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Abstract

A quaternion-based feedback is developed for the attitude stabilization of

rigid bodies. The control design takes into account a priori input bounds and

is based on nested saturation approach. It results in a very simple controller

suitable for an embedded use with low computational resources available.

The proposed method is generic not restricted to symmetric rigid bodies and

does not require the knowledge of the inertia matrix of the body. The control

law can be tuned to force closed-loop trajectories to enter in some a priori

fixed neighborhood of the origin in a finite time and remain thereafter. The

global stability is guaranteed in the case where angular velocities sensors

have limited measurement range. The control law is experimentally applied

to the attitude stabilization of a quadrotor mini-helicopter.
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quadrotor helicopter

1. Introduction

The problem of attitude control of a rigid body has attracted consider-

able amount of interest since the 1950’s within the scientific communities of

aeronautics, aerospace, control and robotics. Indeed many systems such as

spacecrafts, satellites, helicopters, tactical missiles, coordinated robot ma-

nipulators, underwater vehicles, aerial vehicles and others can enter within

the framework of rigid bodies with a need for attitude control. Several ap-

proaches were applied such as feedback linearizing control law (Wie et al.

(1989); Fjellstad and Fossen (1994)), feedback proportional-derivative control

law (Wen and Kreutz-Delgado (1991); Egeland and Godhavn (1994); Tsio-

tras (1994); Joshi et al. (1995)), predictive control (applied to a spacecraft in

Wen et al. (1997) and a to micro-satellite in Hegrenas et al. (2005)), backstep-

ping (quaternion based in Kristiansen and Nicklasson (2005) and nonlinear

adaptive in Singh and Yim (2002)), robust control applied to tactical mis-

siles (Song et al. (2005)). This list is of course far from being exhaustive.

Within these mentioned approaches, a feedback linearization coupled with a

proportional-derivative control is probably the most widely used method to

solve the attitude control problem. This ensures stabilization with a simple

implementation of the control law. Sometimes, the linearization step is even

not applied. The major criticism of this approach is that for large attitude

or angular velocity errors a large control effort is required. Furthermore, the

linearization step requires a relatively accurate model of the system.

In practice, the limitations on available energy impose bounded input signal.
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Moreover, it is common that the output of the system are bounded due to

sensors limitation. Actually, the above cited attitude control approaches do

not consider the problem which takes the input and/or output constraints

into account. Few publications have dealt with this problem. In Tsiotras and

Luo (2000), the stabilization of an underactuated rigid spacecraft subject to

input constraints is studied. Although this approach uses an innovative atti-

tude representation that allows the decomposition of general motion into two

rotations, the proposed control law and its analysis are restricted only to the

kinematic level. In Belta (2004), a control law that drives a rigid underwa-

ter vehicle between arbitrary initial and final region of the state space while

satisfying bounds on control and state is proposed. The approach is based

in a control of multi-affine systems. The authors in Boskovic et al. (1999)

have studied the robust sliding mode stabilization of the spacecraft attitude

dynamics in presence of control input saturation based on the variable struc-

ture control (VSC) approach. Unfortunately, the stabilizing bounded control

laws applied in these works are non smooth and this fact renders difficult

their practical implementation. The application of optimal control of a rigid

body’s attitude has been the interest of many researches (see Scrivener and

Thompson (1994) and references therein). However, when the problem is

subject to control constraints a difficulty appears. Actually, one must solve

the Hamilton-Jacobi equation and thus computing optimal control is gen-

erally infeasible for operational attitude control systems. Different works

have circumvented this difficulty using the so-called inverse optimal method

(Osipchuck et al. (1997); Krstić and Tsiotras (1999)). In this approach, the

knowledge of a Control Lyapunov Function (CLF) and a stabilizing control
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law is required. The authors in Krstić and Tsiotras (1999) exploit the cas-

caded interconnection structure of the dynamics and kinematics equations

of the rigid body to construct a control law based on backstepping. How-

ever, the optimal control law depends on the moment of inertia and the

robustness issues with respect to model’s errors are not addressed. In Os-

ipchuck et al. (1997), a CLF and a corresponding stabilizing control solution

of a static quadratic programming problem are proposed. Unfortunately,

the control law here is again not smooth. More recently, an elegant quater-

nion based output feedback for the attitude tracking problem is proposed

in Tayebi (2008). In the regulation case, the proposed control law is struc-

turally bounded. However, the control gains are restricted to be identical for

each axis. Furthermore, this approach does not take into consideration the

angular velocity constraints.

The approach proposed in the present paper is more in the spirit of Wie

and Lu (1995) where the problem of reorienting a rigid spacecraft within

the physical limits of actuators has been investigated based on the nested

saturation approach proposed by Teel (1992) for linear chain of integrators.

However, in Wie and Lu (1995) no formal stability proof is given and only

rest-to-rest maneuvers are investigated. The orientation of a rigid body can

be parameterized by several ways (Shuster (1993)). As detailed in Section

2, the unit quaternion attitude representation is adopted. This representa-

tion is a four-parameter global nonsingular parametrization of the attitude

(Chou (1992)). This section also gives the corresponding equation of motion

of rigid bodies and formulates the related stabilization control problem ad-

dressed in this paper. Theorem 1 in Section 3 is the main contribution of
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this paper. It presents a smooth nonlinear bounded control law that almost

globally asymptotically stabilizes rigid bodies. A discontinuous version of

the control law is also given in Remark 1. It circumvents the topological ob-

struction of global continuous stabilization in SO(3). The results are based

on the usage of nested saturation functions and can be seen, in a certain

way, as a bounded PD controller. PD controller is already known to be suit-

able for attitude stabilization. In Bang et al. (2003), the unsaturated PD

controller takes an analog form as the unsaturated form of the one proposed

in this paper. However, in Bang et al. (2003) the stability of the bounded

PD controller obtained with an anti-windup scheme is not proved. With

the proposed control approach, the almost global stability can formally be

established and, in addition, one can prove that the stability is not affected

neither by a bad knowledge of the inertia matrix (actually, it is even not

necessary to know it) nor by slew rate limits (presented by all real angular

velocity sensors). Finally, in Section 4 the result is applied to a quadrotor

mini-helicopter. This system exhibits in addition to rigid bodies, gyroscopic

torques generated by the rotating propellers. It is formally established that

these terms do not affect the almost global asymptotic stability of the control

law proposed in Section 3.

2. Mathematical Background and problem statement

2.1. Quaternion formalism and rigid body dynamics

The attitude of a rigid body can be represented by a quaternion, consist-

ing of a unit vector ~e, known as the Euler axis, and a rotation angle β about
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this axis. The quaternion q is then defined as follows:

q =

 cos β
2

~e sin β
2

 =

 q0

~q

 ∈ H (1)

where

H = {q | q2
0 + ~qT~q = 1, q = [q0 ~q]T , q0 ∈ R, ~q ∈ R3} (2)

~q = [q1 q2 q3]T and q0 are known as the vector and scalar parts of the

quaternion respectively. In attitude control applications, the unit quater-

nion represents the rotation from an inertial coordinate system N(xn, yn, zn)

located at some point of the space (for instance, the earth NED frame), to

the body coordinate system B(xb, yb, zb) located at the center of mass of the

rigid body.

The rotation matrix C(q) corresponding to the attitude quaternion q is com-

puted as:

C(q) = (q2
0 − ~qT~q)I3 + 2(~q~qT − q0[~q×]) (3)

where I3 is the identity matrix and [ξ×] is the skew symmetric tensor associ-

ated with the axial vector ξ

[ξ×] =


ξ1

ξ2

ξ3


×

=


0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 (4)

Denoting by ~ω = [ω1 ω2 ω3]T the angular velocity vector of the body frame

B relative to the inertial frame N , expressed in B, the kinematics equation

is given by:  q̇0

~̇q

 =
1

2

 −~qT

I3q0 + ~q×

 ~ω
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=
1

2
Ξ(q)~ω (5)

The attitude dynamics for a rigid body is described by:

J~̇ω = −~ω × J~ω + Γ (6)

where J ∈ R3×3 is the symmetric positive definite constant inertial matrix of

the rigid body expressed in the B frame and Γ ∈ R3 is the vector of applied

torques. These torques depend on the couples generated by the actuators,

aerodynamic couples such as gyroscopic couples, gravity gradient, etc. In

this paper, it is assumed that the body-fixed control axes coincide with the

principal axes of inertia, so the inertia matrix is diagonal.

The attitude error is used to quantify the mismatch between two attitudes. If

q defines the current attitude quaternion and qd is the reference quaternion,

i.e. the desired orientation, then the error quaternion that represents the

attitude error between the current orientation and the desired one is given

by:

qe = q ⊗ q−1
d (7)

where ⊗ denotes the quaternion multiplication and q−1 is the complemen-

tary rotation of the quaternion q which is the quaternion conjugate (Shuster

(1993)).

2.2. Problem Statement

The objective is to design a control law that drives the rigid body attitude

to a specified constant orientation and maintains this orientation starting

from any initial condition. It follows that the angular velocity vector must

be brought to zero and remains null. Let qd denote the desired constant rigid

7



body orientation, the control objective is then described by the following

asymptotic condition:

q → qd, ~ω → 0 as t→∞ (8)

If qd denotes the desired constant rigid body orientation, then the error

quaternion that represents the attitude error between the current orienta-

tion and the desired one is given by equation (7). If the inertial coordinate

frame is selected to be the desired orientation then the desired quaternion

becomes qd = [±1 0 0 0]T and the error quaternion (7) coincides with the

current attitude quaternion, that is, qe = q. This control objective is then:

q → [±1 0 0 0]T , ~ω → 0 as t→∞ (9)

Equation (9) represents two equilibrium points (q0 = 1, ~q = [0 0 0]T ) and

(q0 = −1, ~q = [0 0 0]T ). These equilibrium points represent the same equilib-

rium point in the physical space and they yield the same attitude matrix in

equation (3). However, they represent two-point set in the quaternion space.

This topological obstruction does not allow to state any global property for

the closed-loop system, using a continuous quaternion-based feedback (Bhat

and Bernstein (1998)). In this study, first the case qd = [1 0 0 0]T is con-

sidered in order to guarantee almost global closed-loop stability (Koditschek

(1988)) using a continuous control law. Afterwards, global asymptotic sta-

bility will be claimed and the results will be generalized to any desired ori-

entation.

The presence of actuator amplitude limitations can lead to undesirable closed-

loop behaviors even instability. Consequently, in addition to asymptotic sta-

bility, the feedback control must explicitly take into account the physical
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constraints in order to avoid unwanted damages and to maximize its effec-

tiveness. Therefore, the control torques Γ are required to be such as:

Γi ∈ [−Γ̄i, Γ̄i] with i ∈ {1, 2, 3} (10)

where Γ̄i represents the bound of the control torque Γi.

3. Bounded Attitude Control

3.1. Control law formulation

In this section, a control law that stabilizes the system described by (5)

and (6) is proposed. The goal is to design a control torque that is bounded.

This is achieved with the usage of the saturation function σM defined in the

Definition 1.

Definition 1 (Saturation function). Let σM : R → R denote the classical

saturation function defined by :

1. σM(s) = s if |s| < M ;

2. σM(s) = sign(s)M elsewhere;

With the above definition, our main result is the following:

Theorem 1. Consider the rigid body rotational dynamics described by (5)

and (6) with the following bounded control inputs Γ = [Γ1 Γ2 Γ3]T defined

by:

Γi = −σΓ̄i

(
κωi
ρi

+ κqi

)
(11)

σ(·) are saturation functions as defined above. Γ̄i with i ∈ {1, 2, 3} represents

the physical bound on the ith torque Γi. κ is a real parameter such that 0 <
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κ ≤ mini Γ̄i/2. ρi are strictly positive real parameters. Then the inputs (11)

almost globally asymptotically stabilize the rigid body to the origin (q0 =

1, ~q = 0 and ~ω = 0).

Proof. Consider first the the Lyapunov function:

V =
1

2
~ωTJ~ω (12)

Then, along the trajectories of the system, one has:

V̇ = ~ωT (−~ω × J~ω)︸ ︷︷ ︸
=0

+~ωTΓ = ω1Γ1︸︷︷︸
V̇1

+ω2Γ2︸︷︷︸
V̇2

+ω3Γ3︸︷︷︸
V̇3

(13)

V̇ is the sum of three terms V̇1, V̇2 and V̇3. Analyzing V̇i for i ∈ {1, 2, 3}, one

gets from Γi in (11) and equation (13):

V̇i = −ωiσΓ̄i

(
κωi
ρi

+ κqi

)
(14)

Let Φi := {ωi : |ωi| ≤ ρi + ε} for some small ε > 0. Outside Φi, from the

quaternion’s condition |qi| ≤ 1, it follows that
∣∣∣κωi

ρi
+ κqi

∣∣∣ ≥ κε
ρi

and that

κωi

ρi
+ κqi and ωi have the same sign. Therefore:

V̇i = −ωiσΓ̄i

(
κωi
ρi

+ κqi

)
≤ −κε

ρi
|ωi| < −

κε(ρi + ε)

ρi
< −κε < 0 (15)

Consequently, ωi enters Φi in a finite time and remains in it thereafter. Dur-

ing that time, the quaternion cannot diverge since it is structurally unitary

and therefore bounded..

Once in Φi, let us consider the new Lyapunov function W defined by:

W =
1

2
~ωTJ~ω + κ((1− q0)2 + ~qT~q)

=
1

2
~ωTJ~ω + 2κ(1− q0) (16)
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Since J is positive definite, the function W is positive definite, radially un-

bounded and is of class C2. The derivative of (16) after using (5) and (6) is

given by:

Ẇ = ~ωTJ~̇ω − 2κq̇0

= ~ωTJ(−~ω × J~ω)︸ ︷︷ ︸
=0

+~ωTΓ + κ~qT~ω

= ~ωTΓ + κ~qT~ω

= ω1Γ1 + κq1ω1︸ ︷︷ ︸
Ẇ1

+ω2Γ2 + κq2ω2︸ ︷︷ ︸
Ẇ2

+ω3Γ3 + κq3ω3︸ ︷︷ ︸
Ẇ3

(17)

As for V , Ẇ is the sum of three terms Ẇ1, Ẇ2 and Ẇ3. Analyzing Ẇi for

i ∈ {1, 2, 3}, one gets from Γi in (11) and equation (13):

Ẇi = −ωiσΓ̄i

(
κωi
ρi

+ κqi

)
+ κqiωi (18)

In Φi, one has: ∣∣∣∣κωiρi + κqi

∣∣∣∣ ≤ 2κ+
κε

ρi
(19)

Taking ε sufficiently small und using the assumption that 2κ < Γ̄i,∣∣∣∣κωiρi + κqi

∣∣∣∣ ≤ Γ̄i (20)

Consequently, σ operates in a linear region:

Γi = − κ
ρi

[ωi + ρiqi] (21)

As a result, (18) becomes:

Ẇi = − κ
ρi
ω2
i (22)

Therefore, (17) becomes

Ẇ = Ẇ1 + Ẇ2 + Ẇ3 (23)

= −κ
(
ω2

1

ρ1

+
ω2

2

ρ2

+
ω2

3

ρ3

)
≤ 0 (24)
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In order to complete the proof, the LaSalle Invariance Principle is invoked.

All the trajectories converge to the largest invariant set Ω̄ in Ω

Ω = {(~q, ~ω) : Ẇ = 0} = {(~q, ~ω) : ~ω = 0} (25)

In the invariant set, J~̇ω = −κ[q1 q2 q3]T = −κ~q = 0. Therefore to remain

in Ω̄, one must satisfy ~q = 0 and q0 = ±1 from the normality condition.

Actually, the points (q0 = ±1, ~q = 0, ~ω = 0) correspond, respectively, to a

minimum (W = 0) and a local maximum (W = 4) of the Lyapunov function

(16). Consequently, Ẇ = 0 at these equilibrium points. If at t0 = 0, the

closed-loop system lies to local maximum, it remains in this point for t > t0.

Nevertheless, if at t0 the closed-loop system is away from these equilibrium

points, and since Ẇ < 0 outside the two equilibrium points, the system state

will converge to the equilibrium point (q0 = 1, ~q = 0, ~ω = 0) and it will

remain there for all subsequent time, since in this point W = Ẇ = 0. This

ends the proof of the almost global asymptotic stability.

Remark 1. From the proof of the Theorem 1, if the closed-loop system is

far away from the equilibrium points (q0 = ±1, ~q = 0, ~ω = 0), the system will

approach asymptotically to the point (q0 = 1, ~q = 0, ~ω = 0), which can be

considered an attractor point, whereas (q0 = −1, ~q = 0, ~ω = 0) can be con-

sidered a repeller point (see Joshi et al. (1995)). However, the repeller point

becomes an attractor using the control law Γi = −σΓ̄i

(
κωi

ρi
− κqi

)
instead of

(11). In a practical context, it is essential to select the equilibrium point to

be achieved in order to minimize the angular path. Therefore, applying

Γi = −σΓ̄i

(
κωi
ρi

+ sign(q0)κqi

)
(26)
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ensures that, of the two rotations of angle β and 2π−β, the one of smaller an-

gle is chosen. Then, the control law (26) stabilizes globally asymptotically the

two-point set in the quaternion space. This can be demonstrated by adapting

the previous proof using the following Lyapunov function:

W =
1

2
~ωTJ~ω +

 2κ(1− q0), if q0 ≥ 0

2κ(1 + q0), if q0 < 0
(27)

This result is in the spirit of Mayhew et al. (2009).

Remark 2. Note that the stability analysis has been carried out considering

the asymptotic condition q → qd = [1 0 0 0]T and with (26) it is possible to

achieved qd = [±1 0 0 0]T . In the case where the asymptotic condition q → qd

with qd 6= [±1 0 0 0]T is considered, the control law to be applied becomes

Γi = −σΓ̄i

(
κωi
ρi

+ sign(qe0)κqei

)
(28)

where qe represents the attitude error between the current orientation and the

desired one.

3.2. Some properties of the control law

In practice, the angular velocity is generally obtained by rate gyros. These

sensors can measure the angular velocity in a priori specified range depending

on the sensors and its technology. The control law (11) allows to take into

consideration the angular velocity constraints, i.e. slew rate limits.

Let |ωimax | denote the maximum magnitude angular velocity allowed for the

rigid body manoeuvre about the ith axis. Let us consider the following state

constraint

ωi ∈ [−ωimax , ωimax ] (29)
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then, one has the following results.

Corollary 1 (Slew rate constraints). The control law (11) almost glob-

ally asymptotically stabilizes the rigid body described by (5) and (6) to the

origin. Moreover, setting ρi = |ωimax | the state constraint (29) is guaranteed

to remain satisfied:

• if |ωi(t0)| > ωimax, then there exists some time t1 > t0 depending upon

the initial conditions such that the state constraint (29) holds for any

t > t1

• if |ωi(t0)| ≤ ωimax, then the state constraint (29) holds for all t > t0

Proof. The claim follows of the proof of Theorem 1 replacing ρi for |ωimax |.

First assume that |ωi| > ρi = |ωimax|. Then, the control law (11) forces the

velocities trajectories to enter to the set Ψi = {ωi : |ωi| ≤ ρi = |ωimax|} in

finite time t1 and remain in it thereafter.

In case where |ωi(t0)| ≤ |ωimax|, from condition ρi = |ωimax| the angular

velocities belong to the set Ψi = {ωi : |ωi| ≤ ρi = |ωimax|}. Thus from

Theorem 1, the control law (11) enforces the velocities trajectories to remain

in the set Ψi for all t > t0 and the state constraint (29) remains satisfied.

In several situations, the body angular velocities exceed the capability

of the rate gyros (for instance, in the case where an external disturbance is

present). The following propriety establishes the robustness of the proposed

control law towards bounded angular velocities measurements.
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Corollary 2 (Robustness towards bounded angular velocities mea-

surements). Let |ω̄i| > 0 represent the maximum magnitude angular velocity

that can be measured by the rate gyro along the ith axis. Let ρi be chosen as

ρi = |ω̄i| − ε for some strictly positive ε sufficiently small. Assume that the

angular velocity exceeds the rate gyro limits, that is |ωi| > |ω̄i|, then the con-

trol inputs (11) almost globally asymptotically stabilize the rigid body to the

origin, in spite of angular velocities measurements saturation.

Proof. Assume that |ωi| > |ω̄i|, setting ρi = |ω̄i| − ε one has |ωi| > ρi + ε.

Consider the candidate Lyapunov function given in (12). With the same rea-

soning as in the proof of Theorem 1, (15) becomes for some ε > 0 sufficiently

small.

V̇i = − κε

|ω̄i|
|ωi| < 0 (30)

This establishes the strict decrease of Vi when |ωi| > |ω̄i|. Consequently, ωi

enters Φi = {ωi : |ωi| ≤ ρi + ε = |ω̄i|} in finite time t1 and remains in it

thereafter. Hence, the rate gyro is not saturated and the system evolves in

the same way that the nominal system (no rate gyro saturation). The same

argument is applied to V̇2 and V̇3.

3.3. Selection of the feedback gains

Selecting the feedback gain may be difficult especially when constraints

exist between the gains. Here, selecting the gains can be easily done recalling

that when the control law is not constrained it becomes:

Γi = − κ
ρi
ωi − κqi (31)

Hence, κ tunes how sensible to angles or angular velocities errors the con-

trol will be but also how sensible to noise on these variables. This is very
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important within an application context, since the output signal of a low

cost rate gyro is very noisy and this can cause instability. ρi will tune the

relative influence between the angular information (through the quaternion)

and the velocity information. Note that according to Corollary 1, choosing

ρi = |ωimax| will guarantee the slew rate constraint.

4. Real-time experimentation to a quadrotor mini-helicopter

4.1. Introduction

In recent years, significant research effort has been directed toward the

control, modelling and design of flying robots. This interest arises not only

for military purposes but also for civil applications such as disaster mon-

itoring, environmental surveillance or even cinematography. Within flying

robots, the quadrotor helicopter has attracted a great interest because of

its highly manoeuvrability and the ability to hover. This Vertical Take-Off

and Landing (VTOL) vehicle has some advantages over conventional heli-

copters. Owing to symmetry, this vehicle is simple to design and construct.

The small moment of inertia of this aerial robot makes it vulnerable to large

angular acceleration. Therefore, for many potential missions an efficient at-

titude control is crucial. It allows the vehicle to maintain a desired orienta-

tion. Several control techniques have been used for the attitude stabilization

of the quadrotor mini-helicopter, for instance, PID and LQ control law in

Bouabdallah et al. (2004), sliding mode control in Bouabdallah and Siegwart

(2005) and Backstepping approach applied in Tayebi and McGilvray (2006).

Although the results presented in the above cited works are interesting and

founding, the boundedness of the control input is not considered. One partic-
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ular aspect of the quadrotor mini-helicopter dynamics, is that the dynamical

model for the attitude may be reduced to that of a rigid body. Therefore, the

proposed approach for the stabilization of a rigid body is naturally extended

to the attitude stabilization of the quadrotor mini-helicopter. The control

attitude strategy presented in the previous section is applied to the attitude

regulation of a quadrotor mini-helicopter as the one shown in Fig.1.

4.2. Quadrotor helicopter dynamics

The mini helicopter under study has four fixed-pitch rotors mounted at

the four ends of a simple cross frame. On this platform, given that the front

and rear motors rotate counter-clockwise while the other two rotate clock-

wise, gyroscopic effects and aerodynamic torques tend to cancel in trimmed

flight. The collective input (or throttle input) is the sum of the thrusts of

each rotor (f1 + f2 + f3 + f4). Pitch movement (θ) is obtained by increasing

(reducing) the speed of the rear motor while reducing (increasing) the speed

of the front motor. The roll movement (φ) is obtained similarly using the

lateral motors. The yaw movement (ψ) is obtained by increasing (decreas-

ing) the speed of the front and rear motors while decreasing (increasing) the

Figure 1: The Quadrotor mini-helicopter prototype of GIPSA-Lab
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speed of the lateral motors. This should be done while keeping the total

thrust equal or larger than the helicopter weight in order to cancel the grav-

ity force. In order to model the system dynamics, two frames are defined: the

  

f 1f 4

f 3 f 2

 


yn

zn

xb

yb
zb

xn

Q1Q 4

Q3
Q 2

Figure 2: Quadrotor mini-helicopter configuration: the inertial frame N(xn, yn, zn) and

the body-fixed frame B(xb, yb, zb)

inertial frame N(xn, yn, zn) and the body-fixed frame B(xb, yb, zb) as shown

in Fig.2.

According to Pounds et al. (2002) and section 2, the quadrotor mini-

helicopter model can be expressed in terms of quaternions

ṗ = v (32)

v̇ = ~gN − 1

m
CT (q)~T (33)

q̇ =
1

2
Ξ(q)~ω (34)

Jh~̇ω = −~ω × Jh~ω − ΓG + Γ (35)

where m denotes the mass of the helicopter, ~g is the vector of the gravity

acceleration and × is the cross product. p = [x y z]T represents the position
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of the origin of the B-frame with respect to the N -frame, v = [vx vy vz]
T

is the linear velocity of the origin of the B-frame expressed in the N -frame,

and ~ω denotes the angular velocity of the helicopter expressed in the B-

frame. ΓG ∈ R3 contains gyroscopic couples, due to the rotational motion of

the mini-helicopter and the four rotors, Γ ∈ R3 is the vector of the control

torques and ~T = [0 0 T ]T is the total thrust expressed in the B-frame. The

attitude model of the four rotor aircraft differs from the general model (5)-(6)

in the gyroscopic couples ΓG. However, it will be proved that the approach

of Section 3.1 can still be applied.

Equations (32)-(35) describe the 6 degrees of freedom of the system and can

be separated into translational (32)-(33) and rotational (34)-(35) motions.

In this application, the rotors speed may reach high values (more than 200

rad/sec). Therefore, the reactive couple generated in the free air by rotor i

due to rotor drag and the total thrust produced by the four rotors can be

respectively approximated by (Kendoul et al. (2005)):

Qi = ks2
i (36)

T =
4∑
i=1

fi = b
4∑
i=1

s2
i (37)

where si represents the rotational speed of rotor i. k > 0 and b > 0 are two

parameters depending on the density of air, the radius, the shape, the pitch

angle of the blade and other factors (Castillo et al. (2004)).

The vector of gyroscopic couples ΓG is given by:

ΓG =
4∑
i=1

Jr(~ω × ~zb)(−1)i+1si (38)

where Jr is the inertia of the called rotor (composed of the motor rotor itself

with the gears). The components of the control torque Γ ∈ R3 generated by
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the rotors are given by Γ = [Γ1 Γ2 Γ3]T , with

Γ1 = d(f2 − f4) = db(s2
2 − s2

4) (39)

Γ2 = d(f1 − f3) = db(s2
1 − s2

3) (40)

Γ3 = Q1 −Q2 +Q3 −Q4 = k(s2
1 − s2

2 + s2
3 − s2

4) (41)

where d represents the distance from one rotor to the center of mass of the

quadrotor mini-helicopter. Combining (37) with (39)-(41), the torques and

forces applied to the helicopter are written in vector form as:

 Γ

T

 =


0 db 0 −db

db 0 −db 0

k −k k −k

b b b b




s2

1

s2
2

s2
3

s2
4


= Ns̄r (42)

with s̄r = [s2
1 s2

2 s2
3 s2

4]T the rotor speeds of the four motors. For our model,

we have d = 0.225 m, b = 29.1 × 10−5 kg m rad−2 and k = 1.14 × 10−6kg

m2rad−2.

4.3. Quadrotor torque control design

In order to stabilize the attitude of the quadrotor mini-helicopter, equa-

tions (34)-(35) are used. The rotational motion of the helicopter responds

to the control torques arising from the linear combination of the rotational

speed of the rotors (42). Hence, the maximum airframe control torque de-

pends on the most higher rotation speed capability of the motors that are

used.
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The rotors are driven by DC permanent magnet motors which support a max-

imum voltage of 9 V as in Tayebi and McGilvray (2006). When this voltage is

applied to the motor the rotation speed reaches si,max = 260 rad/sec. Con-

sequently, the maximum torque that is applied to influence the helicopter

rotational motion is given by:

Γ̄1 = 0.40 Nm Γ̄2 = 0.40 Nm Γ̄3 = 0.15 Nm (43)

Note that these torques are not identical around the three axis.

In order to avoid undesired damages in the actuators and to maximize its

effectiveness, the bounded attitude control presented in the previous section

is applied to the subsystem (34)-(35).

Proposition 1. Consider the quadrotor mini-helicopter rotational dynamics

described by (34) and (35) with the following bounded control inputs

Γ1 = −σΓ̄1

(
κω1

ρ1
+ sign(q0)κq1

)
Γ2 = −σΓ̄2

(
κω2

ρ2
+ sign(q0)κq2

)
Γ3 = −σΓ̄3

(
κω3

ρ3
+ sign(q0)κq3

) (44)

The parameters κ, ρi with i ∈ {1, 2, 3} are chosen as in Theorem 1. Then

the inputs (44) globally asymptotically stabilize the quadrotor mini-helicopter

to the origin, represented by the two-point set in the quaternion space (q0 =

±1, ~q = 0 and ~ω = 0).

Proof. The steps of the proof are identical to the proof of Theorem 1 and

Remark 1. Indeed, the only difference lies in the vector ΓG that adds a term

that is canceled because of the relation:

~ωTΓG = ~ωT (~ω × ~zb)
4∑
i=1

Jr(−1)i+1si = 0 (45)
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where Jr represents the inertia of the rotor.

Remark 3. While Proposition 1 states that the quadrotor mini-helicopter can

be theoretically stabilized from any initial condition, the stabilization depends

of the actuator dynamics. A quadrotor with sufficient speed and power could

fly a loop without problem. However, hover or flying in straight line upside

down it is impossible since the profile of the blades would not allow this to

happen.

Remark 4. For the quadrotor mini-helicopter treated in this work, it was

observed that the stabilization takes place without a problem if the initial

conditions do not exceed the angles φ = θ = 40◦. For the angle yaw ψ no

restrictions exist for the initial condition.

5. Experimental Results

The aim of this section is to show the effectiveness of the proposed control.

For this, an attitude stabilization in real-time was performed on the quadro-

tor mini-helicopter prototype of gipsa-lab control system department. This

prototype is based in the mechanical structure (airframe, motors and blades)

of the Draganflyer III developed by RC Toys. For the elaboration of real-time

processing board, it was used an embedded microcontroller (µC) C8051F022

manufactured by Silicon Laboratories, an inertial measurement unit (3DM-G

from Microstrain), a bi-directional communication unit (SPM2-433-28 from

Radiometrix), a power module to drive the motors (MOSFET transistors)

and four optical sensors attached to the ends of the mechanical frame to

measure the rotor speed. The power is supplied by a 9 Volts Lithium Poly-

mer battery. On the other hand, a communication unit (SPM2-433-28 from
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Radiometrix) is linked to a PC, in order to provide and to obtain the pro-

cess data. The µC acquires the angular velocity and attitude (quaternion)

provided by the IMU and it obtains the desired attitude incoming from the

ground station. Thus, the µC executes the attitude control law and com-

putes the PWM level to control the four motors. Optionally, the embedded

system provides the process data to the ground station in order to monitor

the experiment. The attitude control loop runs at fs = 76Hz due to IMU

constraints.

Three experiments have been accomplished. In the first and second experi-

ments the goal is the attitude stabilization at the origin (qd = [1 0 0 0]. i.e.

φd = θd = ψd = 0). In the third experiment an attitude tracking is performed.

The desired thrust is T ≥ mg = 4.59N in order to compensate the weight

of the quadrotor during the experiment. The quadrotor inertia matrix is

Jh = diag(8.28, 8.28, 15.7)× 10−3. Furthermore, from motors characteristics

the maximum torque frame that can be applied is Γ̄ = [0.40 0.40 0.15]T Nm.

The tuning parameters of the control input are selected according to the

discussion in section 3.3. The maximum angular velocity allowed in the ex-

periment is fixed to |ω1,2max| = 4.2 rad/sec (240◦/sec) and |ω3max | = 1.74

rad/sec (100◦/sec) , then, ρ1,2 = 4.2 and ρ3 = 1.74. According to Theorem 1,

κ = 0.075.

5.1. Stabilization

In the first experiment the control capabilities are tested to stabilize the

system to the origin. The obtained results are depicted in Fig.3 - Fig.5.

According to the angles trajectories, the stabilization is achieved in 1.5 sec,

which is a very suitable time. Moreover, the constraints in the control signal
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are largely satisfied.

5.2. Disturbance rejection

In the second experiment, the robustness of the proposed controller to-

wards disturbance rejection has been tested. The disturbances along each

axis (in both directions) are introduced into the system after to achieve the

attitude stabilization. As can be seen in the Fig.6 and Fig.7, the disturbance

produces a large error in the yaw angle as well as in angular velocity ωz. Con-

sequently, the control signal Γ3 reaches its limit (±0.15N ·m) (see Fig. 8) and

takes action on the system to overcome the disturbances. A similar rejection

disturbance is observed for the pitch and the roll angle, while only feasible

control signals are applied to the system. This study case shows that the con-

troller proposed in this paper is robust towards external disturbances. The

control law maximizes the effectiveness of the actuators without endangering

the system stability. This robustness property is essential in real missions

where aerodynamic forces and others factors are present.

5.3. Attitude tracking

The third experiment deals with the attitude tracking. It is observed

(see Fig. 9) that the controller is able to follow the reference signal rt =

9◦ + 9◦ sin( π
15
t) along the axis zb. This experiment shows the performance of

the proposed control scheme to track a smooth slow reference attitude, even

though the control law is designed for stabilization.
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6. Conclusions

In this paper, a new bounded control law for the global stabilization of

a rigid body is proposed. The objective of this control approach is to max-

imize the effectiveness of the actuators without taking a risk in the system

stability. The control design takes into account the slew rate limits, avoiding

possible rate gyro saturations. The presented scheme control is simple. It

is based on nested saturation approach and the attitude is parameterized by

the unit quaternion. The proposed approach is applied to the stabilization

of a quadrotor mini-helicopter. The implementation in real-time is achieved.

Several experiments are performed showing the performance in terms of set-

tling time, disturbance rejection and trajectory tracking. Still to compare

the proposed approach with other control schemes. However, owing to sim-

plicity, the proposed control law is suitable for application where on-board

computational resources are limited.
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Figure 3: Stabilization: The convergence of the roll, pitch and yaw angles with initial

conditions φ = −28◦, θ = 13◦, ψ = −23◦.
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Figure 4: Stabilization: The evolution of the angular velocity.
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Figure 5: Stabilization: The bounded control torque.

30



0 5 10 15 20 25 30 35
−30

−25

−20

−15

−10

−5

0

5

10

15

20

A
ng

le
(°

)

Time (sec)

 

 
φ
θ
ψ

φ
(disturbance)

θ
(disturbance)

ψ
(disturbance)

Figure 6: Disturbance rejection: The convergence of the roll, pitch and yaw angles, while

the system is subject to external disturbances.
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Figure 7: Disturbance rejection: The evolution of the angular velocity, while the system

is subject to external disturbances.
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Figure 8: Disturbance rejection: The bounded control torque signal, while the system is

subject to external disturbances. The control constraints are satisfied.
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Figure 9: Tracking: The evolution of the roll, pitch and yaw angles, while the system

tracks a sinus signal along the axis zb.
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Figure 10: The quadrotor mini-helicopter in flight.
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