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1. Motivation

Learning of Bayesian networks aims at modeling the
joint density of a set of random variables from a ran-
dom sample of joint observations of these variables
(Naim et al., 2007). Such a graphical model may
be used for elucidating the conditional independences
holding in the datagenerating distribution, for auto-
matic reasoning under uncertainties, and for Monte-
Carlo simulations. Unfortunately, currently available
algorithms for Bayesian network structure learning
are either restrictive in the kind of distributions they
search for, or of too high computational complexity to
be applicable in high dimensional spaces.

Ensembles of weakly fitted randomized models have
been studied intensively and used successfully in the
supervised learning literature during the last two
decades. Among the advantages of these methods, let
us quote the improved scalability of their learning al-
gorithms thanks to randomization and the improved
predictive accuracy the induced models thanks to their
higher flexibility in terms of bias/variance trade-off.
For example, ensembles of extremely randomized trees
have been applied successfully in very complex high-
dimensional tasks, such as image and sequence classi-
fication (Geurts et al., 2006).

In this work we explore the Perturb and Combine
idea celebrated in supervised learning in the context
of probability density estimation in high-dimensional
spaces. We propose a new family of unsupervised
learning methods of mixtures of large ensembles of
randomly generated poly-trees. The specific feature
of these methods is their scalability to very large num-
bers of variables and training instances. We explore
various variants of these methods empirically on a set
of discrete test problems of growing complexity.

2. Methods
2.1. Poly-Tree density models
Let X = {X3,...,X,} denote a finite set of discrete

random variables.

A poly-tree model P for the density over X is defined
by a directed acyclic graph which skeleton is acyclic
and connected, and the set of vertices of which is in
bijection with X and with a set of conditional densi-
ties Pp(X;|pap(X;)), where pap(X;) denotes the set
of variables in bijection with the parents of X; in P.
It represents graphically the density factorization

n

Xo) = [[Pe(Xilpap(X0). (1)

=1

Pp(X1,. ..

Poly-tree models can be used for probabilistic inference
over P(Xy,...,X,) with a computational complexity
linear in the number of variables n (Pearl, 1986).

One can define nested subclasses of poly-tree density
models by imposing constraints on the maximum num-
ber p of parents of any node. In these subclasses, not
only inference but also parameter learning is of lin-
ear complexity in the number of variables. The small-
est such subclass is called the tree subspace, in which
nodes have exactly one parent (p = 1).

2.2. Mixture models of poly-trees

A mixture model of m poly-tree models (P, ..., Py)
is defined as a convex combination of the elementary
poly-tree models, ie.

Pa (X1, Xn) = Y piPp (X1, Xn),  (2)
=1

where y; € [0,1] and >0 p; = 1.



While single poly-tree models impose restrictions on
the kind of densities they can faithfully represent, mix-
tures of poly-trees are universal approximators.

2.3. Learning a random mixture from data

Let X be a set of discrete random variables, and
D = (z',---,2%) be a sample of joint observations
zt = (2%,---,2%) drawn from some datagenerating
distribution P (X). Let P be the space of all possible

poly-tree graphical structures defined over X.

Our generic procedure for generating a random mix-
ture of poly-tree models from D is described by Algo-
rithm 1; it receives as inputs X, D, m, and three pro-
cedures DrawPolytree, LearnPars, Compute Weight.

Algorithm 1 (Learning random poly-tree mixtures)

1. Repeat fori=1,--- ,m:

(a) P; = DrawPolytree(P),
(b) Forj=1,--- ,n:

Pp, (X;|pap, (X;)) = LearnPars(P;, X;, D)
(¢) pi = ComputeWeight(P;, D, m)

2. Retumn (js, (Br, (X, lpar, (X,)),)

3. Experiments and preliminary results

In (Ammar et al., 2008) we report some first results
with the above algorithm applied to datasets of size
d = 1000 generated from discrete distributions with
n = 8, which could be faithfully represented by a
chain, a single tree, or a single poly-tree model.

In these simulations we have considered two differ-
ent instances of DrawPolytree, namely a uniform draw
over the class P of all poly-trees, and a uniform draw
over the subclass P! of trees. In order to achieve this
for m € {1,2,...,1000}, we have used efficient algo-
rithms for sampling trees given in (Quiroz, 1989).

For parameter learning, we used maximum a posteriori
values given the dataset and structure, while assuming
non-informative priors on the parameters. Concern-
ing the p;s, we used a uniform weighting strategy, ie.
ComputeWeight(P;, D,m) = 1/m.

Overall, these results showed that the quality of the
mixture-models converges rather rapidly (ie. for m ~
20), and that the poly-tree mixtures were slightly su-
perior when targeting poly-tree datagenerating distri-
butions, while the mixtures of trees were superior in
the other two cases. We also observed a slightly non-
monotonic behavior of the model quality with growing
values of m, which we suspect to be related to the
uniform weighting scheme.

In the immediate future, we will carry out further more
systematic experiments on larger problems and span-
ning different versions of the algorithm.

In particular, we will consider non-uniform weighting
schemes, by exploiting the score obtained for a given
structure and dataset so as to downweight structures
that fit less well to the datagenerating distribution.
We will also consider sampling from the spaces PP of
poly-trees of bounded number of parents.

Experiments will be made over a richer set of datagen-
erating distributions, in particular ones that can not
be represented faithfully by a single poly-tree model.
For instance, we will consider general directed acyclic
graph models as datagenerating distributions.

We will compare our algorithm in terms of sample and
computational efficiency with Bayesian network struc-
ture learning and algorithms targeting an optimal mix-
ture of tree-models (Meila-Predoviciu, 1999).

Subsequently, we plan to extend our approach to han-
dle continuous variables and incomplete datasets.
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