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Abstract: In this paper, a simple Lyapunov sampling is proposed. Contrary to a periodic
fashion which samples the system uniformly in time, an event-based scheme updates the control
signal only when the system trajectory sufficiently changes. Furthermore, the present triggering
mechanism is based on a Lyapunov function in order to enforce the events only when required
from a stability point of view. Nevertheless, whereas the Lyapunov sampling mechanism initially
introduced in ? requires to execute a computationally heavy off-line algorithm, a fully on-
line version is developed in this paper. The different approaches are tested (in simulation and
practice) to show the efficiency of such an event-based control and, eventually, the performance
remains ensured even if the constraint on the stability is relaxed.

Keywords: Event-based control, Lyapunov sampling, experimental tests

INTRODUCTION

The classical so-called discrete time framework of con-
trolled systems consists in sampling the system uniformly
in time with a constant sampling period hnom. This field is
denoted the time-triggered case (or the synchronous case
in sense that all the signal measurements are synchronous).
Although periodicity simplifies the design and analysis,
it results in a conservative usage of resources since the
control law is computed and updated every time instants
tk = k · hnom, that is at the same rate regardless it is
really required or not. Actually, some works addressed
more recently resource-aware implementations of the con-
trol law, using event-based sampling (also called asyn-
chronous) where the control law is event-driven. Typical
event-detection mechanisms are functions on the variation
of the state - or at least the output - of the system in
order to update the control law when required from a
performance point of view. This is the case in ??????.
In ? in particular, it is proved that such an approach
reduces the number of sampling instants for the same
final performance. An alternative approach also consists
in enforcing events when required from a stability point of
view, where the sampling is related to the variation of a
Lyapunov function. This is notably depicted in ??. Such a
paradigm calls for resources whenever they are indeed nec-
essary and, moreover, the stability of the controlled system
is guaranteed even if the time between two samples is im-
portant. We then base our analysis more specifically on the
Lyapunov sampling mechanism initially introduced in ?.
This seminal work consists in enforcing the control updates
only when the system trajectory reaches a given value, but
relies on a heavy off-line computation in order to find the

sampling triggering condition. In this paper, we propose to
lighten the algorithm in suggesting some relaxations of the
Lyapunov sampling condition. This is applied to a state-
feedback control law where the control parameter are de-
duced from the same Lyapunov function. The next section
recalls the state-feedback background and more especially
applies this architecture to even-driven systems. The Lya-
punov sampling triggering mechanism is also introduced.
The main contributions are then developed in section 2.
At the end, our less-conservative proposals are successfully
compared in simulation in section 3 and experimentally
in section 4 (in terms of performance and computational
needs).

1. EVENT-DRIVEN STATE-FEEDBACK CONTROL
BASED ON LYAPUNOV SAMPLING

A linear continuous-time state-space representation is

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

and a state-feedback control law is given by

u(t) = −Kx(t) (2)

Take P, a positive definite matrix solution of the Riccati
equation PA+ATP − 2PBBTP = −Q, where Q is also a
positive definite matrix. Then,

V (x) = xT (t)Px(t) (3)

is a Lyapunov function which makes the system (1) stable
if for all x(t) 6= 0 the control law (2) renders the Lyapunov



derivative function strictly negative. A common solution
is choosing K = BTP and the control law finally becomes

u(t) = −BTPx(t)

Eventually, an event-driven control scheme updates the
control signal only at some discrete instants. Let ta be
the beginning time of the current control sample, that is
the last time an event occurs, and ta+1 be the next time a
control signal will be calculated. The sampling interval h(·)
hence depends on these time instants, i.e. h(ta) = ta−ta−1
for instance. Furthermore, the control signal is constant
during the whole sampling interval, which yields

∀t ∈
[
ta, ta+1

)
u(t) = −Kx(ta) = −Kxa

In the present study case, the sampling instants are en-
forced with respect to V (x). Indeed, an event condition
based on Lyapunov functions was investigated in ?. Con-
sidering that constant values of a Lyapunov function de-
fine some contour curves that form closed regions around
the equilibrium point, the proposed sampling mechanism
enforces job executions each time the system trajectory
reaches a given contour curve. Such a sampling mechanism
is illustrated in Fig. 1 for a two-state system. Actually, the
discretization of a given Lyapunov function in the energy
space domain - that is the (x1, x2) plane in this case -
defines a set of ellipses of constant energy. The system
trajectory can then move between them without requiring
control actions and control jobs are only activated each
time the trajectory intersects a contour curve from out-
side to inside. Therefore, by construction, the generated
samples are stable in the Lyapunov sense since the system
energy decreases event after event. This triggering mech-
anism is called Lyapunov sampling.

x1

x2 control job execution

trajectory

Fig. 1. Lyapunov sampling principle for a two-state system

1.1 Lyapunov sampling

The Lyapunov sampling mechanism is enforced when

V (xa) = ηV (xa−1) (4)

where the energy gain factor η is a tunable parameter
used for event detection: for some small values of η large
sampling periods are expected whereas large values will
reduce the time between two events. By construction, the
sampling scheme is stable in the discrete Lyapunov sense
if η is restricted to 0 < η < 1.

1.2 Stable Lyapunov sampling

Although the Lyapunov sampling guarantees stable sam-
pling sequences in the Lyapunov sense, nothing is ensured

about the stability of the continuous-time dynamics. In-
deed, if the system energy increases before the next sam-
pling instant, the condition from (4) will not be validated
and an event will hence not occur. Two Lyapunov sampling
triggering cases are hence possible. If η is correctly chosen
the system trajectory will cross contour curves again and
again until achieving the equilibrium point. On the other
hand, with a non adapted η value the system energy could
increase before achieving the next ellipse. In this case,
a new event will never occur and the system becomes
unstable. For this reason, an infinite sequence of samples
has to be generated. One has to determine when the energy
decrease produced by the system trajectory up to the
point it starts is gaining energy again and, then, placing
a contour curve passing for that point would guarantee a
new sample. Actually, this strongly relates to the energy
gain factor η and, therefore, a restriction in the Lyapunov
sampling condition is required. Finally, an infinite sam-
pling sequence is ensured if

η∗ < η < 1 (5)

where 0 ≤ η∗ ≤ 1 is the minimum energy gain factor.
This condition presents the stable Lyapunov sampling
mechanism.

1.3 Event-detection improvement

As already explained, the Lyapunov sampling mechanism
allows to activate some control jobs only when the trajec-
tory intersects a contour curve from outside to inside. A
restriction is then added in order to guarantee that contour
curves are crossed again and again and so is decreasing
the system energy. However, if the next curve could not
be achieved for a certain reason (such as if a perturbation
occurs) the system trajectory will diverge anyway - going
from inside to outside - without (almost) any chance to
cross again that contour curve. For this reason, we propose
to add a safety condition in the event-detection scheme in
order to enforce a job execution as soon as the system
energy increases, that is when

∆V > 0 (6)

with ∆V = V (xa)− V (xa−1)

2. A LESS-CONSERVATIVE LYAPUNOV SAMPLING

The idea is to soften the sampling scheme introduced
in ? and depicted above. Actually, the stable Lyapunov
sampling mechanism is based on restricting η in the
Lyapunov sampling condition (4), in such a way that the
energy decreases again and again at each sample. The
resulting restriction is given in (5). However, computing
the minimum energy gain factor is not trivial because
this is a non-convex problem. Indeed, η∗ is calculated
for a given system to control and a given Lyapunov
function. Moreover, whereas some simplifications exist for
linear systems, this parameter cannot be easily calculated
for nonlinear systems and, finally, its existence is not
(always) guaranteed. As a result, the resulting algorithm is
computationally heavy and will probably take a long time,
this is why it needs to be executed off line. Therefore, we
propose to relax the constraint on the energy gain factor



(in order to not have to use η∗ in the algorithm anymore).
On the other hand, once obtained the minimum energy
gain factor (when existing) a “stable” value - just greater
than η∗ - is then applied in the sampling condition (4)
for the whole running time. This is highly conservative
since a large value will reduce the time between events.
This value can also be large insomuch - very closed
to 1 - as some events will occur (quasi)-continuously.
Eventually, η∗ is obtained in calculating the minimum
achieved energy without changing the control signal for
any initial condition x0 (assuming that this minimum
exists), that is

V ∗(x0) = min
t
V
(
x(t, x0)

)
∀t ≥ 0

where x(t, x0) is the solution of the closed-loop system (1)
when u(t) = −Kx0. The value that minimizes the min-
imum distance between the initial energy V (x0) and the
minimum achieved energy V ∗(x0) for all possible initial
conditions then gives the minimum energy gain factor

η∗ = max
x0

V ∗(x0)

V (x0)

One could refer to ? for further details. Consequently, it
can be assumed that the dynamics of the system is stable
even for a large number of values of η smaller than η∗.
This is why we also propose to make dynamically varying
the energy gain factor. This will allow to enlarge the
sampling intervals when the system is stable. One just has
to keep in mind that the system could become unstable
and, therefore, quickly react when this appends. Let

η(ta) = ηa

be the varying energy gain factor at the current sampling
instant ta. This parameter is now updated in the event-
driven fashion and then used in the Lyapunov sampling
condition (4), which becomes

V (xa) = ηa−1V (xa−1)

where 0 < η(·) < 1, by construction yet.

Relaxation 1: The first guess is to slowly decrease η when
the energy decreases (the constraint on the energy gain
factor is relaxed when the system is stable in order to
distance the events) and changing it back to η∗ as soon
as the energy increases (in order to stabilize the system
again since this minimum value ensure a stable sampling
sequence). The resulting algorithm is

ηa =

{
η∗ + ε if ∆V > 0
(1− ν)ηa−1 otherwise

where ε ∈ R+ allows to guarantee the left inequality in (5)
while 0 < ν < 1 leads to decrease the value of the energy
gain factor. Note that ∆V was already defined in (6).
Anyway, this first relaxation still requires the heavy off-
line algorithm to calculate η∗.

Relaxation 2: An on-line version can be easily obtained
replacing this parameter by the right inequality limit in
the sampling condition (5) (since this value also ensure a
stable sequence). This yields

ηa =

{
1− ε if ∆V > 0
(1− ν)ηa−1 otherwise

The paying tradeoff is an increase of the sampling instants,
because the system (almost) runs with a time-triggered
behavior as soon as the system becomes unstable, that is
when η(t) = 1 − ε. Nevertheless, the cost of the resulting
fully on-line algorithm is strongly cut.

Relaxation 3: Such as we previously suggested to slowly
decrease the energy gain factor when the system is stable,
we now propose to slowly increase it while the system
dynamics is unstable. The idea is that the system becomes
stable with a value lower than η∗ for some initial conditions
(as explained in introduction). Eventually, in the case
where the system is still not stabilized, the value of η(·) is
increased again and again until achieving a stable value.
This leads

ηa =

{
(1 + ν)ηa−1 if ∆V > 0
(1− ν)ηa−1 otherwise

where ν > 0 while a saturation function is required to not
overshoot the maximum possible value 1− ε.
Relaxation 4: Actually, the latter expression can be
reformulated. Firstly, the energy gain factor is function of
the variation of the Lyapunov function, which can hence
be used to decide when increase or decrease its value. This
leads to

ηa =
(

1 + υ∆V
)
ηa−1

where υ ∈ R+ is a tunable parameter. Moreover, one
could note that ∆V is already calculated in the Lyapunov
sampling mechanism improvement (6), which means that
the computational cost of this algorithm is not increased.
Then, it is also possible to take into account the sampling
interval in order to highly correct the energy gain factor
when the system becomes unstable after a large steady-
state time. The resulting relation is

ηa =
(

1 + υh(ta)∆V
)
ηa−1

One could note that, in fact, the sampling interval nat-
urally comes from the discretization of η̇(t) = υV̇ (x)η(t)
(using the backward difference approximation).

3. SIMULATION RESULTS: APPLICATION TO A
DOUBLE INTEGRATOR SYSTEM

In order to compare our proposal with the original work
of ?, we propose to simulate the same system in Mat-
lab/Simulink. This is the double integrator system, whose
state-space representation (1) is given by

A =

[
0 1
0 0

]
and B =

[
0
1

]
The initial condition is

x0 =

[
0
−3

]
and the control parameters in (2) and (3) are



P =

[
1.1455 0.1

0.1 0.0545

]
and K = [ 10 11 ]

The bench used to test the different strategies is a 10 s
simulation done with Matlab/Simulink.

The Lyapunov sampling mechanism consists in enforcing
a control job when the system trajectory crosses a given
level, such as defined in subsection 1.1. This scheme is
firstly simulated for two different values of the energy gain
factor whose results are shown in Fig. 2. The left plot
shows the system trajectory in the energy space domain
- that is the (x1, x2) plane in the present case - while the
right side represents the system energy in the top plot, i.e.
the Lyapunov function, and the evolution of the sampling
intervals with respect to time in the bottom one. The total
number of samples is also indicated.

• In Fig. 2(a) with η = 0.8, the system is stable in the
Lyapunov sense (since the energy function decreases)
and the dynamics of the continuous system is stable
too (since the trajectory system tends to the origin).
Moreover, the performances are quite similar to the
classical approach - not represented here - with a real
reduction of the number of samples (about 91 % less
than with a periodic sampling period hnom = 0.01 s).

• In Fig. 2(b) with η = 0.65, the system is unstable.
Indeed, the system diverges after a certain time
because the next level is never achieved due to a bad
value of the energy gain factor. Thus, the triggering
condition is never satisfied and, as a result, the control
signal is not updated anymore.

Fortunately, the stable Lyapunov sampling mechanism
allows to avoid that problem in restricting the energy
gain factor. Nevertheless, a simple solution - introduced
in subsection 1.3 - consists in calculating the control
signal as soon as the system energy increases, in order to
be reactive when such an unstable behavior occurs. The
resulting simulation results are shown in Fig. 3, where the
sampling intervals vary more chaotically but the system
trajectory finally goes to the origin. Furthermore, this
solution is interesting for some systems which have to
track a given setpoint, since the Lyapunov function will
inevitably increase each time the setpoint changes. For this
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(b) Unstable Lyapunov sampling with η = 0.65

Fig. 2. Lyapunov sampling: stable and unstable behaviors.

reason, the event detection improvement is applied in the
following simulations.
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Fig. 3. Lyapunov sampling with event-detection improve-
ment.

A stable Lyapunov sampling mechanism - detailed in
subsection 1.2 - is required to guarantee that the sys-
tem energy always decreases and the next level is hence
achieved. This is related to the energy gain factor which
has to be restrained in such a way that the generated
sequence of samples is infinite, where the minimum en-
ergy gain factor η∗ bounds the restriction. Applying the
suggested algorithm to the present study case finally yields
η∗ = 0.7818, like highlighted in Fig. 4. The latter figure
plots the ratio between i) the minimum achieved energy
needed to compute the Lyapunov function from the initial
condition until it is gaining energy again and ii) the initial
energy, for any initial condition. See ? for further details.
Then, applying η∗ < η < 1 guarantees a stable sampling
sequence. One could verify, and besides, that both stable
and unstable behaviors illustrated in Fig. 2 verify this
condition (the system is unstable using the first value and
stable in the second case). However, whereas the algorithm
allows a stable sequence, it is computationally heavy and
has to be executed off-line (it takes few seconds to dozens
of seconds to calculate η∗).
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Fig. 4. Results of the off-line algorithm to calculate η∗ in
the double integrator study case.

The main contribution in this paper is to 1) relax the
constraint on the energy gain factor in order to lighten the
algorithm and 2) make this parameter dynamically varying
because the system is stable in the Lyapunov sense for a
large number of values of η smaller than η∗ (as one can see
in Fig. 4). The different strategies are detailed in section 2
and the corresponding simulation results are represented
in Fig. 5. Note that the bottom right plot now represents
the dynamics of η(t).

Relaxation 1: The first proposal simply consists in de-
creasing η when the system is stable and going back
to the stable value η∗ as soon as it becomes unstable.
This intuitive guess leads to run with a value less than
η∗ during about 90 % of the simulation time - as one
can see in Fig. 5(a) - decreasing again the number of
samples (almost 50 % less than with the original stable
Lyapunov sampling) with still good performances.



Relaxation 2: The previous relaxation is then modified
in order to not use η∗ anymore but the greater stable
limit instead, in order to have a fully on-line algorithm.
The results - in Fig. 5(b) - are quite close to the previous
ones with a number of samples which is naturally
increased.

Relaxation 3: Whereas the previous algorithms applied
a stable value when the system becomes unstable, the
energy gain factor is now slowly increased. The results
are represented in Fig. 5(c) where one could see a
smoother variation of η.

Relaxation 4: The last algorithm is another formulation
of the previous one. The simulation results are drawn in
Fig. 5(d) where the dynamics of the energy gain factor
is clearly toned down.

The value of the different parameters needed in the above
algorithms and used for these simulation results are ν =
ν = 0.05, ε = 0.02 and υ = 6.2.
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(c) Relaxation 3
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(d) Relaxation 4

Fig. 5. Less-conservative Lyapunov sampling.

At the end, one has to keep in mind that, even if the system
trajectory is not as “direct” as the classical time-triggered
or the original stable Lyapunov sampling methods, our
proposals have advantages on both techniques: i) the num-
ber of samples is highly reduced (94 % of samples less than
with the classical way and 50 % less than the Lyapunov
sampling) and ii) the less-conservative strategies are ex-

ecuted in real-time and do not require a computationally
heavy off-line algorithm. Furthermore, the last relaxation
eventually allows a system response very close to the
existing techniques, as one can see in Fig. 6 when looking
at the dynamics of the system.
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conservative proposal (with relaxation 4).

4. EXPERIMENTAL RESULTS: CONTROL OF THE
POSITION OF A MOTOR

A practical DC servo-motor provides the control force to
a cart (through a belt drive system). A digital controller
then acts on the motor and a potentiometer allows to mea-
sure the position from its rotation. Note that the system
runs in real-time in the Matlab/Simulink environment. Let

ẋ(t) =A · x(t) +B · u(t)

y(t) =C · x(t)

be the state-space representation of the system to control.
In the present case, the output is the position and the
control signal is the voltage which power supplies the
electric motor. A simple identification leads to

A =

[
−16.67 0

1 0

]
, B =

[
72.03

0

]
, C = [ 0 1 ]

The state-feedback strategy then consists in multiplying
the states x of the system by a certain gain and setting
this product as the new system input, as introduced in (2).
Furthermore, as the system will track a given reference
r(t), an extra term is added in the control law. This finally
yields u(t) = −Kx(t)+Krr(t), where Kr is a tunable gain
defined by

Kr = −
(
C
(
A−BK

)−1
B
)−1

An integral state ż(t) = r(t)−y(t) is also added in order to
ensure a null steady-state error. The control law becomes

u(t) = −Kx(t) +Krr(t) +Kzz(t)

where Kz is a new tunable parameter. The resulting
augmented closed-loop system thus yields[

ẋ(t)
ż(t)

]
=

[
A−BK BKz

−C 0

] [
x(t)
z(t)

]
+

[
BKr

1

]
r(t)

Whereas the integral term z is required to control the
system it does not need to be applied in the event-
detection mechanism. This means the Lyapunov function
remains V (x) = xTPx like in (3). Eventually, the control
parameters are K = [ 0 0.25 ], Kr = 0.25, Kz = 1 and



P =

[
2.9406 0

0 0.2747

]
The time-triggered sampling interval is hnom = 0.01 s
while the parameters required in the asynchronous strate-
gies are ν = ν = 0.1, ε = 0.02 and υ = 1.

Some performances indexes are indicated in the following
experimental results, that are the number of samples
required to perform the test bench and some other ones
initially introduced in ?:

• The IAE index gives information on the setpoint
tracking

IAE =

∞∫
0

∣∣e(t)∣∣dt
• The IAEP index compares the time-based and event-

based system responses

IAEP =

∞∫
0

∣∣ytime−based(t)− yevent−based(t)
∣∣dt

• The IAD index compares the time-based and event-
based IAE

IAD =

∞∫
0

∣∣IAEtime−based(t)− IAEevent−based(t)
∣∣dt

The classical approach is represented in Fig. 7, where
the top plot shows the setpoint and the measurement
whereas the bottom one shows the system energy, that
is the Lyapunov function.
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Fig. 7. Time-triggered state-feedback control.

The stable Lyapunov sampling mechanism enforces a con-
trol update only when required from a stability point
of view while promising an infinite sequence of samples,
therefore ensuring the stability of the system dynamics.
This is detailed in subsection 1.2. However, this requires to
calculate the energy gain factor for any initial condition,
such as depicted in Fig. 8, in order to then deduce the
minimum energy gain factor η∗. In the present study case,
this latter parameter does not exist since the obtained
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Fig. 8. Results of the off-line algorithm to calculate η∗ in
the position’s control study case.

value η∗ = 1 could not satisfy the restricting condition (5),
and so is the stability. Consequently, the original Lyapunov
sampling mechanism cannot be applied to control the
position of the cart. An issue is hence required.

Firstly, an event-detection improvement (6) was proposed
in subsection 1.3. It consists in reacting as soon as the
system becomes unstable. As a result, applying this small
improvement now allows to run the system whenever the
value of the energy gain factor in the sampling mecha-
nism (4). This leads to the simulations results in Fig. 9
with η = 0.1 for instance. In fact, this small value allows
to considerably reduce the number of samples but the sys-
tem becomes unstable sometimes. Whatever, the proposed
improvement leads to stabilize it back.
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Fig. 9. Lyapunov sampling with event-detection improve-
ment.

Another solution was suggested in section 2 to not have to
calculate η∗ and, consequently, not run the computation-
ally heavy off-line algorithm. The energy gain factor is now
varying and dynamically changes in order to increase the
time between two events when the system is stable and,
respectively, decrease it back when the system becomes
unstable. The experimental results of the less-conservative
algorithms are drawn in Fig. 10. An extra plot repre-
sents the dynamics of η(t). Note that all the experiments
lead to an important reduction of computation since only
(less than) 10 % of samples allow to achieve almost the
same performance (the IAEP index for instance - which
compares the event-based system response with the time-
triggered one - is low in all cases).

Relaxation 1: The first relaxation is not tested since it
still needs η∗.

Relaxation 2: The second approach consists in slowly
decreasing the energy gain factor when the Lyapunov
function decreases and drastically going to a (quasi)
time-triggered sampling as soon as the system becomes
unstable, without requiring η∗ anymore. The results are
drawn in Fig. 10(a), where the different performance
indexes are all very low.

Relaxation 3: The third proposal slowly decreases / in-
creases η(t). The results are represented in Fig. 10(b)
and lead to reduce the number of samples again.

Relaxation 4: Another formulation results in Fig. 10(c),
where the system response is the closest to the classical
one (looking at the indexes of performances).

Eventually, some perturbations are enforced during the
running time of the experiments in order to see if an event-
based scheme correctly reacts when the system does not
work as well as in theory. The test bench is extended to a
20 s-experiment with two steps and the drive-shaft of the
motor is sometimes slowed down (as one can see in Fig. 4
at 3 and 12 s). The system is robust to this perturbation
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(a) Relaxation 2
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Motor’s position −− Less−conservative Lyapunov sampling mechanism (relaxation 3) 68 samples
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(b) Relaxation 3
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(c) Relaxation 4

Fig. 10. Less-conservative Lyapunov sampling.

since the position continues to track the given setpoint.
This is because the Lyapunov function changes during the
perturbations and so are enforced new events. As a result,
the number of samples increases to dynamically take into
account the perturbation.
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Fig. 11. Robustness to some perturbations in the less
conservative Lyapunov sampling case.

CONCLUSIONS AND FUTURE WORKS

This paper contributes to a simple Lyapunov sampling.
The principle consists in updating the control signal only
when required from a stability point of view, that is when
a Lyapunov function reaches a given energy level. Whereas
the Lyapunov sampling mechanism initially developed in ?
is based on restricting the Lyapunov sampling condition

and requires to execute a computationally heavy off-line al-
gorithm, we propose in this paper to relax this constraint.
This eventually yields a fully on-line version and the per-
formance remains unchanged, even if the system is not
sampled during a long time. A reduction of more than 90 %
of samples less than in the time-triggered principle and
50 % less than in the original mechanism is achieved when
controlling a double integrator in simulation. Furthermore,
our proposal can be applied to control any system, which
was not the case before. About 90 % of samples less than
in the classical approach is achieved when experimentally
controlling the position of an electric motor, while the
original Lyapunov sampling mechanism was not directly
applicable to the tested system. The advantage of an
asynchronous scheme is hence highly highlighted and the
encouraging results strongly motivate to continue develop-
ing event-based control strategies.
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Årzén, K.E. (1999). A simple event-based PID controller.
In Preprints of the 14th World Congress of IFAC.
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