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Abstract
Alert correlation plays an increasingly crucial role in nowadays com-

puter security infrastructures. It is particularly needed for coping with
the huge amounts of alerts which are daily triggered by intrusion de-
tection systems (IDSs), fire-walls, etc. While the use of multiple IDSs,
security tools and complementary approaches is fundamental and highly
recommended in order to improve the overall detection rates, this how-
ever inevitably causes huge amounts of alerts most of which are redun-
dant and false alarms making the manual analysis of these triggered alerts
time-consuming and inefficient. This paper addresses three important is-
sues related to predicting severe attacks (attacks with high dangerousness
levels) by analyzing inoffensive and preparatory attacks. i) Firstly, we ad-
dress the issue of preprocessing alerts reported by the multiple detection
tools in order to eliminate the redundant and irrelevant alerts and format
them so that they can be analyzed by a severe attack prediction model.
ii)Then, we propose a novel prediction model based on a Bayesian network
multi-net allowing on one hand to better model the severe attacks and on
the other hand handle the reliability of IDSs when predicting severe at-
tacks. iii) Finally, we provide a flexible and efficient approach especially
designed to limit the false alarm rates by controlling the confidence of
the prediction model. The main benefits of our approach is an integrated
model guaranteeing very promising prediction/false alarm rate tradeoffs
with minimum expert intervention. Our experimental studies are carried
out on a real and representative alert corpus generated by the de facto
network-based IDS Snort, and show very interesting performances regard-
ing the tradeoffs between the prediction rates and the corresponding false
alarm ones.

Keywords: Alert correlation, IDSs’ reliability, severe attack prediction, Bayesian
multi-nets, reasoning with uncertain evidence, reject option.
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1 Introduction
Computer security is always facing new challenges as information systems are
more and more networked and technologies are changing and increasingly com-
plex. Two kinds of solutions are currently deployed in order to ensure the in-
tegrity, confidentiality or availability of computer and network resources/services:
preventive solutions (such as fire-walls and access control systems) aiming at
preventing malicious users from performing unauthorized actions and detective
solutions such as intrusion detection systems (IDSs) whose objective is detecting
any malicious action targeting the information system resources and services [2].
IDSs act as burglar alarms and they are either misuse-based [29] or anomaly-
based [26] or a combination of both the approaches in order to exploit their
mutual complementarities [33].

Computer security practitioners often deploy multiple security products and
solutions in order to increase the detection rates by exploiting their mutual
complementarities. For instance, misuse-based IDSs are often combined with
anomaly-based ones in order to detect both old and novel attacks and anoma-
lies. It is important to note that all exiting anomaly-based approaches have a
major drawback consisting in very high false alarm rates. These systems build
profiles and models of legitimate activities and detect attacks by computing
the deviations of the analyzed activities from normal activity profiles. In the
literature, most anomaly-based IDSs are novelty or outlier approaches [26][30]
adapted for the intrusion detection problem. Moreover, all modern IDSs (even
the de facto network IDS Snort1) are well-known to trigger large amounts of
alerts most of which are redundant and false ones. This problem is due to sev-
eral reasons such as bad parameter settings and inappropriate IDS tuning, etc.
[32]. As a consequence, huge amounts of alerts are daily reported making the
task of the security administrators time-consuming and inefficient. In order to
cope with such quantities of alerts, alert correlation approaches are used [14][12].

Alert correlation is the task of analyzing the alerts triggered by one or mul-
tiple IDSs in order to provide a synthetic and high-level view of the interesting
malicious events targeting the information system. Alert correlation approaches
aim either at reducing the number of triggered alerts by eliminating redundant
and irrelevant ones [14] or detecting multi-step attacks [25] where the different
alerts may correspond to the execution of an attack plan consisting in several
steps. More recently, the authors in [5] proposed a method for prioritizing the
triggered alerts according to the knowledge and preferences of the security ad-
ministrators.

In this paper, we propose a complete approach which first reduces and pre-
processes the alerts reported by several IDSs then efficiently predicts severe
attacks. The main objectives of our approach are

1www.snort.org
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i) Severe attack anticipation: The detection of dangerous attacks is antici-
pated allowing the security administrators to prevent the malicious actions
by taking the appropriate countermeasures. For example, if a remote host
is predicted as the source of a future dangerous attack, then the fire-
wall can be reconfigured in order to deny access for this malicious host.
Obviously, the countermeasures can be automated helping to secure an
information system from potential dangerous attacks.

ii) Efficient handling of IDSs’ reliability: Handling the IDSs’ reliability is
a crucial issue in alert correlation since most modern IDSs triggers huge
amounts of false alerts. Our approach allows an easy and efficient handling
of IDSs’ reliability. Moreover, it can handle both false alert and false neg-
ative2 rate problems. Note that most existing alert correlation approaches
use alerts produced by IDSs without handling the reliability of these IDSs.

iii) Flexible control of severe attack prediction/false alarm rate tradeoffs: We
propose a flexible mechanism allowing security administrators to control
the prediction/false alarm rate tradeoffs according to the contexts, envi-
ronments and the security level they want to ensure.

In our approach, the severe attack prediction model is viewed as a classification
problem based on a Bayesian multi-net and we rely on Pearl’s virtual evidence
method [27] for handling the IDSs’ reliability. In order to control the severe at-
tack prediction/false alarm rate tradeoffs, we propose an approach allowing to
reject the alert sequences where the alert correlation model’s confidence is not
sufficient to make a good prediction. As we will see in our experimental studies,
our approach allows to significantly reduce the false alarm rates while ensuring
very interesting severe attack prediction rates. Note that the other prediction
and classification models such decision trees [28] cannot handle uncertain inputs
(inputs provided by unreliable sources such as IDSs) and cannot offer means for
assessing and controlling the model’s confidence when making predictions. As
we will see in the following sections, our approach requires minimum expert
intervention. In fact, given a set of severe attacks to predict and historical alert
logs, one can easily build and deploy an efficient model for predicting severe
attacks. Moreover, our approach is easily deployed in real-time since one has
just to preprocess the alert logs in real-time to extract the predictor vectors
and perform real-time severe attack prediction. We can add (resp. discard) a
new (resp. an existing) severe attack with minimum alterations on the existing
prediction model as it is based on a multi-net.

Our approach is integrated and centered on Bayesian networks and intended
to effectively address most of the challenging issues in alert correlation. As
Bayesian networks are good prediction models, they are very suitable for the

2In the context of intrusion detection, a false negative denotes an attack that was not
detected by the IDS.
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severe attack prediction problem and provide simple and efficient means for
dealing with the two major issues in alert correlation: dealing with false alarms
and controlling prediction/false alarm rate tradeoffs. More precisely, Bayesian
networks offer an elegant way for dealing with false alarms (using the virtual
evidence method [27]) and controlling the prediction/false alarm tradeoffs with
the reject option [10]. These methods are specific to Bayesian networks and
perfectly meet the requirements of the severe attack prediction problem. Our
experimental studies, carried out on real data collected on a university campus,
clearly show the effectiveness of our approach in predicting severe attacks with
low false alarm rates.

The rest of this paper is organized as follows: Section 2 provides the basic
backgrounds and related works on alert correlation. In Section 3, we present
our method for redundant and irrelevant alert elimination. Section 4 briefly
presents Bayesian multi-nets and our prediction model taking into account the
IDSs’ reliability. Section 5 presents our approach for handling IDSs’ reliability.
In Section 6, we present our model for controlling the prediction/false alarm
rate tradeoffs. Section 7 provides our experimental studies and finally, Section
8 concludes this paper.

2 Alert correlation: Approaches and challenges
In this section, we briefly review existing approaches in the alert correlation
field then present the two main challenges related to this problem and for which
we propose a solution.

2.1 Alert correlation
Alert correlation [14][12] consists in analyzing the alerts triggered by one or
multiple IDSs and other security tools in order to provide a synthetic and high-
level view of the interesting malicious events targeting the information system.
The input data for alert correlation tools is gathered from various sources such
as IDSs, fire-walls, web server logs, etc. Correlating alerts reported by multiple
analyzers and sources has several advantages such as exploiting the complemen-
tarities of multiple analyzers. The main objectives of alert correlation are:

1. Alert reduction and Redundant alerts elimination: The objective of alert
correlation here is to eliminate redundant alerts by aggregating or fusing
similar alerts [14]. In fact, IDSs often trigger large amounts of redun-
dant alerts due to the multiplicity of IDSs and the repetitiveness of some
malicious events such scans, floodings, etc.

2. Multi-step attack detection: Most IDSs report only elementary malicious
events while several attacks perform through multiple steps where each
step can be reported by an alert. Detecting multi-step attacks requires an-
alyzing the relationships and connections between several alerts [4][7][25].
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3. Alert filtering and prioritization: Among the huge amount of triggered
alerts, security administrators must select a subset of alerts according to
their dangerousness and the contexts. Alerts filtering/prioritization aims
at presenting to the administrators only the alerts they want to analyze[5].

In the literature, alert correlation approaches are often grouped into similarity-
based approaches [14], predefined attack scenarios [25], pre and post-conditions
of individual attacks [12] and statistical approaches [35][21].

In most similarity-based approaches, the objective consists in reducing the
large volumes of alerts generated by the analyzers by aggregating similar ones
on the basis of their features (victiom/attacker IP addresses, etc.). Examples
of such approaches can be found in [14][35][13].

Approaches based on pre/post-conditions aim at detecting whether an at-
tack plan (also called attack scenario) is in progress. An attack plan designates
a complex multi-step attack consisting in several malicious actions. It often
consists in a set of actions executed in a predefined sequence. Hence, in order
to detect attack plans, there is a need to first detect the individual actions and
correlate them in order to find which attack plan is ongoing. Pre/post-condition
approaches encode attack plans by specifying for each action its pre-conditions
(the actions/conditions that must executed/fulfilled before executing the cur-
rent one) and post-conditions (corresponding generally to the consequences of
an action). In [1], the authors propose a grammar-based approach to encode
attack plans. In [25], the authors propose a logic-based approach for attack sce-
nario detection while it is a graph representation-based approach that is used
in [23]. It is important to note that most works on multi-step attack detection
heavily rely on expert’s knowledge. For instance, the model proposed in [12]
requires identifying for each elementary attack, the preceding attacks and its
consequences.

Several works propose statistical and data mining techniques for the alert
correlation problem. The advantage of these techniques is their ability to ex-
ploit large data volumes and the fact that they do not require lot of expert
knowledge. For instance, in [13] the authors apply clustering and data mining
approaches to discover attack clusters which are then aggregated. The authors
in [4] use naive causal Bayesian networks in order to detect whether an intruder
is attempting to reach a given objective.

In this paper, we are interested in severe attack detection which can be
viewed as a variant of multi-step attack recognition.
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2.2 Alert correlation data
Alert correlation engines basically use as input data the alerts triggered by the
detection and prevention tools monitoring the information system. In addition,
they exploit other data such as the message notifying events, the log records of
some applications such Web servers, database management systems, etc.

An alert is a message generated by un IDS when an attack or an abnormal
activity is detected. It often contains an identification/name of the detected
activity, its category, a severity level, the IP address of the attacker, the IP
address of the victim, etc. Most of the modern IDSs can report alerts in IDMEF3

format which is the XML intrusion detection message exchange format enabling
inter-operability among IDSs and other security tools. In the following, we
provide an example of an IDMEF alert generated by Snort IDS:
_________________________________________________________________________________________________
<IDMEF-Message>

<Alert messageid="645478938321099">
<Analyzer analyzerid="557835818140906" name="prelude-manager" ....
...
<Analyzer analyzerid="2365682042807011" name="snort-public" manufacturer="http://www.snort.org"...
...

</Analyzer>
</Analyzer>
<CreateTime ntpstamp="0xcae43e0c.0x4e29f000">2007-11-13T16:15:24.305327+01:00</CreateTime>
<DetectTime ntpstamp="0xcae43e0c.0x4e13c000">2007-11-13T16:15:24.304989+01:00</DetectTime>
<AnalyzerTime ntpstamp="0xcae43e0c.0x4e2d9000">2007-11-13T16:15:24.305383+01:00</AnalyzerTime>
<Source spoofed="unknown" interface="eth1">
<Node category="unknown">

<Address category="ipv4-addr">
<address>172.16.10.3</address>

</Address>
</Node>
<Service ip_version="4" iana_protocol_number="6" iana_protocol_name="tcp">

<port>53014</port>
</Service>

</Source>
<Target decoy="unknown" interface="eth1">
<Node category="unknown">

<Address category="ipv4-addr">
<address>XXX.XXX.XXX.XXX</address>

</Address>
</Node>
...

</IDMEF-Message>
_________________________________________________________________________________________________

It is important to note that alerts can be generated by different categories
of detection tools (such as network-based IDSs, host-based IDSs, application-
based IDSs, etc.) and prevention tools (such fire-walls, access control systems,
etc.).

According to the IDSs’ configurations, the alerts generated by IDSs are sent
directly to the security administrators, stored in a log file, etc. Generally, alerts
are generated in IDMEF format and sent to a server which collects these alerts
for alert correlation purposes. For instance, Prelude-manager4 is a collection

3IDMEF stands for the Intrusion Detection Message Exchange Format. http://www.ietf.
org/rfc/rfc4765.txt

4http://www.prelude-ids.org/
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of open source tools allowing to collect (via secure network connections) and
store the alerts and events triggered by various IDSs and other security tools
such that alert correlation engines can use them. Note that in our experimental
studies, our data is collected on a university campus monitored by the Snort
IDS and the triggered alerts are collected by the Prelude-manager tool.

2.3 IDSs’ Reliability: A crucial issue
The most important problem users of IDSs and security practitioners face is
the one of false alerts which correspond to legitimate activities that have been
mistakenly reported as malicious actions by the IDSs. Indeed, nowadays IDSs
are well-known to trigger high false alarm rates. For instance, the well-known
Snort IDS indicates for each attack, whether false alerts could be triggered.
In an experimental evaluation of Snort IDS [32], the authors concluded that
96% of the triggered alerts are false positives. Hence, taking into account the
reliability of IDSs is an interesting issue for alert correlation tasks such as the
prediction of severe attacks which is the focus of this work. For instance, if it
is known that 90% of alerts reporting a malicious event triggered by a given
IDS are false, then this information should be taken into account if such alerts
should be exploited as inputs by the alert correlation tool. Note that there is to
the best of our knowledge no work addressing the handling of IDSs’ reliability
for severe attack prediction. As we will see in Section 5.1, Bayesian networks
offer a natural and efficient way to handle the reliability of IDSs as a problem
of probabilistic reasoning in presence of uncertain data.

2.4 Controlling prediction/false alarm rate tradeoffs
Most of detection tools are equipped with means allowing their users to config-
ure them according to theirs needs, required analysis overload, etc. For instance,
some Snort detection modules offer thresholds to be set by the security admin-
istrators in order to limit the volume of alerts. If one wants to ensure a high
security level then he must deal with large volumes of alerts since any suspected
event will be detected and an alert will be triggered. If, on the contrary, one
wants to ensure an acceptable rate of false alarms, then this can be done only
at a lower level of security. Note that the security level may change from day
to day depending on the security recommendations and bulletins. Hence, it is
essential for our system to provide a way for controlling the prediction/false
alarm rate tradeoffs. In our approach, we propose to rely on the confidence of
the prediction model to control the number of false alarms.

3 Alert preprocessing and redundancy/irrelevance
elimination

In this section, we present the method we use for eliminating redundant and
irrelevant alerts and preprocess raw IDMEF alerts in order to be analyzed by
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our severe attack prediction model. This method is inspired by the works of
[3][4].

3.1 From IDMEF to preprocessed alert windows
In this paper, severe attack prediction is viewed as a classification problem
which a special kind of prediction. Hence, the analyzed data must be prepro-
cessed and summarized into formatted input data composed of features with
high information gain in order to ensure high prediction rates. Then in order
to analyze a sequence of alerts Alert1, Alert2,.., Alertk reported by one or mul-
tiple IDSs to determine if this alert sequence plausibly will lead or be followed
by a severe attack Attacki, we need to preprocess the raw IDMEF alerts into
attribute variables. In IDMEF standard, three dangerousness levels are defined:
low, medium and high. In our case, we analyze sequences of low and medium
severity level alerts in order to predict high severity level attacks. Note that
only the alerts with low/medium severity levels (often due to inoffensive attacks
such as scans) are concerned with the reduction and preprocessing. The alerts
with high severity levels are those we want to predict. The alert preprocessing
provides two reduction levels:

1. Redundant alert elimination step In order to eliminate the redundant
alerts (for instance, alerts with same identifier (sid), targeting the same
victim by the same attacker), raw alerts Alert1, Alert2,.., Alertk generated
by IDSs are summarized in alert windows where the occurrences of each
alert Alerti is associated with a variable Ai whose domain is {0, 1} where
the value 0 means that the alert Alerti was not observed in the analyzed
sequence while value 1 denotes the fact that the alerts Alerti have been
reported.

Figure 1: Example of formatting raw alert sequences into presence/absence data

As it is shown in Figure 1, raw alert sequences are formatted into CSV5

data where several occurrences of a given alert is denoted by the value 1
while the value 0 denotes the fact that this alert has not been triggered
during the analyzed alert sequence. For instance, the alert with identifier
12 has been triggered twice in this example but in the formatted data, we
have only once the value 1 corresponding to this alert and denoting that

5Comma separated values
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the alert 12 has been observed. As for the alert whose identifier is 11, its
value is 0 since it has not been reported in this example. Hence, even if
during an alert sequence, an alert Alerti has been reported several times,
this information will be represented with one variable Ai. Clearly, this way
of preprocessing raw redundant data into presence/absence data is efficient
for eliminating the redundant occurrences of the same alerts especially
since there are several alerts which are reported hundreds of times during
short time durations. Note that one can also count the occurrences of the
alerts Alerti instead of just reporting whether this alert has been reported
or not. One can also take into account time constraints between alerts. For
instance, if we want to eliminate the alerts Alerti occurring after another
alert Alertj , then the variable Ai is set to 1 only if an Alerti is reported
before an alert Alertj within the alert sequence. As for the duration
of alert windows, it can be fixed experimentally or manually set by the
expert according to the analysis periodicity, the processing overload, etc.
For instance, in our experimentations, a two hours raw alert sequence
involving thousands of alerts is summarized by a single alert window.

2. Irrelevant alert elimination step In the redundant alert elimination
step, we eliminate the redundant alerts by substituting several occurrences
of the same alert by a single variable value. However, for predicting se-
vere attacks, there is not need to use all the low/medium level alerts.
This problem is well-known in the machine learning field as the feature
selection problem: given an initial input set of features, we want to select
a subset of features guaranteeing good performances for the considered
task (classification, regression, etc.). Indeed, not only feature selection
methods [36] significantly reduce the dimensionality of the feature set but
often improves the model’s performances. Moreover, the feature selection
process does not require expert knowledge as there are several statistical
methods for achieving this task [36]. In our application, feature selection
helps us to eliminate the irrelevant alerts, namely low/medium level alerts
which are irrelevant for predicting severe attacks. As we will see in our ex-
perimental studies, only some dozens of low/medium severity level alerts
are needed to predict most of severe Web attacks. Note that Bayesian net-
works (which are used to build our prediction model) can also be used as
a feature selection method since the Markov-blanket property [24] allows
to determine the subset of input variables which are sufficient to predict
a given target variable.

Regarding the criteria used for grouping the raw alerts, the alerts reported
by IDSs can be grouped into several levels of granularity according to the alerts
semantics, attack strategies and characteristics of the attacks to predict, etc.
For instance, raw alerts can be summarized into alert windows by grouping
alerts per IDSs, victims, attackers, etc. In our experimental studies, Snort IDS
alerts are grouped according to their sid (alert signature identifier) and victim’s
IP address and attacker’s IP address. Namely, an alert window ω summarizes
the alerts targeting the same victim and launched by the same attacker. Our
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choice is motivated by the nature of the severe attacks we want to predict which
are not distributed and target only single Web applications.

It is important to note that the preprocessing of raw alerts data into pres-
ence/absence data ignores the sequential or temporal relationships between the
alerts. Very often, the attackers execute on purpose some of their actions each
time in a different sequence to escape detection. Our main objective in this
paper is to show on real data that even if we ignore these sequential/temporal
dependencies between alerts, we can still achieve good prediction/false alarm
rate. Note also that our model exploits some correlations between attributes
since it is based on non naive structures (in our experimental studies, we used
MWST [11] to build our multi-net where each network has a tree structure
involving most of the strong correlations between alert features). These corre-
lation relationships are automatically extracted from the training data.

4 Bayesian network-based model for predicting
severe attacks

This section briefly presents Bayesian networks and their use as severe attack
prediction models taking into account the IDSs’ reliability.

4.1 Bayesian network classifiers
Bayesian networks are powerful graphical models for modeling and reasoning
with uncertain and complex information [20]. They are specified by:

i) A graphical component consisting in a DAG (Directed Acyclic Graph) al-
lowing an easy representation of the domain knowledge in the form of an
influence network (vertices represent events while edges represent depen-
dance relations between these events), and

ii) A probabilistic component allowing to quantify the uncertainty relative
to relationships between domain variables using conditional probability
tables (CPTs).

Bayesian networks are used for different types of inference such as the maximum
a posteriori (MAP), most plausible explanation (MPE), etc. As for applications,
they are used as expert systems for diagnosis, simulation, classification, etc.

Supervised classification consists in predicting the value of a target vari-
able given the values of observed variables. Namely, given observed variables
A1,..,An describing the objects to classify, it is required to predict the right
value of the class variable C among a predefined set of class instances. Bayesian
network-based classification is a particular kind of probabilistic inference en-
sured by computing the greatest a posteriori probability of the class variable
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given the instance to classify. Namely, having an instance of the attribute vec-
tor a1a2..an (observed variables A0=a0, A1=a1,.., An=an), it is required to find
the most plausible class value ck (ck ∈ C={c1, c2,..,cm}) for this observation.
The maximum a posteriori classification rule can be written as follows:

Class = argmaxck∈C(p(ci/a1a2..an)), (1)

where the term p(ci/a1a2..an) denotes the posterior probability of having the
class instance ci given the evidence a1a2..an. This probability is computed using
Bayes rule as follows:

p(ci/a1a2..an) = p(a1a2..an/ci) ∗ p(ci)
p(a1a2..an)

(2)

The denominator of Equation 2 can be ignored because it does not depend on
the different classes. Equation 2 means that posterior probabilities are propor-
tional to the likelihood of the evidence and class prior probabilities while the
evidence probability is just a normalizing constant. Note that most works use
naive or semi-naive Bayesian network classifiers such as TAN (Tree Augmented
Naive Bayes) and BAN (Bayesian Network Augmented Naive Bayes) [9] which
make strong assumptions in order to simplify the classifier’s structure learn-
ing from the data. The other Bayesian network classifiers require more general
structure learning and parameter estimation (building the CPT tables).

Bayesian network-based approaches are widely used in many areas of com-
puter security. More particularly, Bayesian classifiers are used in intrusion de-
tection in several works such as [37][34][31]. In alert correlation, a Bayesian
approach is used in [35] for alert fusion. Bayesian classifiers are also used in
[3][4][15] where the authors use naive, TAN and other Bayesian network models
for detecting attack plans and severe alerts. Note that all the works on detecting
multi-step and severe attacks use naive or semi-naive prediction models. Note
also that to the best of our knowledge, there is no work addressing the IDSs’
reliability handling. In the following, we propose a Bayesian network-based
approach for severe attack prediction.

4.2 Severe attack prediction as a classification problem
Severe attack prediction consists in analyzing sequences of alerts or audit events
in order to predict future severe attacks. In this paper, severe attack prediction
is modeled as a classification problem where the variables are defined as follows:

1. Predictors (attribute variables): The set of predictors (observed
variables) is composed of the set of relevant alerts for predicting the se-
vere attacks. Namely, with each relevant alert variable Ai reports the
presence/absence of alert Alerti in the analyzed sequence.

2. Class variable: The class variable C represents the severe attacks
variable whose domain involves all the severe attacks Attack1,.., Attackn
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to predict and another class instance NoSevereAttack representing alert
sequences that are not followed by severe attacks.

Note that in order to automatically build the Bayesian network classifiers,
the training data is labeled. Namely, for each alert vector (a presence/absence
data representing an alert sequence) in the training data set, we associate a
label denoting either the severe attack following this alert sequence or a special
label NoSevereAttack in case where the alert sequence will not be followed by
a severe attack. In our experimental studies, the labeling task is done auto-
matically: we have only to list the severe attacks we want to predict. Then
the preprocessing tool we developed for this purpose (see Section 7.1), checks
for each preprocessed alert sequence whether a severe attack is detected. In
the positive case, the current alert sequence terminates exactly at the detected
severe attack and the alert window is shifted backwards to ensure that all the ac-
tions that led to this severe attack are present within the current alert sequence.

The main advantages of this approach for predicting severe attacks are:

1. Minimum expert intervention: the expert has just to identify the severe
attacks he wants to predict and use feature selection methods to select
the relevant features for predicting these attacks on historical alert logs.
Moreover, the prediction models are automatically learnt from validated
empirical data.

2. Easy deployment: one has just to preprocess the alerts logs in real-time
to extract the predictors and perform real-time severe attack prediction.

3. Easy update: the prediction model can be easily updated and tuned by
automatically relearning the models on more appropriate data.

4.3 Bayesian multi-net classifiers
In standard Bayesian classifiers, there is a unique network which encodes the
influence relationships relative to all the training data. However, the indepen-
dence relationships are not the same over the different classes. More particularly,
in our severe attack prediction application, each severe attack is correlated (in
the statistical/causal sense) only with a small and specific set of other alerts
most of time because several attacks are undertaken by worms and scripts exe-
cuting the same malicious events. For instance, the attack WEB-IIS CodeRed
v2 root.exe access whose Snort signature identifier (sid) is 1256 is correlated in
our data set with alerts having sid=2 ((http_inspect) DOUBLE DECODING
ATTACK ), 18( (http_inspect) WEBROOT DIRECTORY TRAVERSAL) and
1002 (WEB-IIS cmd.exe access) because this worm uses a directory traversal at-
tack (causing alert with sid 18 and 2) in order to access the cmd.exe executable
on MS Windows systems. As we will see in our experimental studies, local
correlation modeling leads to better likelihood estimation for the classification
task. Note that when most structure learning algorithms identify correlations
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using statistical tests, consequently the obtained network encodes mainly the
correlations relative to the majority class. In a multi-net classifier, each class
instance ci is associated with a network Nci encoding only local independence
relationships learnt from training instances belonging exclusively to the class ci.
The a priori frequencies relative to the different classes can be encoded by a root
node C representing the class variable [8] or just by a local probability distri-
bution as in [9]. The generic procedure for learning a multi-net from empirical
data is provided in Algorithm 1.

Input: Data set D of labeled training examples, Structure
learning algorithm and its parameters
Output: Multi-net
Begin

1. Partition the training set D into subsets Si where
each Si contains the data belonging only to class ci.

2. For each training subset Si,
(a) Learn a Bayesian network Nci on Si

i. Learn the structure of Nci on Si,
ii. Learn the parameters of Nci on Si,

(b) Compute the frequency of class instance ci.

ALGORITHM 1: Bayesian multi-net classifier learning.

Algorithm 1 shows that learning a Bayesian multi-net is performed by parti-
tioning the training data set D into several partitions where each partition Si
contains only the training instances sharing the same class ci. Note that learn-
ing a network on each Si can be done using a different algorithm and feature
space since not all the feature are relevant for all classes. The multi-net based
classification’s procedure is provided by Algorithm 2.

Input: Bayesian multi-net classifier, the instance to classify
a1..an
Output: Most probable class instance ci∈DC
Begin

1. For each possible class instance ci,
(a) Compute the likelihood of the evidence, namely

pNci (a1..an).
(b) Combine the likelihood with a priori frequency of

class ci, namely compute pNci (a1..an)*p(ci).
2. Return the class instance having the ut-

most a posteriori probability degree, namely
argmaxci∈Dc(pNci (a1..an)*p(ci)).

ALGORITHM 2: Classification based on a multi-net classifier.
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In [18][19], Bayesian multi-nets are considered as variants of unrestricted
Bayesian classifiers. Authors in [9] argue that multi-net classifiers are as effec-
tive as the best state of the art classifiers while they are more expressive and
less complex than BANs. Moreover, multi-nets allow to update the model with
minimum modifications. For instance, in order to add a new class, one has just
to learn an additional network for the added class. One can also update existent
models by repeating the learning of local networks of the updated classes. In
[8], author proposed approaches for selecting the branching variable Ai that will
be linked with the class variable C. Finally, multi-net classifiers offer the oppor-
tunity to choose a specific learning algorithm and select the most appropriate
features for each class.

5 Handling IDSs’ reliability
This section deals with the handling of IDSs reliability using Pearl’s virtual
evidence method.

5.1 Reasoning with uncertain data: Pearl’s virtual evi-
dence method

Pearl’s virtual evidence method [27] offers a natural way for handling and rea-
soning with uncertain evidence in the framework of probabilistic networks. In
this method, the uncertainty indicates the confidence on the evidence: to what
extent the evidence is believed to be true. In our context, if an IDS triggers an
alert and we know (from past experience for example) that this event is a false
alarm in 95% of the cases then we are in presence of uncertain evidence. The
main idea of Pearl’s virtual evidence method is to recast the uncertainty rela-
tive to the uncertain evidence E on some virtual sure event η: the uncertainty
regarding E is specified as the likelihood of η in the context of E.

Example
Let us illustrate Pearl’s virtual evidence method on the simplified lung cancer
problem presented by the network of Figure 2.

CS

Cancer Smoking p(C|S)
True True 0.73
True False 0.4
False True 0.27
False False 0.6

Smoking p(S)
True 0.52
False 0.48

Figure 2: A Bayesian network modeling the lung cancer/smoking problem with
variables S (Smoking) and C (Cancer)
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According to the network of Figure 2, if a patient has lung cancer (assume
that the result of an infallible test is positive), then the probability that this
patient is smoker is p(S=True/C=True)=0.66. Assume now that the used
medical tests revealing whether a patient has lung cancer or not are reliable
at 95%. According to Pearl’s virtual evidence method, this uncertainty will be
recasted on a virtual event (say T for Test) as illustrated in network of Figure
3.

S C T
Smoking p(S)
True 0.52
False 0.48

Test Cancer p(T|C)
True True 0.95
True False 0.05

Cancer Smoking p(C|S)
True True 0.73
True False 0.4
False True 0.27
False False 0.6

Figure 3: The Bayesian network of Figure 2 extended with the virtual evidence
node T (Test)

Now, given a positive test saying that the considered individual has lung can-
cer, than the probability that this person smokes is p(S=True/T=True)=0.65.
In the following we provide our method for handling IDSs’ reliability for pre-
dicting severe attacks.

5.2 Handling IDSs’ reliability using Pearl’s virtual evi-
dence method

In order to apply Pearl’s virtual evidence method for efficiently handling IDSs’
reliability, we must first assess the IDSs’ reliability by means of empirical eval-
uations (an expert can examine for each alert type triggered by an IDS, the
proportion of true/false alerts). An expert can also subjectively (by experience)
fix the reliability of the IDSs composing his intrusion detection infrastructure.
Now, after assessing the reliability of the IDSs in triggering the alerts A1,..,An,
the handling of the uncertainty regarding an alert sequence, proceeds as follows:

1. For each alert variable Ai, add a child variable Ri as a virtual evidence
recasting the uncertainty bearing on Ai. The domain of Ri is DRi={0, 1}
where the value 0 is used to recast the uncertainty regarding the case Ai=0
(alert Ai was not triggered) while the value 1 is used to take into account
the uncertainty in the case Ai=1 (alert Ai was triggered).

2. Each conditional probability distribution p(Ri/Ai) encodes the reliability
that the observed values (triggered alerts) are actually true attacks. For
example, the probability p(Ri=1/Ai=1) denotes the probability that the
observation Ri=1 is actually due to a real attack.

The example of Figure 4 gives a tree-augmented naive Bayes network aug-
mented with five nodes R1,R2,R3,R4,R5 for handling the uncertainty relative to
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variables A1,A2,A3,A4,A5 respectively. Henceforth, the observed variables are
R1,R2,R3,R4,R5 while variables A1,A2,A3,A4,A5 are associated with the actual
malicious/normal activities and they cannot be directly observed.

Figure 4: Example of a Bayesian network classifier handling the reliability of
inputs

When analyzing an alert sequence r1r2..rn (an instance of observation vari-
ables R1,..,Rn), we compute argmaxci(p(ck/r1..rn)) in order to predict severe
attacks. Note that in practice it is less complicated to assess the false/true pos-
itive rates than assessing the false/true negative rates which requires analyzing
the whole activities (for example, all the network traffic) in order to evaluate the
proportion of attacks that were not detected by the IDSs. In the following, we
provide an efficient mechanism for controlling the severe attack prediction/false
alarm rate tradeoffs.

6 Controlling severe attack prediction/false alarm
rate tradeoffs

This section presents our approach based on classification with reject option for
controlling the severe attack prediction/false alarm rate tradeoffs.

6.1 Classification with reject option
Classification with reject option [10] is an efficient solution allowing to identify
and reject the data objects that will be probably misclassified. Indeed, in many
application areas such medical diagnosis, military target identification, etc. it is
better to reject (not classify) an object than misclassifying it. The reject option
is crucial in our application especially for limiting the false alarm rates because
the reliability of inputs directly impacts the predictive and discrimination power
of our prediction models (the greater the uncertainty in the input data, more
difficult will be the prediction of the nature of the analyzed alert sequence).
Moreover, this approach allows the user to control the tradeoffs between the
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severe attach prediction and the underlying false alarm rates.
A classification model can be seen as a means of discriminating the frontiers
defined by the objects sharing the same class (as shown on illustration (a) of
Figure 5 where the classifier is represented by the line separating classes c1,
c2 and c3). As shown on Figure 5, in the literature there are two kinds of
classification with reject option:

1. Ambiguity reject: As shown in illustration (b) of Figure 5, in ambigu-
ity reject the object to classify belongs to several classes simultaneously,
which makes the classifier confused. This may be caused by the fact that
the modeled classes are not completely disjoint. This type of rejection
is implemented by detecting data objects that are close to several classes
simultaneously. Several techniques are used to implement this approach.
In [10], the author proposed using the a posteriori probability of the in-
stance to be classified in different classes. In our approach for controlling
the prediction/false alarm rate tradeoffs, we will act on the width of the
grey-colored region of illustration (b) of Figure 5 separating the differ-
ent classes to specify the confidence with which our prediction model is
expected to make the good predictions (see Equation 4).

2. Distance reject: This situation occurs when the instance to classify does
not belong to any of the classes represented by the classification model.
This may be due to the existence of a class which is not represented or that
the item to classify is an outlier. As shown in illustration (c) of Figure 5,
the distance reject is used to define the classes modeled by the classifier
and can thus reject what is beyond its frontiers. In the illustration (c) of
Figure 5, the grey-colored region represents the modeled classes and all the
data instances that fall outside its frontier will be rejected and considered
as outliers. In practice, this solution is implemented by measuring the
degree of belonging or distance from the object to classify with the different
classes. A threshold is often set below which the objects to classify are
rejected. In Bayesian network-based classifier, this reject option can easily
be implemented by fixing a threshold on the likelihood or the a posteriori
probability of the object to classify with respect to the existing classes.

The distance reject is often used for anomaly and outlier detection. For
instance, we used a Bayesian network reject in [6] in order to detect novel
attacks in network traffic. However, this reject is not relevant for controlling
the severe attack prediction/false alarm rate tradeoffs since alert sequences are
either followed by severe attacks or not (there is no other alternative to be
captured by the distance rejection). The reader can refer to [22] for discussions
on classifiers’ confidence evaluation and reject option rules interpretation. In
the following, we present our approach for controlling the attack prediction/false
alarm rate tradeoffs based on the ambiguity reject option.
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Figure 5: Geometric representation of classification (a) ambiguity reject (b) and
distance reject (c)

6.2 Controlling severe attack prediction/false alarm rate
tradeoffs

Bayesian network-based classifiers are naturally suitable for implementing the
classification with reject option as classification is ensured by computing a pos-
teriori probabilities of class instances given the data to be classified. Each
probability P (ci/a1..an) can be interpreted as the confidence of the classifier
that the instance to classify belongs to class instance ci. In our application,
we are interested in controlling the attack prediction/false alarm rate tradeoffs
according to the contexts and needs of each final user. For example, a user
may want an alert correlation tool with high confidence (with minimum false
alerts). This objective requires rejecting the alert sequences where the tool is
not very confident. Let us define the confidence concept in our application as
the unsigned value of the difference of the probability that the instance to clas-
sify a1a2..an is not a severe attack and the probability that a1a2..an is actually
a severe attack. This measure is adapted from the works of Leray et al [22]
on classifiers confidence evaluation. It is done by measuring the gap between
the probability that the alert sequence will not be followed by a severe attack
(namely p(ci = 0/a1..an)) and the greatest probability that the event will be
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followed by a severe attack. Namely,

ϕ(a1..an) = |p(ci = 0/a1..an)−max
ci 6=0

p(ci/a1..an)|, (3)

where ci=0 denotes the class instance representing alert sequences that are not
followed by severe attacks while class instance ci 6=0 denote class instances as-
sociated with the severe attacks to predict. The value of ϕ(a1a2..an) gives an
estimate of the classifier’s confidence that the analyzed alert sequence will/will
not be followed by a severe attack. Hence, a user wanting to reject all alert
sequences where the probability of not being an attack is not twice the proba-
bility that they are severe attacks is done by setting the reject threshold L to
the value 1/3. Note that the a posteriori probabilities of the classes given the
alert sequence to analyze must be normalized in order to be used for implement-
ing the reject option. Then, the Bayesian decision rule of Equation 1 will be
reformulated as follows:

Class =
{

argmaxck∈DC (p(ci/a1..an)) ifϕ(a1..an) > L
∅ otherwise

(4)

The value ∅ denotes the reject decision, namely the instance to be classified is
rejected because the condition ϕ(a1..an)>L is not satisfied. In the following, we
provide our experimental studies on real IDMEF alert corpus.

7 Experimental studies
Our experimental studies are carried on real and recent alert log files produced
by Snort IDS monitoring a university campus network. These alert logs rep-
resent three months activity collected during summer 2007 within the frame-
work of PLACID project6 dealing with probabilistic and logic approaches for
alarm correlation in intrusion detection. The input to our system consists in
alerts generated by Snort IDS gathered in IDMEF format. In the following we
briefly present our alert preprocessing tool needed both in the training phase
(for preparing the labeled training data) and analysis phase for predicting severe
attacks.

7.1 Data preparation: IDMEF alert preprocessing
In order to preprocess IDMEF alerts into CSV data that can be used for training
our models, we developed an alert preprocessing tool taking as inputs IDMEF
alert log files and preprocessing options and outputs alert sequences in CSV
format.

Among the preprocessing options provided by the user in the preprocessing
option file, we find:

6http:\\placid.insa-rouen.fr
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Figure 6: IDMEF alert preprocessing process

• Window duration (in secs): the duration of the alert windows can be
defined by the user according the traffic flow rates, the processing overload,
analysis periodicity, etc. Our prediction models analyze alerts summarized
in alert sequence vectors. For instance, if the alert sequence duration is
set to 1 hour, than our preprocessing tool will represent all the alerts
involving the same attacker and victim and reported during the last hour
in one alert sequence vector.

• Predictors set: This set provides the alert identifiers (sid) that will be used
as predictor variables. If the provided set is empty, then the preprocessing
tool will perform a first pass to identify all possible predictors (every
low/medium alert will be considered as a predictor) and a second pass
to preprocess the alerts.

• Severe attacks set: This set lists the set of severe attack identifiers (sid)
the user wants to predict. This set is need only when building training
sets which need to be labeled.

Note that our preprocessing tool is used in off-line mode to provide the labeled
data for training the prediction models. More precisely, our preprocessing tool
proceeds for each alert log file as follows

1. It selects from each IDMEF alert only the needed information for our
formatting task (Source and Destination IP addresses, Sid (Snort alert
Identifier), Severity level). Recall that IDMEF alerts are XML data and
our preprocessor uses an XSLT script to achieve this selection.

2. The alerts are sorted according to their source/destination IP addresses.
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3. The sorted alert sequences are formatted into presence/absence CSV data
as explained in Section 3.

The labeling task is done automatically following the attack identifiers listed
in the severe attacks set. In prediction mode, the tool preprocesses in real-time
sequences of raw IDMEF alerts generated by IDSs and submits the preprocessed
alerts for analysis. Note that in order to determine the relevant alerts for our
task, we first preprocessed the raw IDMEF alerts into CSV data (where each
possible alert is associated with an alert variable in the presence/absence data
sequences). Then using the information gain measure selection, we selected only
relevant alert variables for our prediction task. Note also that the labeling is
done automatically as explained in Section 4.2. However, if the detected severe
attacks are false alarms, then the labeling will be done incorrectly. This issue
can be dealt with by excluding the alerts revealing mistakenly severe attacks.

7.2 Training and testing data sets
Our data sets are obtained from real IDMEF alerts reported during three months
by the Snort IDS. We first preprocessed the first month of collected alerts in
order to build the training data set and preprocessed the second month to build
the testing set. Table 1 provides details on the severe attacks we used in our
experimentations.

Training set Testing set
Sid Snort alert name # % # %

1091 WEB-MISC ICQ Webfront HTTP DOS 87 0,18% 6 0,01%
2002 WEB-PHP remote include path 50 0,10% 231 0,47%
2229 WEB-PHP viewtopic.php access 5169 10,42% 1580 3,20%
1012 WEB-IIS fpcount attempt 3 0,01% 10 0,02%
1256 WEB-IIS CodeRed v2 root.exe access 2 0,004% 3 0,01%
1497 WEB-MISC cross site scripting attempt 5602 11,30% 7347 14,90%
2436 WEB-CLIENT Microsoft wmf metafile access 145 0,29% 53 0,11%
1831 WEB-MISC jigsaw dos attempt 659 1,33% 153 0,31%
1054 WEB-MISC weblogic/tomcat .jsp view source... 3412 6,88 % 3885 7,88%

Table 1: The distributions of the training and testing data sets

Among the severe attacks detected by Snort, we selected 9 Web-based se-
vere attacks to predict on the basis of the alerts that often precede/prepare
these severe attacks. All these attacks are associated with a high severity level
and are targeting either Web servers or related web-based applications. Such
attacks may result in arbitrary code execution and full control of the targeted
system. Interested readers can refer to Snort signature database for additional
information and references on these attacks.
The first month (used to build the training data set) contains 333566 IDMEF
alerts while the second month (used to build the testing set) is composed of
288425 alerts. In the training set, there are 23454 alerts with high severity level,
86679 with medium severity level and 223433 with low severity level alerts (sim-
ilar proportions of low, medium and high level alerts are found in the testing
set).
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Let us now focus on the redundant/irrelevant elimination task performed by the
preprocessing tool. Recall that the redundant alerts are eliminated by repre-
senting all the occurrences of an alert Alerti within the same time window by
a unique variable telling whether this alert has been reported or not.
In order to eliminate the irrelevant alerts for our prediction task, we first ex-
tracted all the existing alerts involving the same attackers and victims as the
severe attacks then using the information gain [36] selection feature procedure,
we selected a subset of relevant features. Then among more than two hundreds
of low/medium candidate alerts composing our training and testing sets, we se-
lected only 27 Snort alerts whose sid are 2, 3, 4, 7, 15, 16, 18, 839, 853, 882, 895,
1013, 1112, 1141, 1142, 1147, 1214, 1288, 1301, 1478, 1767, 1852, 2142, 2280,
2286, 2565 and 2566. The remaining input alerts are not relevant for predicting
the selected 9 Web-based attacks. Note that the feature selection task does
not require any expert knowledge while it allows to train a model on a large
data set by reducing the feature space. Hence, each sequence of raw IDMEF
alerts will be preprocessed into an alert window of 27 variables. Hence, using
a 2 hours alert window, the 333566 IDMEF (resp. 223433) alerts composing
the training (resp. testing) set are preprocessed into 48409 (resp. 49301) alert
window vectors where each vector is composed of 27 variables. Note that the
feature extraction/labeling process is similar to the works of [3][7].

In the following, we report our experimental results where Experimentation
1 compares the severe attack prediction model using a Bayesian multi-net with
a C4.5 decision tree [28], a naive Bayes classifier [9] and a Bayesian network
built with the MWST [11] algorithm. In Experimentation 2 we provide our
results on handling the IDS’ reliability while Experimentation 3 provides our
experimental results on controlling the prediction/false alarm rate tradeoffs. In
all these experimentations, the models are built (resp. evaluated) on the same
training data set of Table 1 (resp. testing data set).

7.3 Experimentation 1: Severe attack prediction using
Bayesian multi-nets

In order to evaluate the effectiveness of our multi-net classifier, we compare
it with a C4.5 decision tree, a naive Bayes classifier and a network classifier
built using MWST algorithm [11] which is a structure learning algorithm using
the mutual information measure that rapidly builds simple and efficient tree
structures [17]. As for the multi-net, we also used the MWST algorithm to build
the networks representing each class of alert sequences. Note that the C4.5 is
among the most efficient classifiers in the literature and it is capable to handle
both categorical and numerical features. As for the naive Bayes classifier, it is
the simplest form of Bayesian network classifiers based on the strong assumption
that the attribute features are independent in the context of the class node. In
spite of this simplifying assumption, the performances of this model are very
competitive on problems where there is enough training data. We trained the
four classifiers on the same training set and evaluated them on the same testing
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set of Table 1. The results of this experimentation are given in Table 2.

Sid Snort alert name C4.5 Naive Bayes MWST Multi-net
1091 WEB-MISC ICQ Webfront HTTP DOS 0% 0% 0% 0%
2002 WEB-PHP remote include path 26,41% 26,41% 26,84% 26,84%
2229 WEB-PHP viewtopic.php access 72,97% 74,81% 74,94% 72,15%
1012 WEB-IIS fpcount attempt 0% 10% 0% 0%
1256 WEB-IIS CodeRed v2 root.exe access 0% 0% 0% 0%
1497 WEB-MISC cross site scripting attempt 92,02% 95,62% 95,62% 95,92%
2436 WEB-CLIENT Microsoft wmf metafile.. 56,60% 60,38% 60,38% 56,60%
1831 WEB-MISC jigsaw dos attempt 50,3% 54,90% 54,25% 46,41%
1054 WEB-MISC weblogic/tomcat .jsp view.. 38,74% 41,36% 38,69% 47,77%

Prediction rate 72,26% 75,32% 74,53% 76,92%
False alarm rate 1,66% 3,21% 3,10% 1,58%

Table 2: Experimental results of C4.5, naive Bayes, MWST and multi-net clas-
sifiers on data sets of Table 1

Table 2 compares the results of the C4.5 decision tree, naive Bayes classifier,
MWST classifier and our multi-net classifier with respect to their prediction
rate and the false alarm rate. The results of Table 2 show that the multi-net
outperforms both the decision tree, naive Bayes and MWST classifiers regarding
the overall prediction and the false alert rates. In particular, the multi-net
classifier predicted 76,92% of the severe attacks at a false alarm rate of 1,58% (29
false alarms/day) while the naive Bayes (resp. MWST) classifier triggered 3.21%
(58 false alarms/day) (resp. 3,10% (56 false alarms/day)). This performance
is due to the better modeling of each class leading to better estimation of the
likelihoods of the alert sequences to analyze. It is important to note that the
three classifiers failed to predict some severe attacks mainly because of the
imbalance of class frequencies in the training set. This is for instance the reason
why the severe attack with Sid=1256 (WEB-IIS CodeRed v2 root.exe access)
which is represented in the training set only by 2 instances was not predicted.
The C4.5 decision tree achieved the second best false alarm rate (1.66%) but
its prediction rate is the worst (only 72, 26%). Finally, note that the naive and
MWST classifiers achieved comparable prediction rates but suffer from high
false alarm rates which is a crucial issue when using IDSs.

7.4 Experimentation 2: Handling IDSs’ reliability in Bayesian
multi-nets

In this experimentation, we are interested in the effect of taking into account the
IDSs’ reliability of the prediction/false alarm rate tradeoffs. We implemented
the virtual evidence method as follows:

• For each alert Ai used as a predictor, we first checked in Snort’s database
whether the rule associated with this attack is known to produce false pos-
itives. In the positive case, we computed on a representative corpus of the
training data set the proportion of alerts Ai which actually correspond to
true attacks. Namely, we computed two parameters p(Ai=1/Attack=True)
and p(Ai=1/Attack=False). Note that taking account false negatives is
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in our case impossible because we have not the original network traffic
in order to check whether there are attacks which were not detected by
Snort.

• When an alert sequence is submitted for analysis, the prediction is per-
formed on the Bayesian network where the alert variables Ai are aug-
mented by virtual evidence nodes (observed variables) Ri to handle the
reliability of inputs.

In order to evaluate the effectiveness of handling IDSs’ reliability in Bayesian
multi-nets, we compare it with a standard Bayesian network-based classifier
built using MWST as in Experimentation 1. Table 3 gives the results of handling
the reliability of Snort IDS producing the alert sequences we analyze.

Sid Snort alert name Multinet VE-Multinet
1091 WEB-MISC ICQ Webfront HTTP DOS 0% 0%
2002 WEB-PHP remote include path 26,84% 25,97%
2229 WEB-PHP viewtopic.php access 72,15% 74,30%
1012 WEB-IIS fpcount attempt 0% 0%
1256 WEB-IIS CodeRed v2 root.exe access 0% 0%
1497 WEB-MISC cross site scripting attempt 95,62% 93,32%
2436 WEB-CLIENT Microsoft wmf metafile access 56,60% 56,60%
1831 WEB-MISC jigsaw dos attempt 56,41% 37,25%
1054 WEB-MISC weblogic/tomcat .jsp view source... 47,77% 41,83%

Prediction rate 76,92% 73,88%
False alarm rate 1,58% 0,74%

Table 3: Experimental results of Multinet and VE-Multinet prediction models

The results of Table 3 show that the VE-Multinet classifier (the multi-net
model implementing the virtual evidence method for handling the reliability of
Snort IDS) achieves comparable prediction rates with respect to the standard
multi-net classifier Multinet but significantly reduces the false alarm rate down
to 0,74% (the false alarm rate was decreased from 29 down to only 13 false
alarms/day). Note that this result is achieved by handling the true/false positive
reliability relative to only three alerts (those having sid=882, sid=1288 and
sid=1852) constituting the majority of false alerts triggered by Snort in our
data sets (see [32] for an analysis of these false alarms triggered by Snort).
Such results are very promising but require a rigorous reliability assessment
and handling false negatives which are very time consuming tasks. Indeed,
in order to efficiently use our approach, one has to rigorously assess both the
true/false positive and negative rates which is a very time consuming tasks.
More specifically, in order to assess the true/false positive rates, one has to
check for each alert Ai the proportion of Ai instances which actually correspond
to real attacks. In order to assess the true/false negative rates, all the network
traffic should be analyzed in order to evaluate the proportion of attacks that
were not detected by the IDSs. Clearly, assessing the true/false positive and
negative rates are very complicated and time consuming tasks. Moreover, there
is a need to reevaluate them more frequently in order to take into account new
menaces and attacks, etc.
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7.5 Experimentation 3: Controlling prediction/false alarm
rate tradeoffs

In Experimentation 1 and Experimentation 2, we showed that the Bayesian
multi-net prediction model offers the best prediction/false alarm rate and natu-
rally allows to handle the IDSs’ reliability improving the model’s performances.
However, in real situations it is important to have means of configuring the
prediction model so as not to exceed a given false alarm rate. In Experimen-
tation 3, we provide our results on using the ambiguity reject for controlling
the attack prediction/false alarm rate tradeoffs. Note that we defined different
confidence levels L and we used the same Bayesian multi-net classifier as in
Experimentation 1.

Sid Snort alert name Multi-net L=1/5 L=1/3
1091 WEB-MISC ICQ Webfront HTTP DOS 0% 0% 0%
2002 WEB-PHP remote include path 25,97% 15,02% 15,02%
2229 WEB-PHP viewtopic.php access 74,30% 74,19% 73,89%
1012 WEB-IIS fpcount attempt 0% 0% 0%
1256 WEB-IIS CodeRed v2 root.exe access 0% 0% 0%
1497 WEB-MISC cross site scripting attempt 93,32% 93,32% 93,32%
2436 WEB-CLIENT Microsoft wmf metafile access 56,60% 37,50% 37,50%
1831 WEB-MISC jigsaw dos attempt 37,25% 25,97% 25,45%
1054 WEB-MISC weblogic/tomcat .jsp view source... 41,83% 39,60% 39,60%

Prediction rate 73,88% 65,39% 65,21%
False alarm rate 0,74% 0,68% 0,65%

Table 4: Experimental evaluation of controlling the attack prediction/false
alarm rate tradeoffs

Table 4 provides detailed results on the effect of using the reject option in
order to control the attack prediction/false alarm rate tradeoffs. As expected,
the false alarm rate decreases proportionally to the value of the confidence level
L. However, the prediction rates of some severe attacks also decrease. Figure
7 gives the variation of the prediction rate (FPRate) and the rejection rate
(RRate) at different confidence levels L. The rejection rate gives the proportion
of alert sequences that were rejected by our severe attack predictor.

The results of Figure 7 show that the TPRate decreases slightly as we aug-
ment the value of the confidence level L while the rejection rate RRate increases
significantly. Indeed, Figure 7 shows that it is possible to achieve a very high
severe attack prediction rate while rejecting only a small amount of the ana-
lyzed alert sequences (see TPRate and RRate when L=.33). However, when L
is set to .9 (to force the model to take decisions only when it is very confident)
the proportion of alert sequences which are rejected attains 31,92%. As for the
evolution of the false alarm rate (FPRate) at the different reject rates, Figure
8 gives the FPRate of the same experimentation of Figure 7.

Figure 8 shows that the false alarm rate can be controlled by setting the
appropriate value for the reject rate. The results of this figure can guide
the user to fix the threshold (for the reject option) according to the
acceptable false alarm rate he wants not to exceed. Clearly, our ap-
proach offers an efficient, flexible and configurable model for predicting severe
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Figure 7: TPRate and RRate variation at different levels of L
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Figure 8: FPRate variation at different reject rates RRate

attacks. Moreover, our approach requires minimum expert knowledge and the
computational complexity of handling IDSs’ reliability and implementing the
reject option is nearly the same as the standard classification based on Bayesian
networks.

Because of the class imbalance in our testing data set and the difference in
misclassification costs, the evaluation of our prediction model based only on the
prediction rate (TPRate) is not sufficient. Indeed, our testing data set is domi-
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nated by alerts sequences which mostly are not followed by severe attacks while
the misclassification cost of a false alarm and the cost of a missed attack (false
negative) are clearly not equivalent. Therefore, additional experimentations are
carried out in order to draw the ROC curve 7 of our prediction model. A ROC
curve [16] allows to visualize the fluctuations existing between the True Posi-
tive Rate (in our case, the true prediction rate TPRate) and the corresponding
false positive rate (denoted in this paper FPRate) which are the two most im-
portant measurements of IDSs performance. More precisely, a ROC curve is
a two-dimensional graph where the TPRate is plotted on the Y-axis while the
FPRate is plotted on the X-axis. Each couple TPRate and its corresponding
FPRate is represented by a point in the ROC curve. Note that in order to
draw the ROC curves evaluating our severe attack prediction model, we used
the method proposed in [16] and sorted testing data instances after computing
for each testing alert sequence a score measuring how much the instance in hand
is not likely a severe attack. This score is the a posteriori probability of not
being a severe attack.

Figure 9 gives the ROC curves of our prediction model evaluated on the
testing data of Table 1.
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Figure 9: ROC curve of the prediction model (TPRate) with different reject
rates (RRate)

The graph of Figure 9 shows the variation of our model prediction rate with
respect to different reject rates. This ROC curve shows that our reject option
improves the prediction model and allows an expert to know which rejection

7A Receiver Operating Characteristics (ROC) curve is a technique originally used in the
signal detection theory in order to describe the relationships between the capacity of detecting
a signal and the underlying noise. For a detailed tutorial on ROC curves for machine learning
and data mining techniques, see [16].
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rate will correspond to each prediction rate he may want to guarantee. Clearly,
Figure 9 shows that our prediction model exploiting the reject option is more
effective than the same model without using the prediction/false alarm tradeoffs
mechanism. The experimental results provided in this section clearly show the
effectiveness of our prediction model for predicting severe attacks and controlling
the prediction/false alarm rate tradeoffs.

8 Conclusions
This paper addressed crucial issues in the field of alert correlation consisting
in efficient Bayesian network modeling/reasoning for handling IDSs’ reliabil-
ity and controlling the prediction/false alarm rate tradeoffs. More specifically,
we proposed a method allowing to cope with the huge amount of alerts daily
triggered by IDSs. In addition to redundant/irrelevant alert elimination, this
method also allows to cope with the class imbalance problem by encoding the
local correlations leading to better likelihood estimation and prediction perfor-
mance. Then we proposed to take into account the reliability of IDSs’ as it is a
relevant information on the inputs used by the alert correlation engines. Finally,
in order to better control the prediction/false alarm rate tradeoffs, we proposed
an approach based on classification with reject option allowing to reject alert
sequences where the prediction model has not enough confidence to make good
predictions. Handling IDSs’ reliability and implementing the reject option are
naturally and easily implemented using Bayesian network-based classifiers. Our
experimental results are very promising especially when one appropriately as-
sesses the reliability of the IDSs and the confidence levels.

As future directions, it is very interesting to take into account and exploit
the IDSs’ reliability not only during the prediction phase, but also when build-
ing the prediction models from empirical data. Indeed, while reasoning with
unreliable information (data provided by unreliable sources) has received much
interest, all the approaches for learning probabilistic graphical models (and other
prediction models) implicitly assume that training data is cleaned and ignore
the reliability of sources even if such information is available. Our objective
is to propose heuristics for learning probabilistic graphical models talking into
account the available information on the IDSs’ reliability. We also plan to carry
out supplementary experimental studies in order to detect some recent attack
scenarios such as the Conficker worm propagation which infected thousands of
computers since November 2008.
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