-19.9	S4	
MnC ₇ H ₁₀ S ₂ ClO ₃ (GEQLUJ)	-179.2	S4	
MnCl	11.3	S6	
Mn(CO)₅CI (ZOSWEJ)	-219.5	S1	
MnCl ₂	-63.0	S6	
$Mn(H_2O)_4Cl_2$ trans	-263.1	S4	
Mn ₂ Cl ₄	-168.2	S6	
MnCl ₂ O	-136.0	S3	-209.1453756
MnTi	148.8	S3	-161.8591387
MnV ₂	228.3	S3	-246.2697983
MnCr	184.4	S3	-190.0795394
MnCo	158.9	S3	-248.8832029
MnNi	80.9	S3	-273.1382819
MnCu	158.2	S3	-299.9495504
MnZn	89.3	S3	-169.4568054
MnOBr ₂	-37.0	S4	
$Mn(H_2O)_4Br_2$ trans	-244.3	S4	
Mn(CQ)₅Br	-210.9	S1	
MnBr ₄ ^{2–} (PYDMNB)	-174.7	S3	-156.9399370
MnZr	173.7	S3	-150.3305742
MpMo	101 5	53	-171 3221772
	101.0	00	111.0221112
Mnl	65.8	S3	-115.2527121
MnNO MnI MnOI ₂	65.8 -7.0	S3 S4	-115.2527121
$\frac{MnNO}{MnOl_2}$ $\frac{MnOl_2}{Mn(H_2O)_4l_2}$ trans	65.8 -7.0 -213.7	S3 S4 S4	-115.2527121
$\frac{MnNO}{MnOl_2}$ $\frac{Mn(H_2O)_4 I_2 \text{ trans}}{Mn(CO)_5 I (VUCFAA)}$	65.8 -7.0 -213.7 -199.4	S3 S3 S4 S4 S4 S1	-115.2527121
$\begin{array}{c} \text{MnNO}\\ \text{MnOI}_2\\ \text{MnOI}_2\\ \text{Mn(H}_2\text{O})_4\text{I}_2 \text{ trans}\\ \text{Mn(CO)}_5\text{I} (\text{VUCFAA})\\ \text{MnC}_{13}\text{N}_2\text{H}_8\text{O}_3\text{I} (\text{YOMHEN}) \end{array}$	65.8 -7.0 -213.7 -199.4 -83.2	S3 S3 S4 S4 S4 S1 S4	-115.2527121
$\begin{array}{c} Mnl \\ MnOl_2 \\ Mn(H_2O)_4l_2 trans \\ Mn(CO)_5l (VUCFAA) \\ MnC_{13}N_2H_8O_3l (YOMHEN) \\ \hline \end{array}$	65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing	S3 S4 S4 S1 S4 Compounds	-115.2527121
$\frac{MnNO}{MnOl_2}$ $\frac{Mn(H_2O)_4 I_2 \text{ trans}}{Mn(CO)_5 I (VUCFAA)}$ $\frac{MnC_{13}N_2H_8O_3 I (YOMHEN)}{Heat of Formation}$	65.8 -7.0 -213.7 -199.4 -83.2 n for Iron Containing	S3 S4 S4 S1 S4 Compounds	Total Energy
$\frac{MnNO}{MnOI_2}$ $\frac{Mn(H_2O)_4I_2 \text{ trans}}{Mn(CO)_5I (VUCFAA)}$ $\frac{MnC_{13}N_2H_8O_3I (YOMHEN)}{Heat of Formation}$ $\frac{Compound}{Eo}$	65.8 -7.0 -213.7 -199.4 -83.2 n for Iron Containing Target(kcal/mol)	S3 S4 S4 S4 S1 S4 Compounds Source	Total Energy (a.u.)
$\frac{MnNO}{MnI}$ $\frac{MnOI_2}{Mn(H_2O)_4I_2 trans}$ $\frac{Mn(CO)_5I (VUCFAA)}{MnC_{13}N_2H_8O_3I (YOMHEN)}$ $\frac{Compound}{Fe}$ Fe^+	65.8 -7.0 -213.7 -199.4 -83.2 n for Iron Containing Target(kcal/mol) 99.3 281.6	S3 S4 S4 S1 S4 Compounds Source S1 S2	Total Energy (a.u.)
$\frac{MnNO}{MnI}$ $\frac{MnOI_2}{Mn(H_2O)_4I_2 trans}$ $\frac{Mn(CO)_5I (VUCFAA)}{MnC_{13}N_2H_8O_3I (YOMHEN)}$ $\frac{Compound}{Fe}$ Fe^+ Fe^-	65.8 -7.0 -213.7 -199.4 -83.2 n for Iron Containing Target(kcal/mol) 99.3 281.6 92.0	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1	Total Energy (a.u.)
$\frac{MnNO}{MnI}$ $\frac{MnOI_2}{Mn(H_2O)_4I_2 trans}$ $\frac{Mn(CO)_5I (VUCFAA)}{MnC_{13}N_2H_8O_3I (YOMHEN)}$ $\frac{MnC_1}{Compound}$ Fe Fe ⁺ Fe ⁻ Fe ⁻ Fe ⁻ Fe ⁻ Fe ⁻	65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S2 S1 S2	Total Energy (a.u.)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S2 S1 S2 S2 S2 S2 S2 S2 S2	Total Energy (a.u.)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	65.8 -7.0 -213.7 -199.4 -83.2 n for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S2 S1 S2 S1 S2 S1 S2	Total Energy (a.u.)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	65.8 -7.0 -213.7 -199.4 -83.2 n for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0 113.9	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S6	Total Energy (a.u.)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	131.3 65.8 -7.0 -213.7 -199.4 -83.2 n for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0 113.9 91.1	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1	Total Energy (a.u.)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	131.3 65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0 113.9 91.1 71.0	S3 S4 S4 S1 S4 Compounds Source S1 S2 S7 S6 S1 S6	Total Energy (a.u.)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	131.3 65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0 113.9 91.1 71.0 88.0	S3 S4 S4 S4 Compounds Source S1 S2 S1 S6 S1 S6 S1	Total Energy (a.u.)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	131.3 65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 113.9 91.1 71.0 88.0 57.9	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S6 S1 S6 S1 S6 S1 S6 S1 S6 S1	Total Energy (a.u.)
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	131.3 65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing 99.3 281.6 92.0 654.6 1361.0 180.0 113.9 91.1 71.0 88.0 57.9 210.2	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S6 S1 S6 S1 S6 S1 S6 S1 S4	Total Energy (a.u.)
$\begin{array}{r} \begin{tabular}{ c c c c c } \hline MnI & & & \\ \hline MnOI_2 & & & \\ \hline Mn(CO)_5I & (VUCFAA) & & \\ \hline MnC_{13}N_2H_8O_3I & (YOMHEN) & & \\ \hline & & & & \\ \hline Heat of Formation & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline \hline & & & \\ \hline \hline \hline & & & \\ \hline \hline \hline \hline$	131.3 65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0 113.9 91.1 71.0 88.0 57.9 210.2 60.0	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S6 S1 S6 S1 S4 S1 S4	Total Energy (a.u.)
$\begin{array}{r} \begin{tabular}{ c c c c c } \hline MnI & & & \\ \hline MnOI_2 & & & \\ \hline Mn(CO)_5I & (VUCFAA) & & \\ \hline MnC_{13}N_2H_8O_3I & (YOMHEN) & & \\ \hline & & & & \\ \hline Heat of Formation & & \\ \hline & & & \\ \hline \hline Compound & & \\ \hline Fe & & \\ \hline Fe^+ & & \\ \hline Fe^- & & \\ \hline FeC_{3}H_5 & & \\ \hline Fe(C_5H_5)_2 & & \\ \hline FeO & & \\ \hline FeO & \\ \hline FeO^+ & & \\ \hline \end{array}$	131.3 65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0 113.9 91.1 71.0 88.0 57.9 210.2 60.0 265.0	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S6 S1 S4 S1 S4 S1 S4 S1 S4 S1 S7	Total Energy (a.u.)
$\begin{array}{r} \hline \text{MnNO} \\ \hline \text{MnI} \\ \hline \text{MnOl}_2 \\ \hline \text{Mn(H_2O)_4l_2 trans} \\ \hline \text{Mn(CO)_5l (VUCFAA)} \\ \hline \text{MnC}_{13}N_2H_8O_3l (YOMHEN) \\ \hline \\ \hline & \text{Heat of Formation} \\ \hline \\ \hline \hline & \text{Compound} \\ \hline \hline \\ \hline $	65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0 113.9 91.1 71.0 88.0 57.9 210.2 60.0 265.0 31.0	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S6 S1 S4 S1 S4 S1 S4 S1 S7 S1	Total Energy (a.u.)
$\begin{array}{r} \hline MnNO \\ \hline MnI \\ \hline MnOl_2 \\ \hline Mn(H_2O)_4l_2 trans \\ \hline Mn(CO)_5l (VUCFAA) \\ \hline MnC_{13}N_2H_8O_3l (YOMHEN) \\ \hline \\ \hline \\ \hline Heat of Formation \\ \hline \\ $	65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 1361.0 1339 91.1 71.0 88.0 57.9 210.2 60.0 265.0 31.0 -30.0	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S6 S1 S6 S1 S6 S1 S6 S1 S6 S1 S4 S1 S7 S1 S7 S1 S1 S1	Total Energy (a.u.)
$\begin{array}{c} \hline MnNO \\ \hline MnI \\ \hline MnOl_2 \\ \hline Mn(H_2O)_4l_2 trans \\ \hline Mn(CO)_5l (VUCFAA) \\ \hline MnC_{13}N_2H_8O_3l (YOMHEN) \\ \hline \\ $	65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 1361.0 1361.0 1361.0 1380.0 113.9 91.1 71.0 88.0 57.9 210.2 60.0 265.0 31.0 -30.0 32.0	S3 S4 S4 S1 S4 Compounds S0urce S1 S2 S1 S6 S1 S6 S1 S4 S1 S4 S1 S4 S1 S7 S1 S7 S1 S7 S1 S7	Total Energy (a.u.)
$\begin{tabular}{ c c c c c c } \hline MnI & & & & & & \\ \hline MnOI_2 & & & & & & \\ \hline Mn(CO)_5I (VUCFAA) & & & & & & \\ \hline MnC_{13}N_2H_8O_3I (YOMHEN) & & & & & & \\ \hline Heat of Formation & & & & & \\ \hline MnC_{13}N_2H_8O_3I (YOMHEN) & & & & & \\ \hline Heat of Formation & & & & & \\ \hline Fe^{-} & & & & & & \\ \hline Fe^{-} & & & & & & \\ \hline Fe^{-} & & & & \\ \hline FeC_{3}^{+} & & & & \\ \hline FeO & & & & \\ \hline FeO^{-} & & & & \\ \hline FeO_{4} & & & & \\ \hline FeOH & & & \\ \hline Fe(OH)_2 & & & \\ \hline \end{tabular}$	65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 1361.0 1380.0 113.9 91.1 71.0 88.0 57.9 210.2 60.0 265.0 31.0 -30.0 32.0 -79.0	S3 S4 S4 S1 S4 Compounds S0urce S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S6 S1 S6 S1 S4 S1 S4 S1 S7 S1	Total Energy (a.u.)
$\begin{tabular}{ c c c c c c } \hline MnI & & & & & & & & & & & & & & & & & & &$	131.3 65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0 113.9 91.1 71.0 88.0 57.9 210.2 60.0 265.0 31.0 -30.0 32.0 -79.0 -294.0	S3 S4 S4 S4 S1 S4 Compounds Source S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S6 S1 S4 S1 S4 S1 S4 S1 S4 S1 S7 S1 S4	Total Energy (a.u.)
$\begin{array}{c} \mbox{MnNO} \\ \hline MnI \\ \hline MnOl_2 \\ \hline Mn(H_2O)_4l_2 trans \\ \hline Mn(CO)_5l (VUCFAA) \\ \hline MnC_{13}N_2H_8O_3l (YOMHEN) \\ \hline \\ \hline Heat of Formation \\ \hline \\ \hline Compound \\ \hline Fe \\ \hline Fe^+ \\ \hline Fe^- \\ \hline Fe^- \\ \hline Fe^- \\ \hline Fe^2 \\ \hline Fe^{2+} \\ \hline Fe^{3+} \\ \hline Fe_2 \\ \hline Fe^{3+} \\ \hline Fe_2 \\ \hline FeH \\ \hline Fe_2 \\ \hline FeH \\ \hline FeH \\ \hline FeH \\ \hline FeH \\ \hline FeCH_3 \\ \hline FeC_5H_5 \\ \hline FeC_5H_5 \\ \hline Fe(C_5H_5)_2 \\ \hline Fe(C_5H_5)_2 \\ \hline Fe(C_5H_5)_2^+ \\ \hline FeO \\ \hline FeOH \\ \hline Fe(OH)_2 \\ \hline Fe(H_2O)_4(OH)_2 \\ \hline Fe(H_2O)_5(OH) \\ \hline \end{array}$	65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 180.0 113.9 91.1 71.0 88.0 57.9 210.2 60.0 265.0 31.0 -30.0 32.0 -79.0 -294.0 -162.2	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S6 S1 S6 S1 S6 S1 S6 S1 S6 S1 S4 S1 S7 S1 S7 S1 S7 S1 S7 S1 S7 S1 S4 S4 S4	Total Energy (a.u.)
$\begin{array}{c} \mbox{MnWo}\\ \hline MnI \\ \hline MnOl_2 \\ \hline Mn(H_2O)_4l_2 trans \\ \hline Mn(CO)_5l (VUCFAA) \\ \hline MnC_{13}N_2H_8O_3l (YOMHEN) \\ \hline \\ \hline Heat of Formation \\ \hline \\ \hline Compound \\ \hline Fe \\ \hline Fe^{-} \\ \hline Fe- \\ \hline Fe- \\ \hline FeH \\ \hline \hline FeH \\ \hline \hline FeH \\ \hline FeH \\ \hline FeH \\ \hline \hline FeC_{3}H_{5} \\ \hline FeC_{5}H_{5} \\ \hline Fe(C_{5}H_{5})_{2}^{+} \\ \hline Fe(C_{5}H_{5})_{2}^{+} \\ \hline FeO \\ \hline FeOH \\ \hline FeO(H)_2 \\ \hline Fe(H_2O)_4(OH)_2 \\ \hline Fe(H_2O)_5(OH) \\ \hline Fe(H_2O)_6^{2+} \\ \hline \end{array}$	65.8 -7.0 -213.7 -199.4 -83.2 for Iron Containing Target(kcal/mol) 99.3 281.6 92.0 654.6 1361.0 1361.0 1361.0 1361.0 138.0 113.9 91.1 71.0 88.0 57.9 210.2 60.0 265.0 31.0 -30.0 32.0 -79.0 -294.0 -162.2 64.8	S3 S4 S4 S1 S4 Compounds Source S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S6 S1 S6 S1 S6 S1 S6 S1 S6 S1 S4 S1 S7 S1 S7 S1 S7 S1 S4 S4 S4 S4 S4 S4	Total Energy (a.u.)

Fe(CO)₄H₂	-131.0	S1	
Fe(CO)	63.9	S6	
Fe(CO) ⁻	34.8	S1	
Fe(CO) ₂	0.2	S6	
Fe(CO) ₂	-27.3	S1	
Fe(CO) ₃	-55.8	S6	
Fe(CO) ₃	-99.2	S1	
Fe(CO) ₄	-105.1	S1	
Fe(CO) ₄	-160.9	S1	
Fe(CO) ₄ ²⁻	-115.1	S4	
Fe(CO) ₅	-174.0	S1	
$FeC_6O_{12}^{3-}$ (Fe(III)(Ox) ₃)	-506.7	S4	
$FeC_6H_3O_{12}$ (H ₃ Fe(III)(Ox) ₃)	-516.8	S4	
Fe(CO) ₄ C ₂ H ₄	-129.2	S8	
FeC ₈ H ₂ O ₆ (FCPENO)	-173.8	S4	
FeC ₁₀ H ₁₄ O ₄ (bis(acetylacetonate)iron)	-198.0	S6	
FeC ₁₅ H ₂₁ O ₆ ⁻ (Fe(II)(Acac)3 anion)	-340.2	S1	
Fe ₂ (CO) ₉	-319.2	S1	
$Fe(NH_3)_6^{2+}$	266.4	S4	
Fe(CN) ₆ ³⁻	374.3	S4	
Fe(CN) ₆ ⁴⁻	484.5	S4	
$FeC_6N_6H_{24}^{2+}$ (Fe(II)en) ₃)	283.9	S4	
$FeC_{36}N_6H_{24}^{2+}$ (Ferrous tris(ortho			
phenantholine)	451.2	S4	
FeC ₈ NH ₅ O ₂ (ÁCODUR)	-12.1	S4	
FeC ₉ NH ₈ O ₂ ⁺ (CPACFE)	113.2	S4	
Fe(CO) ₂ (NO) ₂	-75.0	S4	
$FeC_{16}N_5H_{11}O_4$ (FeN3O2)	-53.9	S4	
FeC ₇ NH ₅ O ₅ (CNOFEA)	-89.2	S4	
$FeC_{10}N_2H_{12}O_8^-$ (Iron(III)EDTA)	-405.6	S4	
FeN	174.3	S3	-178.0254633
FeN⁺	348.8	S3	-177.7462654
FeN ⁻	123.7	S3	-178.1057778
FeF	11.4	S1	
Fe(H₂O)₅F ⁺	-184.7	S4	
FeF ₂	-93.1	S1	
FeF ₃	-196.2	S1	
FeF ³⁻	-175.3	S4	
FeAl	157.8	S3	-125.3330308
Fe(AIH ₂) ₂	216.8	S3	-129.6762622
FeSiH	133.7	S3	-127.8403453
FeSiH ₂	125.6	S3	-128.4527619
Fe(SiH ₃) ₂	126.7	S3	-134.7832601
FeP	156.9	S3	-129.8171249
FePH	104.6	S3	-130.4956816
FeS	88.6	S1	
FeC ₉ H ₁₀ SO ₂ (CEYTFE)	-59.3	S4	
FeC ₁₂ H ₁₄ S ₄ O ₂ (CIBGAV10)	-73.1	S4	
FeCl	60.0	S1	
FeCl ₂	-33.7	S1	
FeCl ₃	-60.5	S1	
FeCl ²⁻ (GOXLUA)	-105.2	S4	
FeCl ₆ ³⁻	-56.5	S4	
Fe(H₂O)₅Cl ⁺	-148.4		
FeC _e N ₂ H ₄ ₂ Cl ₂ (FINJIV)	-91 7		
FeTi	179.7	<u> </u>	-181,3805987
FeV	146.0	<u> </u>	-194 6316283
FeCr	215.2	<u> </u>	-209 601116
	210.2	00	200.001110

FeCo	158.4	S3	-268.4543326
FeNi	93.6	S3	-292.6888573
FeCu	140.7	S3	-319.5481875
FeZn	119.7	S3	-188.9789412
FeBr	44.7	S3	-136.6278006
FeBr ₂	-9.9	S1	
Fe ₂ Br ₄	-60.5	S1	
FeC ₆ H ₅ BrO ₃ (ALCFEA)	-110.8	S4	
Fe(H ₂ O) ₅ Br ⁺	-137.9	S4	
$Fe(H_2O)_4Br_2$	-248.8	S4	
FeZr	206.1	S3	-169.8300106
FeMo	251.3	S3	-190.7974445
$Fe(CO)_3(C_3H_5)I$	-82.1	S1	
FeC ₆ H ₅ IO ₃ (ALCOFE10)	-97.1	S4	
Fe(CO) ₄ I ₂	-151.9	S1	
Fe ₂ I ₄	2.0	S1	
Fel ₂	21.0	S1	
Fel	52.9	S3	-134.8446233
FeMn	126.6	S3	-258.893132

Table S2: Sources and calculation details for the ionization potentials and dipole moments used to parameterize.

Koopmans' Theorem Ionization Potentials for Manganese Containing Compounds				
Compound	Target(eV)	Source		
MnH	7.80	S1		
MnO	8.70	S1		
Mn(CO) ₅	8.10	S1		
Mn(CO)₅H	8.85	S1		
MnF ₂	11.40	S1		
MnF ₃	12.60	S1		
MnF ₄	13.50	S1		
MnCl ₂	11.03	S1		
Mn(CO)₅Br	8.83	S1		
MnBr ₂	10.30	S1		
Mn(CO)₅I	8.40	S1		
Koopmans' Theorem Ioniza Containing Compounds	tion Potentials f	for Iron		
Fe(CO) ₄ H ₂	9.65	S6		
Fe(CO) ₂	6.68	S6		
Fe(CO) ₄	8.48	S1		
Fe(CO) ₅	8.60	S1		
FeBr ₂	9.70	S1		
Fe ₂ Br ₄	12.60	S1		
Fe(CO) ₄ H ₂	9.65	S1		
FeCl ₂	10.10	S1		

Dipole Moments for Manganese Containing Compounds				
Compound Target(Debye) Source				
MnH	0.50	S3		
MnN	3.07	S3		

MnNO	5 89	S3
MnO	4 72	S3
MnOH	0.40	S3
MnF	2 27	S3
MnOF	0.53	S4
MnAl	1.67	S3
MnSi	3 27	S3
MnSiH	3.15	S3
MnSiH ₂	3.22	S3
MnP	2.54	S4
MnPH	4.34	S3
MnS	4.22	S4
MnCl	2.36	S3
MnBr	4.29	S4
MnOBr ₂	0.51	S4
Mnl	4.25	S4
MnOl ₂	0.94	S4
Dipole Moments for Ir	on Containing C	Compounds
FeO	7.50	S6
FeCH ₃	0.90	S9
Fe(CO) ₄ C ₂ H ₄	1.50	S10
FeO ₂ (3B1)	2.00	S11
FeO ₂ (5B2)	3.40	S11
Fe(CO) ₃ C ₄ H ₆	2.10	S10
FeC ₆ NH ₃ O ₄ (Fe(CO) ₄		
acetonitrile)	5.00	S10
FeF	4.19	S4
FeO ₂ F ₂	1 60	S4
	1.60	
FeC ₁₀ PH ₁₅ O ₄	1.00	
FeC ₁₀ PH ₁₅ O ₄ (Fe(CO) ₄ (PEt ₃)	5.20	S10
FeC ₁₀ PH ₁₅ O ₄ (Fe(CO) ₄ (PEt ₃) FeCI	5.20 4.51	<u>S10</u> S4
FeCl ₁₀ PH ₁₅ O ₄ (Fe(CO) ₄ (PEt ₃) FeCl FeCl ₂ O ₂	5.20 4.51 0.22	S10 S4 S4
FeC10PH15O4 (Fe(CO)4(PEt3)) FeC1 FeC12O2 FeBr	5.20 4.51 0.22 4.18	S10 S4 S4 S4 S4

Table S3: Sources and calculation details for the geometrical variables used to parameterize.

Geometrical Variables for Manganese Containing Compounds						
Compound Variable Target Source						
Mn ₂	Mn-Mn	2.29	S3			
MnH	Mn-H	1.74	S3			
MnH⁻	Mn-H	1.77	S3			
$Mn(C_5H_5)_2$	Mn-C	2.42	S3			
MnO ₂ ⁻	Mn-O	1.62	S3			
MnO ₃ ⁻	Mn-O	1.59	S3			
MnO ₄ ⁻	Mn-O	1.64	S4			
$Mn(H_2O)_6^{2+}$	Mn-O	2.14	S12			
	Mn-O	2.19	S12			
	Mn-O	2.20	S12			
Mn(CH ₃)O ₃	Mn=O	1.59	S4			

		7	
	Mn-C	1.99	S4
Mn(CO) ₃ ⁻	Mn-C	1.82	S3
Mn(CO) ₅	Mn-C	1.82	S 3
	Mn-C	1.86	S3
Mn(CO)₅H	Mn-C	1.86	S13
	Mn-C	1.85	S13
	H-Mn-C	85.5	S13
Mn(CO)₅CH₃	Mn-C	1.83	S3
(/)	Mn-C	1.85	S3
	Mn-C	2.19	S3
Mn(CO) ₆ ⁺	Mn-C	1.91	S4
Mn(CO) ₅ C ₆ H ₅	Mn-C	1.83	S3
(Mn-C	1.85	S3
	Mn-C	2.15	S3
$Mn(CO)_5(C_6H_5CH_2)$	Mn-C	1.82	S3
	Mn-C	1.85	S3
	Mn-C	2.26	S3
Mn(CO) ₅ COCH ₃	Mn-C	1.84	S3
	Mn-C	1.85	S3
	Mn-C	2.17	S 3
$Mn(CO)_5(C_6H_5CO)$	Mn-C	1.84	S3
	Mn-C	1.85	S 3
	Mn-C	2.18	S 3
$MnC_6H_8O_{10}^-$ (KAMMND)	Mn-O	1.90	S14
	Mn-O	2.30	S14
	O-Mn-O	91.7	S14
MnC ₉ H ₁₂ O (BUTMNC)	Mn-C	1.81	S14
	Mn-C	2.15	S14
Mn(CO) ₃ Cp (CPMNCO)	Mn-C(ring)	2.14	S14
	Mn-C(O)	1.79	S14
	C-Mn-C	91.4	S14
MnC ₉ H ₇ O ₃ (HEXMNC)	Mn-C	2.15	S14
	Mn-C	1.78	S14
Mn ₂ C ₈ H ₁₂ O ₈ (Mn ₂ (Ac) ₄)	Mn-Mn	3.31	S14
Mn ₂ (CO) ₁₀	Mn-Mn	2.89	S14
Mn ₂ (CO) ₁₀ C ₂ (JIPVOT)	Mn-C	1.86	S14
	Mn-C	1.83	S14
	C-Mn-C	85.9	S14
MnN	Mn-N	1.59	S3
MnNO	Mn-N	1.73	S3
$Mn(NH_{3})_{6}^{2+}$	Mn-N	2.16	S4
Mn(CO)(NO) ₃	Mn-N	1.70	S4
	Mn-C	1.87	S4
	C-Mn-N	106.0	S4
$MnC_{10}N_2H_{12}O_8^-$	Ma	0.00	S 4 4
	Nn-O	2.02	514
	IVIN-O	1.89	Q14
		2.24	014 011
		88.3	014 017
		//.5	Q14
$\frac{1}{12} \frac{1}{12} \frac$	Mn N	2.15	S14 S1/
		2.26	Q1/
		85.4	514
$\frac{1}{12} \frac{1}{12} \frac{1}{16} \frac$	WIN-O	2.10	

phenanthroline			
tetrahydrate)			S12
MnF	Mn-F	1.82	S3
MnF ₂	Mn-F	1.79	S3
MnF ₂ ⁻	Mn-F	1.86	S3
MnOF ₂	Mn-O	1.55	S4
	Mn-F	1.72	S4
	O-Mn-F	121.3	S4
$Mn(H_2O)_4F_2$ trans	Mn-F	1.98	S4
	Mn-O	2.13	S4
$MnC_7HO_5F_2$ (CDFVMN)	Mn-C	1.72	S14
	Mn-C	1.77	S14
	Mn-C	1.94	S14
	C-Mn-C	93.8	S14
MnF ₃	Mn-F	1.79	S3
	F-Mn-F	120.0	S3
MnC ₇ O ₇ F ₃ (FACMNA)	Mn-C	1.81	S14
	Mn-O	2.03	S14
$Mn_2(CO)_8(CF_2)_2$ (DOFPET)	Mn-Mn	2.66	S14
	Mn-C(F ₂)	2.02	S14
	Mn-C(O)	1.88	S14
	C-Mn-Mn	49.4	S14
MnAl	Mn-Al	2.34	S3
Mn(AIH ₂) ₂	Mn-Al	2.41	S3
MnSi	Mn-Si	2.34	S3
MnSiH	Mn-Si	2.34	S3
MnSiH ₂	Mn-Si	2.38	S3
MnSi ₂ C ₉ H ₁₅ O ₅ (KIRYUF)	Mn-Si	2.34	S14
	Mn-O	2.95	S14
	Si-Mn-Si	71.2	S14
MnP	Mn-P	1.97	S4
MnPH	Mn-P	2.22	S3
MnS	Mn-S	1.99	S4
MnS ₂	Mn-S	2.20	S3
$MnC_9H_{11}SO_2$ (VALXAI)	Mn-S	2.27	S14
	Mn-C(O)	1.77	S14
	Mn-C(C ₄)	2.12	S14
$MnC_7H_5SO_4$ (CPCSMN)	Mn-S	2.04	S14
	Mn-C	1.79	S14
	Mn-C'	2.10	S14
	S-Mn-C	91.0	S14
$MnC_7N_2H_{12}S_4^-$ (COWHOL)	Mn-S	2.32	S14
	S-Mn-S	157.5	514
$MnC_7H_{10}S_2CIO_3 (GEQLUJ)$	Mn-S	2.39	514
	Mn-C	1.80	514
	Mn-Cl	2.38	S14
	S-Mn-Cl	92.2	514
$MnC_4N_2H_8S_2O_6$ (WIFSEJ)	Mn-S	2.61	S14
	Mn-O	2.20	S14
	O-Mn-S	87.3	S14
MnCl	Mn-Cl	2.12	S4
Mn(CO) ₅ CI (ZOSWEJ)	Mn-Cl	2.37	S14
	Mn-C	1.81	S14
	Mn-C	1.89	S14

Mn(H ₂ O) ₄ Cl ₂ trans	Mn-Cl	2.36	S4
	Mn-O	2.10	S4
	Mn-O	2.50	S4
	Mn-O	2.52	S4
Mn ₂ Cl ₄	Mn-Mn	2.29	S4
	Mn-Cl	2.13	S4
MnCl ₂ O	Mn-O	1.55	S4
	Mn-Cl	2.10	S4
	O-Mn-Cl	121.5	S4
$MnC_{12}N_4H_{12}CI_2O$			
(MUPYUR)	Mn-Cl	2.47	S14
	Mn-N(py)	2.26	S14
	Mn-N'	2.34	S14
	N-Mn-N'	95.2	S14
MnTi	Mn-Ti	2.25	S3
MnV ₂	Mn-V	2.28	S3
MnCr	Mn-Cr	2.35	S3
MnCo	Mn-Co	2.44	S3
MnNi	Mn-Ni	2.50	S3
MnCu	Mn-Cu	2.50	S3
MnZn	Mn-Zn	2.62	S3
MnBr	Mn-Br	2.25	S4
MnBr ₂	Mn-Br	2.34	S4
MnOBr ₂	Mn-Br	2.24	S4
	Mn-Q	1.55	S4
	O-Mn-Br	120.7	S4
$Mn(H_2O)_4Br_2$ trans	Mn-Br	2 50	S4
	Mn-O	2.00	S4
Mn(CO)-Br	Mn-Br	2.10	S3
111(00)501	Mn-C	1.82	<u>S3</u>
	Mn-C'	1.02	
MpBr ²⁻ (PYDMNB)	Mn-Br	2 50	S14
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	Mn-Al	2.00	S14
	Mn-C	1.95	S14
	Mn-C'	1.00	S14
	Br-Al-Mp	1/0.2	S14
MnZr	Mn-7r	2/3	53
MpMo	Mn-Mo	2.43	
Mol	Mn-I	2.21	S4
MpOL	Mn I	2.40	54
	Mn-O	2.45	S4
	Mil-O	120.1	S4
Mp(H,O) L trans	Mn_l	2 72	S4
	Mn O	2.13	<u>S4</u>
	Mn I	2.00	\$1 <i>1</i>
	Mn-C	2.09	S14
	Mn I	1.04	S14
		2.12	S14
	IVIN-IN	2.05	Q14
		1.//	S14 S14
	I-IVIN-ÍN	87.7	014
$Mn_2(CO)_8I_2$ (SIZYUV)	IVIN-IVIN	3.98	S14
	Mn-I	2.70	514
	Mn-C	1.88	514
	I-Mn-Mn	42.6	514

MnI(SH)	Mn-I	2.41	S4
	Mn-S	2.10	S4
	I-Mn-S	115.6	S4
MnI(F)(PH ₂)(SH)	Mn-I	2.50	S4
	Mn-F	1.75	S4
	Mn-P	2.27	S4
	Mn-S	2.16	S4
Geometrical Variables f	or Iron Containir	ng Compo	ounds
Compound	Variable	Target	Source
Fe ₂	Fe-Fe	2.19	S3
FeH	Fe-H	1.63	S4
FeH⁻	Fe-H	1.69	S3
FeH⁺	Fe-H	1.60	S4
FeCH ₃	Fe-C	1.97	S3
FeC ₅ H ₅	Fe-C	2.17	S3
$Fe(C_5H_5)_2$	Fe-C	2.06	S4
Fe(III)Cp2 ⁺	Fe-C	2.06	S4
FeO	Fe-O	1.62	S4
FeO⁻	Fe-O	1.69	S3
FeO⁺	Fe-O	1.56	S3
FeO ₂	Fe-O	1.71	S3
FeOH	Fe-O	1.83	S4
Fe(OH) ₂	Fe-O	1.78	S3
$Fe(H_2O)_4(OH)_2$	Fe-O	2.02	S4
	Fe-O	2.08	S4
Fe(H₂O)₅(OH)	Fe-O	1.95	S4
	Fe-O	2 05	S4
$Fe(H_2O)_{e}^{2+}$	Fe-O	2.07	S4
	Fe-O	2 15	S4
$Fe(H_2O)_{e}^{3+}$	Fe-O	2.06	S12
FeCH ₅ O ₂ (methyl			
iron(III)dihydroxide)	Fe-O	1.75	S4
	Fe-C	1.93	S4
Fe(CO)	Fe-C	1.72	S3
Fe(CO) ⁻	Fe-C	1.79	S3
Fe(CO) ₂	Fe-C	1.84	S3
Fe(CO) ₂ ⁻	Fe-C	1.79	S3
Fe(CO) ₃	Fe-C	1.67	S3
Fe(CO) ₃ ⁻	Fe-C	1.82	S3
Fe(CO) ₄	Fe-C	1.78	S3
	Fe-C	1.82	S3
Fe(CO) ₄ ⁻	Fe-C	1.78	S3
Fe(CO) ₄ ²⁻	Fe-C	1.75	S4
Fe(CO) ₄ H ₂	Fe-C	1.81	S15
	Fe-H	1.56	S15
	H-Fe-C	89.9	S15
Fe(CO) ₅	Fe-C(eq)	1.81	S4
	Fe-C(ax)	1.81	S4
Fe(CO) ₄ C ₂ H ₄	Fe-C	1.81	S4
	Fe-C	2.13	S4
$FeC_6O_{12}^{3-}$ (Fe(III)(Ox) ₃)	Fe-O	1.97	S4
	O-Fe-O	83.2	S4
FeC ₆ H ₃ O ₁₂ (H ₃ Fe(III)(Ox) ₃)	Fe-O	1.92	S4
	Fe-O	2.03	S4

$FeC_7H_4O_3$ (cyclobutadiene iron			
tricarbonyl)	Fe-C(C=O)	1.79	S4
	Fe-C(C ₄ H ₄)	2.06	S4
	C-Fe-C	99.3	S4
FeC ₈ H ₂ O ₆ (FCPENO)	Fe-C	1.81	S14
	Fe-C	2.02	S14
FeC ₉ H ₁₂ O (BUDFEC01)	Fe-C(O)	1.77	S14
	Fe-C	2.06	S14
	C-Fe-C	125.6	S1
FeC ₉ H ₁₂ O (FeCO(1,3-C ₄ H ₆) ₂)	Fe-C	2.11	S4
	C-Fe-C	88.8	S4
Fe ₂ (CO) ₉	Fe-C	1.83	S16
	Fe-C	1.98	S16
	Fe-C#O	180.0	S16
	Fe-C#O	140.7	S16
$FeC_{10}H_{14}O_4$ (Fe(II)(Acac) ₂)	Fe-O	1.90	S4
	O-Fe-O	93.9	S4
$FeC_{15}H_{21}O_{6}^{-}$ (Fe(II)(Acac) ₃)	Fe-O	1.97	S4
	O-Fe-O	95.1	S4
FeN	Fe-N	1.56	S3
FeN ⁺	Fe-N	1.58	S3
FeN⁻	Fe-N	1.58	S3
$Fe(NH_3)_6^{2+}$	Fe-N	2.10	S4
Fe(CN) ₆ ⁴⁻	Fe-C	1.99	S3
	C-Fe-C	180.0	S3
Fe(CO) ₂ (NO) ₂	Fe-C	1.82	S4
	Fe-N	1.68	S4
	C-Fe-C	98.7	S4
	N-Fe-N	109.0	S4
$FeC_{e}N_{e}H_{24}^{2+}$ (Fe(II)en) ₂)	Fe-N	2.13	S4
$FeC_7NH_5O_5$ (CNOFEA)	Fe-C	1.79	S14
	Fe-C	2.09	S14
	Fe-O	1.97	S14
FeC ₈ NH ₅ O ₂ (ACODUR)	Fe-C	1.91	S14
	Fe-C	1.78	S14
	Fe-C	2.19	S14
	C-Fe-C	89.2	S14
FeC₀NH₀O₂ ⁺ (CPACFE)	Fe-N	1.91	S14
5 6 2 ()	Fe-C	1.77	S14
FeC ₁₀ N ₄ H ₁₀ O ₆ (Diagua-			S17
bis(pyrazinecarboxylato)-iron)	Fe-O	2.11	
	Fe-N	2.12	S17
	Fe-OH ₂	2.14	S17
	O-Fe-N	78.1	S17
$FeC_{10}N_2H_{12}O_8^-$ (Iron(III)EDTA)	Fe-N	2.03	S4
FeC ₁₆ N ₅ H ₁₁ O ₄ (FeN3O2)	Fe-O	2.12	S4
	Fe-O	1.92	S4
	Fe-N	1.89	S4
	O-Fe-O	81.4	S4
FeC ₁₇ N ₂ H ₁₆ (Toluene-(2,2'-			
bipyridine)-iron)	Fe-N	1.90	S18
	Fe-C	2.11	S18
	N-Fe-N	81.9	S18
	N-Fe-C	122.8	S18

$\frac{\text{FeC}_{20}\text{H}_{12}\text{N}_{4} \text{ (iron porphyrin)}}{\text{FeC}_{20}\text{N}_{4} + (for rough the second s$	Fe-N	1.97	S4
reu ₃₆ N ₆ H ₂₄ (Terrous	Fe-N	2 05	S/
	Fo F	1.76	54
Fe(II)(H ₂ O) ₂ F ⁺	Fo-F	1.70	.54
		2.05	S4
EoE		2.00	-0 S/
FeF_2 FeO_FF_1 (iron()/I) diffuoride	ге-г	1.77	0-
dioxide)	Fe-F	1.74	S4
	Fe=O	1.58	S4
FeF ₂	Fe-F	1.78	S3
FeF ³⁻	Fe-F	2.06	S4
FeAl	Fe-Al	2.30	S3
Fe(AIH ₂) ₂	Fe-Al	2.47	S3
FeSiH	Fe-Si	2.30	S3
FeSiH ₂	Fe-Si	2.00	S3
Fe(SiH ₂) ₂	Fe-Si	2.52	S3
FeP	Fe-P	2.02	S.3
FePH	Fe-P	2.20	Sa
$FeC_{40}P_{4}H_{04}S_{2}$ ($IIVFAV$)	Fe-S	2.20	S1
1 00 ₁₂ 1 4113402 (0111 AT)	Fe-P	2.00	S1.
	P-Fe-S	80 /	S1/
FeS	Fe-S	2 04	Sa
Fo(SH)	Fa-S	2.04	53
$FeC_{eH_{10}}SO_{e} (CEVTEE)$	Fa-S	2.20	.54
$rev_9\Pi_{10}$ ov2 (UETIFE)		1 75	.54
	F_{0}	2 1.70	.54
	$C_{-}E_{0}$	00.7	.5/
FeC ₁₆ N ₂ H ₁₈ S ₂ O ₂ (dicarbonyl ethylenediamine		50.7	
bis(phenylthiolato)iron)	Fe-S	2.33	<u>S</u> 1
	Fe-S	2.34	S19
	Fe-N	2.04	S19
	Fe-N	2.03	S1
	Fe-C	1.76	S19
	N-Fe-S	86.8	S1
	C-Fe-S	93.2	S19
FeC ₉ N ₃ H ₁₈ S ₃ O ₃ (tris(N,N-			
dimethylthiocarbamato)iron(III))	Fe-S	2.43	S2
	Fe-O	2.09	S2
	S-Fe-O	68.9	S2
	S-Fe-S	103.1	S2
Fe ₄ S ₄	Fe-S	2.27	S3
FeC ₁₂ H ₁₄ S ₄ O ₂ (CIBGAV10)	Fe-S	2.31	S1-
	Fe-C	1.80	S1
	S-Fe-S	85.2	S1
	C-Fe-S	90.1	S1-
FeC ₁₄ N ₆ H ₁₆ S ₆ (diisothiocyanato-bisthiazoline			
iron(II))	Fe-N	2.19	S2
	Fe-N(CS)	2.08	S2
	N-Fe-N SCN-Fe-	73.9	S2
	NCS	97.4	S2

Fe(II)(H ₂ O) ₅ Cl ⁺	Fe-Cl	2.29	S4
	Fe-O	2.06	S4
FeCl ₂	Fe-Cl	2.16	S4
FeCl ₃	Fe-Cl	2.16	S3
FeC ₆ N ₂ H ₁₈ Cl ₃ (FINJIV)	Fe-Cl	2.23	S14
	Fe-N	2.27	S14
	CI-Fe-CI	121.0	S14
FeCl ₄ ⁻	Fe-Cl	2.19	S4
FeCl ₄ ^{2–} (GOXLUA)	Fe-Cl	2.34	S14
FeCl ₆ ³⁻	Fe-Cl	2.53	S4
FeTi	Fe-Ti	2.54	S3
FeV	Fe-V	2.31	S3
FeCr	Fe-Cr	2.27	S3
FeMn	Fe-Mn	2.40	S3
FeCo	Fe-Co	2.31	S3
FeNi	Fe-Ni	2.33	S3
FeCu	Fe-Cu	2.31	S3
FeZn	Fe-Zn	2.53	S3
FeBr	Fe-Br	2.23	S4
FeBr ₂	Fe-Br	2.31	S3
FeC ₆ H₅BrO₃ (ALCFEA)	Fe-Br	2.50	S14
	Fe-C(C ₂)	2.13	S14
	Fe-C(O)	1.79	S14
	C-Fe-Br	88.6	S14
Fe(H₂O)₅Br ⁺	Fe-Br	2.42	S4
	Fe-O	2.06	S4
Fe(H ₂ O) ₄ Br ₂	Fe-O	2.07	S4
	Fe-Br	2.50	S4
FeC ₄ H ₈ BrO ₇ (Diaquabromo(oxydiacetato- O,O',O")-iron(III))	Fe-Br Fe-O Br-Fe-O	2.37 2.00 105.6	S4 S4 S4
FeBraOa	Fe-Br	2 27	S4
	Fe=O	1.58	S4
	Br-Br-Fe	110.6	S4
FeZr	Fe-Zr	2 59	S3
FeMo	Fe-Mo	2 21	S3
Fel	Fe-l	2 44	S4
	Fe-l	2.44	
		1 80	
	C-Fe-I	81.6	<u>S4</u>
		2 75	S14
		2.70	<u>S14</u>
		01 G	<u>S14</u>
Fol		01.0	52
Fel ₂	Fe-I	2.50	S3

REFERENCES

- [S1] NIST Chemistry WebBook, NIST Standard Reference Database Number 69, (http://webbook.nist.gov/), Linstrom P., Mallard W. National Institute of Standards and Technology: Gaithersburg MD, 20899, 2003
- [S2] Derived from ionization energies.
- [S3] B3LYP/LANL2DZ with polarization functions, see main text for references.
- [S4] Stewart J.J.P., www.openmopac.net
- [S5] Cox J.O., Pilcher G., "Thermochemistry of Organic and Organometallic Compounds," Academic Press, New York, N.Y., 1970.
- [S6] Holder A. J. (1994) "SAM1 Semiempirical Parameters", Report, University of Missouri Kansas City Dept. of Chemistry, AFOSR-NL-94-29773.
- [S7] Lias S.G., Bartmess J.E., Liebman J.F., Holmes J.L., Levin R.D., Mallard W.G.
 (1988) "Gas Phase Ion and Neutral Thermochemistry", J. Phys. Chem., Ref. Data, Suppl. 1, 17.
- [S8] Pilcher G., Skinner H.A. (1982) The Chemistry of the Metal-Carbon Bond, F.R. Hartley and S. Patai, Eds., Wiley, New York, pp. 43-90.
- [S9] Bauschlicher C.W., Langhoff S.R., Partridge H., Barnes L.A. (1989) J. Chem. Phys. 91(4):2399-2411.
- [S10] L. McClellan A.L. (1974) "Tables of Experimental Dipole Moments," Vol 2, Rahara Enterprises, El Cerrito.
- [S11] Gutsev G.L., Khanna S.N., Rao B.K., Jena P. (1999), J. Phys. Chem. A 103(29):5812-5822.
- [S12] Zeitschrift für Kristallographie, New Crystal Structures, http://www.oldenbourg.de/verlag/zkristallogr/mn-ncsfi2000.htm
- [S13] LaPlaca S.J., Hamilton W.C., Ibers J.A., Davidson A. (1969), Inorg. Chem. 8(9):1928-1935.
- [S14] Cambridge Structural Database, Version 5.28 (2007) Cambridge Crystallographic Data Centre, Cambridge, UK.
- [S15] Simoes M., Beauchamp J.L. (1990) Chem. Rev. 90:629-688.
- [S16] Cotton F.A., Troup J.M. (1974) J. Chem. Soc., Dalton Trans. 800-802.
- [S17] Klein C.L., O'Connor C.J., Majeste R.J., Trefonas L.M. (1982), J. Chem. Soc., Dalton Trans. 2419-2423.
- [S18] Radonovich L.J., Eyring M.W., Groshens T.J., Klabunde K.J. (1982) J. Am. Chem. Soc. 104:2816-2819.

- [S19] Takacs J., Soos E., Nagy-Magos Z., Marko L., Gervasio G., Hoffmann T. (1989) Inorg. Chim. Acta 166:39-46.
- [S20] Ahmed J., Ibers J.A. (1977) Inorg. Chem. 16:935-937.
- [S21] Ozarowski A., McGarvey B.R., Sarkar A.B., Drake J.E. (1988) Inorg. Chem. 27:628-635