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Abstract

We prove that the self-interacting scalar field on the four-dimensional degenerate
Moyal plane is renormalisable to all orders when adding a suitable counterterm to
the Lagrangean. Despite the apparent simplicity of the model, it raises several non
trivial questions. Our result is a first step towards the definition of renormalisable
quantum field theories on a non-commutative Minkowski space.
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1 Motivations

For the last five years much has been done in order to determine renormalisable non-
commutative quantum field theories [1–11]. Nevertheless all the known models are more
or less of the type of a self-interacting scalar field on a Euclidean Moyal space. So it is
quite important to extend the list of renormalisable non-commutative models.

The first solution to the uv/ir mixing problem consisted in adding an harmonic po-
tential term to the quadratic part of the Lagrangean [1]. We propose here to test such a
method on a φ4-like model on a degenerate four-dimensional Moyal space. By degenerate
we mean that the skew-symmetric matrix Θ responsible for the non-commutativity of the
space will be degenerate which implies that some of the coordinates will commute.

To understand why we are not addressing a trivial question, let us remind the reader
with a precise statement of the problem. We consider scalar quantum field theories on a
(degenerate) Moyal space RD

Θ . The algebra of functions on such a space is generated by
the coordinates {xµ}, µ ∈ J0, D − 1K satisfying the following commutation relation

[xµ, xν ] =ıΘµν1 (1.1)
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where Θ is a D × D skew-symmetric constant matrix. This algebra is realized as the
linear space of Schwartz-class functions S(RD) equipped with the Moyal-Weyl product:
∀f, g ∈ S(RD),

(f ?Θ g)(x) =

∫
RD

dDk

(2π)D
dDy f(x+ 1

2
Θ · k)g(x+ y)eık·y. (1.2)

In the following we will consider degenerate Θ matrices which means that d out of the D
coordinates will be commutative. In [12] the non-commutative orientable (Φ?Φ)?3 model
on R3

Θ has been considered:

S6[φ, φ] =

∫
d3x
(
− 1

2
∂µφ ? ∂

µφ+
Ω2

2
(x̃µφ) ? (x̃µφ) +

1

2
m2 φ ? φ

+
λ1

2
(φ ? φ)?2 +

λ2

3
(φ ? φ)?3

)
(x). (1.3)

Being skew-symmetric Θ is necessarily degenerate in odd dimensions such as three. The
main result of [12] is that the complex orientable (Φ ? Φ)?3 model is renormalisable to
all orders. What about its real counterpart? It is indeed a natural question because the
graphs responsible for the uv/ir mixing cannot be generated by such a complex interaction.
In an appendix, Z. Wang and S. Wan [12] exhibited a first problem concerning the real
model. The Φ?6

3 model on R3
Θ leads both to orientable and non-orientable graphs [3, 4].

The upper bound these two authors were able to prove (the power counting) was not
sufficient to discard non-orientable graphs. If that bound is optimal, it would remain
logarithmically divergent planar two-point graphs with two broken faces. These graphs
are non-local and responsible for the now famous uv/ir mixing.

In section 3 we give a strong argument which tends to prove that the power counting
given in [12] is actually optimal with respect to the behaviour of the planar two-broken
face graphs. We also compute the power counting of our model. The section 2 is devoted
to definitions and the statement of our main result. In section 4 we perform the renor-
malisation and identify the missing counterterm. Our conclusions take place in section
5.

2 Definition of the model

Motivated by the remarks made in section 1, we want to address the question of the
renormalisability of the real Φ?4

4 and Φ?6
3 models with degenerate Θ matrix. Whereas we

will mainly focus on the Φ?4 model, our results apply to the Φ?6 case as well.

2.1 Main result

We consider a real scalar field theory on the Moyal space R4
Θ with a degenerate matrix:

Θ =


0 θ
−θ 0

0 0
0 0

 . (2.1)
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This means that two out of the four coordinates commute with all the other ones. We
are going to prove the following

Theorem 2.1 The quantum field theory defined by the action

S[φ] =

∫
R4

d2xd2y
1

2
φ(x, y)(−∆ +

Ω2

θ2
y2 +m2)φ(x, y)

+
κ2

θ2

∫
R6

d2xd2yd2z φ(x, y)φ(x, z) +
λ

4

∫
R4

d2xd2y φ?4(x, y) (2.2)

where y represents the non-commutative coordinates, is renormalisable to all orders of
perturbation.

To this aim, we will treat the new counterterm (the coupling constant of which is κ2) as
a perturbation. Such a counterterm linking two propagators will be called κ-insertion
or simply insertion. Note that the four-valent vertex in (2.2) has the same form as on the
non-degenerate Moyal space except that its oscillation only involves the non-commutative
directions.

In the following, we use the momentum space representation. Our new counterterm
is then given by:

κ2

θ2

∫
R6

d2xd2yd2z φ(x, y)φ(x, z) =
κ2

(2πθ)2

∫
R2

d2p φ̂(p, 0)φ̂(−p, 0). (2.3)

The interaction term reads:∫
R4

d2xd2y φ?4(x, y) =
1

π4| det Θ|

∫ 4∏
j=1

d4pj
(2π)4

φ̂(pj) δ
( 4∑
i=1

pi

)
e−ıϕ̂, (2.4a)

with ϕ̂ :=
4∑

i<j=1

pi ∧ pj and pi ∧ pj :=
1

2
piΘpj (2.4b)

and where
4∑

i<j=1

:=
4∑
i=1

4∑
j=1|
j>i

.

From (2.4a) one reads that by convention all the momenta are considered incoming. Note
once more that the oscillations only involve the non-commutative directions so that the
interaction is local in the commutative directions.

Let p, q (resp. p, q) denote (two-dimensional) momenta in the commutative (resp. non-

commutative) directions. Let Ω̃ := 2θ−1Ω. The propagator corresponding to the quadratic
part of (2.2) is given by:

Ĉ(p, p; q, q) =
Ω

πθ

∫ ∞
0

dα

sinh(2Ω̃α)
δ(p+ q)e−α(p2+m2) e−

eΩ
4

coth(eΩα)(p+q)2− eΩ
4

tanh(eΩα)(p−q)2

.

(2.5)
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2.2 Feynman graphs

Let G be a Feynman graph of the model (2.2). There are two ways of considering the
κ-insertions in it. Either we think of them as vertices. In this case, G is made of four-
and two-valent vertices linked to each other by the edges of G. These ones correspond
to the propgator (p2 + Ω2y2)−1. Or we consider that the vertices of G are the only Moyal
ones. In this case the insertions belong to generalised lines. These lines are composed
of a series of edges related by κ-insertions. When not explicitly stated, we will always
consider a generalised line as a single line, whereas it is composed of several edges. In
this picture the edges linking two Moyal vertices are called simple lines. Note also that
some “external” insertions may well appear, see figure 1 for an example.

κ2 κ2

κ2

Figure 1: Example of graph with insertions

We now fix the notations we use throughout this article:

Definition 2.1 (Graphical notations). Let G be a Feynman graph corresponding to
the model (2.2). We define:

• E(G) (resp. Ex(G)) to be the set of internal (resp. external) edges of G. E is the
disjoint union of the sets E0 of internal simple lines and Eκ of internal generalised
lines. The respective cardinalities of E,E0 and Eκ are denoted by e, e0 and eκ.

• The number of external lines of G is N(G) =: cardEx.

• The number of external insertions is Nκ.

• Let V (G) bet the set of vertices of G. We note v := cardV .

• The number of connected componentsa of G is called k(G).

• Given a spanning tree T (G), let L(G) := E(G) \ T be the set of loop lines in G. Its
cardinality is cardL = e − v + k =: n(G). By analogy, we write n0 (resp. nκ) for
the cardinality of L ∩ E0 (resp. L ∩ Eκ).

aPlease note that “connected components” will also be used to denote the quasi-local subgraphs of G
in the framework of the multiscale analysis.
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2.3 Multiscale analysis

We use the multiscale analysis techniques [13]. This means that we first slice the propa-
gator in the following way:

Ĉ(p, p; q, q) =:
∞∑
i=0

Ĉi, (2.6a)

Ĉ0(p, p; q, q) :=
Ω

πθ

∫ ∞
1

dα

sinh(2Ω̃α)
δ(p+ q)e−α(p2+m2) e−

eΩ
4

coth(eΩα)(p+q)2− eΩ
4

tanh(eΩα)(p−q)2

,

(2.6b)

Ĉi(p, q) :=
Ω

πθ

∫ M−2(i−1)

M−2i

dα

sinh(2Ω̃α)
δ(p+ q)e−α(p2+m2) e−

eΩ
4

coth(eΩα)(p+q)2− eΩ
4

tanh(eΩα)(p−q)2

.

(2.6c)

where M > 1. Each propagator Ĉi bears both uv and ir cut-offs. A graph expressed
in terms of these sliced propagators is then convergent. The divergences are recovered as
one performs the sum over the so-called scale indices (the i in Ĉi). Now we only study
graphs with sliced propagators. Each line of the graph bears an index indicating the slice
of the corresponding propagator. A map from the set of lines of a graph G to the natural
numbers is called a scale attribution and written µ(G).

Certain subgraphs of G are of particular importance. These are the ones for which
the smallest index of the internal lines of G is strictly higher than the biggest index of the
external lines. These subgraphs are called connected components or quasi-local subgraphs:
let Gi be the subgraph of G composed of lines with indices greater or equal to i. Gi is
generally disconnected. Its connected components (the quasi-local subgraphs) are denoted
by Gi

k. By construction they are necessarily disjoint or included into each other. This
means that we can represent them by a tree, the nodes of which are connected components
and the lines of which represent inclusion relations. This tree is called Gallavotti-Nicolò
tree.

2.4 Topology and oscillations

Let G be a graph with v vertices and e internal lines. Interactions of quantum field theories
on the Moyal space are only invariant under cyclic permutation of the incoming/outcoming
fields. This restricted invariance replaces the permutation invariance which was present
in the case of local interactions.

A good way to keep track of such a reduced invariance is to draw Feynman graphs as
ribbon graphs. Moreover there exists a basis for the Schwartz class functions where the
Moyal product becomes an ordinary matrix product [14, 15]. This further justifies the
ribbon representation.

Let us consider the example of figure 2. Propagators in a ribbon graph are made of
double lines. Let us call f the number of faces (loops made of single lines) of a ribbon
graph. The graph of figure 2b has v = 3, e = 3, f = 2. Each ribbon graph can be
drawn on a manifold of genus g. The genus is computed from the Euler characteristic
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(a) p-space repre-
sentation

oo
//

�� OO

//
oo

//
oo

OO��
OO

��

//
oo

OO��

OO

//

(b) Ribbon representa-
tion

Figure 2: A graph with two broken faces

χ = v − e + f = 2 − 2g (for an orientable surface). If g = 0 one has a planar graph,
otherwise one has a non-planar graph. For example, the graph of figure 2b may be drawn
on a manifold of genus 0. Note that some of the f faces of a graph may be “broken” by
external legs. In our example, both faces are broken. We denote the number of broken
faces by b. A graph with only one broken face is called regular.

2.5 Momentum space representation

The expression for the oscillation of a general graph that Filk obtained in [16] was based
on the assumption that the propagator conserves momentum. When one adds an x2 term
to the action, the corresponding new propagator breaks translation invariance and so
does not conserve momentum. In [4], one of us computed the expression for the vertex
oscillations of a general graph for any propagator. That was done in x-space. Here we
redo it but in momentum space. Whereas the proof follow the same line we give it for
completeness.

Definition 2.2 (Line variables). Let G be a graph and fix a rooted spanning tree T .
Let ` ∈ E(G) be a line which links a momentum p`1 to another one p`2. When turning
around the tree T counterclockwise, one meets p`1 first, say. One defines p` := p`1 − p`2
and δp` := p`1 + p`2.

Definition 2.3 (Arches and crossings). Let ` = (p`1 , p`2), `′ = (p`′1 , p`′2) and pk an
external momentum. One says that ` arches over pk if, when turning around the tree
counterclockwise, one meets successively p`1, pk and p`2. One writes then p` ⊃ pk.

Considering the two lines ` and `′, if one meets successively p`1, p`′1, p`2 and p`′2, one
says that ` crosses `′ by the left and writes `n `′.

Given a graph G, each of its vertices bears a delta function ensuring momentum con-
servation. If the propagators were translation-invariant, these delta functions would en-
sure the overall conservation of the external momenta: for any v0 ∈ V (G),

∏
v∈V (G) δv =

δ(
∑

k∈Ex(G) pk)
∏

v∈V (G)\{v0} δv. In our case, we can extract an overall delta function which
ensures the conservation of external momenta, upto δp variables. This delta function is
written δG. In the following we call rosette factor of a graph G, the complete vertex
oscillations of G plus the delta function δG.
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Lemma 2.2 (Tree Reduction) Let a graph G with v(G) = v. The rosette factor after
a complete tree reduction is

δG

( 2v+2∑
i=1

pi +
∑
l∈T

δpl

)
exp(−ıϕ), (2.7)

ϕ =
2v+2∑
i<j=1

pi ∧ pj +
∑
l∈T

1

2
pl ∧ δpl +

∑
i<T

pi ∧ δpl +
∑
i>T

δpl ∧ pi +
∑
T <T

δpl ∧ δpl′ . (2.8)

Proof. We prove it by induction on the number of vertices. Let us assume that we have
contracted k − 1 tree lines, k < v. These lines form a partial tree Tk. We now want to
reduce the tree line between our rosette Vk and a usual Moyal vertex V1:

Vk =δG

( 2k+2∑
i=1

pi +
∑
l∈Tk

δpl

)
exp(−ıϕk), (2.9)

ϕk =
2k+2∑
i<j=1

pi ∧ pj +
∑
l∈Tk

1

2
pl ∧ δpl +

∑
i<Tk

pi ∧ δpl +
∑
i>Tk

δpl ∧ pi +
∑
Tk<Tk

δpl ∧ δpl′ , (2.10)

V1 =δ(q1 + q2 + q3 + q4) exp(−ı
4∑

i<j=1

qi ∧ qj). (2.11)

Let l0 the line joining a momentum pi0 , 1 6 i0 6 2k + 2 to a momentum of V1. By
cyclicity of this one, one can assume that l0 = (pi0 , q1). We need to prove:

VkV1 =δ
( 4∑
i=1

qi

)
δ
( 2k+2∑

i=1
i 6=i0

pi +
4∑
j=2

qj +
∑
l∈Tk

δpl + δpl0

)
exp(−ıϕk+1), (2.12)

ϕk+1 =
2k+2∑
i<j=1
i,j 6=i0

pi ∧ pj +
(∑
i<i0

pi −
∑
i>i0

pi

)
∧

4∑
j=2

qj +
4∑

i<j=2

qi ∧ qj

+
∑
l∈Tk

1

2
pl ∧ δpl +

1

2
pl0 ∧ δpl0 +

∑
i<Tk
i 6=i0

pi ∧ δpl +
∑
i>Tk
i 6=i0

δpl ∧ pi +
∑

Tk+1<Tk+1

δpl ∧ δpl′

+
(∑
i<i0

pi −
4∑
j=2

qj −
∑
i>i0

pi

)
∧ δpl0 +

( ∑
l∈Tk, l<i0

δpl −
∑

l∈Tk, l>i0

δpl

)
∧

4∑
j=2

qj (2.13)

with Tk+1 = Tk ∪ {l0}. This would reproduce (2.8).
The statement concerning the delta function in (2.12) is easily obtained. It only

consists in the following distributional equality:

δ
( 2k+2∑

i=1

pi +
∑
l∈Tk

δpl

)
δ
( 4∑
j=1

qj

)
=δ
( 2k+2∑

i=1
i 6=i0

pi +
4∑
j=2

qj +
∑
l∈Tk

δpl + δpl0

)
δ
( 4∑
j=1

qj

)
. (2.14)
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Let us now rewrite the oscillations. First of all note that thanks to the delta function in
V1, the oscillation of the Moyal vertex can be rewritten as exp

(
− ı
∑4

i<j=2 qi ∧ qj
)
. The

complete oscillation in VkV1 is:

ϕk+1 =
2k+2∑
i<j=1
i,j 6=i0

pi ∧ pj +
∑
l∈Tk

1

2
pl ∧ δpl +

∑
i<Tk

pi ∧ δpl +
∑
i>Tk

δpl ∧ pi +
∑
Tk<Tk

δpl ∧ δpl′

+
4∑

i<j=2

qi ∧ qj + δϕ, (2.15)

δϕ =
∑
i<i0

pi ∧ pi0 + pi0 ∧
∑
j>i0

pj =
(∑
i<i0

pi −
∑
j>i0

pj

)
∧ (−q1 + δpl0) (2.16)

where we used pi0 = −q1 + δpl0 . But −q1 = q2 + q3 + q4 so that

δϕ =
(∑
i<i0

pi −
∑
i>i0

pi

)
∧

4∑
j=2

qj +
(∑
i<i0

pi −
∑
j>i0

pj

)
∧ δpl0 . (2.17)

We can now write

ϕk+1 =
2k+2∑
i<j=1
i,j 6=i0

pi ∧ pj +
(∑
i<i0

pi −
∑
i>i0

pi

)
∧

4∑
j=2

qj +
4∑

i<j=2

qi ∧ qj

+
∑
l∈Tk

1

2
pl ∧ δpl +

∑
i<Tk
i 6=i0

pi ∧ δpl +
∑
i>Tk
i 6=i0

δpl ∧ pi +
∑
Tk<Tk

δpl ∧ δpl′

+
(∑
i<i0

pi −
∑
j>i0

pj

)
∧ δpl0 + pi0 ∧

∑
l∈Tk, i0<l

δpl +
∑

l∈Tk, i0>l

δpl ∧ pi0 . (2.18)

Comparing (2.18) and (2.13) we see that it remains to prove

pi0 ∧
∑

l∈Tk, i0<l

δpl +
∑

l∈Tk, i0>l

δpl ∧ pi0 =
( ∑
l∈Tk, l<i0

δpl −
∑

l∈Tk, l>i0

δpl

)
∧
(
δpl0 +

4∑
j=2

qj

)
+

1

2
pl0 ∧ δpl0 −

4∑
j=2

qj ∧ δpl0 . (2.19)

We use pi0 = −q1+δpl0 = q2+q3+q4+δpl0 and get the equality if 1
2
pl0∧δpl0−

∑4
j=2 qj∧δpl0 =

0 which is true thanks to q1 = 1
2
(δpL0 − pl0). This proves the lemma. �

8



Lemma 2.3 (Rosette Factor) The rosette factor of a graph G with N(G) = N is given
by

δ
( N∑
k=1

pk +
∑
l∈T ∪L

δpl

)
exp(−ıϕ) with ϕ = ϕE + ϕm + ϕ∩ + ϕno + ϕJ , (2.20)

ϕE =
N∑

i<j=1

pi ∧ pj,

ϕm =
1

2

∑
`∈T ∪L

p` ∧ δp` +
∑

(T ∪L)⊂L

p`′ ∧ δp` +
1

2

∑
LnL

(p` ∧ δp`′ + p`′ ∧ δp`),

ϕ∩ =
∑
L⊃k

p` ∧ pk, ϕno =
1

2

∑
LnL

p` ∧ p`′ ,

ϕJ =
∑

(T ∪L)<k

δp` ∧ pk +
∑

(T ∪L)>k

pk ∧ δp` +
∑

(T ∪L)<(T ∪L)

δp` ∧ δp`′ +
1

2

∑
LnL

δp` ∧ δp`′ .

Proof. Let us first fix an external momentum pk. From lemma 2.2 the linear term in pk
is: ( k−1∑

i=1

pi −
2n+2∑
i=k+1

pj

)
∧ pk +

(∑
T <k

δp` −
∑
T >k

δp`

)
∧ pk. (2.21)

Let a line ` = (p`1 , p`2) ∈ L such that ` < k. Its contribution to this linear term
is (p`1 + p`2) ∧ pk = δp` ∧ pk. If ` > k we get pk ∧ δp`. Let now ` ⊃ k, we have
(p`1 − p`2) ∧ pk = p` ∧ pk. Then the linear term in the external momenta is:∑

(T ∪L)>k

pk ∧ δp` +
∑

(T ∪L)<k

δp` ∧ pk +
∑
L⊃k

p` ∧ pk. (2.22)

Let us consider a line ` = (p`1 , p`2) ∈ L. The terms containing p`1 and p`2 are:∑
i<`1

pi ∧ p`1 +
∑
j>`1

p`1 ∧ pj + p`1 ∧ p`2 +
∑
i<`2

pi ∧ p`2 +
∑
j>`2

p`2 ∧ pj

+
∑
`1<T

p`1 ∧ δp`′ +
∑
`1>T

δp`′ ∧ p`1 +
∑
`2<T

p`2 ∧ δp`′ +
∑
`2>T

δp`′ ∧ p`2 . (2.23)

=
∑
i<`1

pi ∧ δp` +
∑
j>`2

δp` ∧ pj +
∑

`1<i<`2

p` ∧ pi +
∑
T <`1

δp`′ ∧ δp` +
∑
T >`2

δp` ∧ δp`′

+
∑

`1<T <`2

p` ∧ δp`′ . (2.24)
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Let `′ = (p`′1 , p`′2) ∈ L such that ` < `′. From (2.23) one reads (p`′1 +p`′2)∧ δp` = δp`′ ∧ δp`.
If `′ ⊂ `, one has p` ∧ (p`′1 + p`′2) = p` ∧ δp`′ . Finally if `′n `, one get p`′1 ∧ δp` + p` ∧ p`′2 =
1
2
(p`′ + δp`′) ∧ δp` + p` ∧ 1

2
(δp`′ − p`′). We can now rewrite (2.24) as:∑

L<L

δp` ∧ δp`′ + +
∑
L⊂L

p`′ ∧ δp` +
1

2

∑
LnL

(p` ∧ δp`′ + p`′ ∧ δp`) +
1

2

∑
LnL

p` ∧ p`′

+
1

2

∑
LnL

δp` ∧ δp`′ +
∑
T <L

δp` ∧ δp`′ +
∑
T >L

δp`′ ∧ δp` +
∑
T ∪⊂L

p`′ ∧ δp`

+
1

2

∑
`∈L

p` ∧ δp`. (2.25)

Using lemma 2.2 together with equations (2.22) and (2.25), one proves the lemma. �

3 Power counting

3.1 The case κ= 0

As explained in the introduction, we give here a strong argument for the need of a new
counterterm. Note also that the bound we obtain seems to be optimal in the sense that
exact computations exhibit the same degree of divergence.

Remember also that one of our motivations is that it was noticed in [12] that an
harmonic oscillator term is not sufficient to make a scalar theory renormalisable on a
degenerate Moyal space. In this article the authors studied a φ?6 model on R3

Θ (see
equation (1.3)) with the x-space representaion. They used the vertex delta functions
to improve the usual commutative power counting ω = 1

2
(N − 6 + 2v4) where N is the

number of external points and v4 the number of four-valent vertices in the graph under
consideration. For non-orientable graphs they got ω = 1

2
(N − 2 + 2v4). This upper bound

exhibits a logarithmic divergence for the (planar) non-orientable two-point graphs. The
authors suggested that a possible solution to this problem may come from the use of the
vertex oscillations. We now explain why we think that the solution should be looked for
elsewhere.

To take the oscillations into account, a very powerful technique consists in using the
matrix basis. On a degenerate Moyal space part of the coordinates commute and we
must use a mixed representation. In the commutative directions, we choose the usual x-
(or p-)space representation whereas we prefer the matrix basis in the non-commutative
directions. On R3

Θ, let us choose [x0, xi] = 0, i = 1, 2. Each field is expanded as

φ(x) =
∑
m,n∈N

φm,n(x0)fm,n(x1, x2) (3.1)

where the functions fm,n form a basis for the Schwartz-class functions. Then we get a
representation of the model which is partly commutative and local (in the x0-direction)
and partly in the matrix basis. We can now apply the method developped in [2] to get
an improved power counting namely

ω =
1

2
(N − 6 + 8g + 4(b− 1) + 2v4) (3.2)

10



where g is the genus of the graph and b its number of broken faces.
The conclusion is that, whereas we took the oscillations into account, there still remains

potentially log. divergent two-point graphs with two broken faces. Hence the addition of
an harmonic potential in the non-commutative directions does not imply renormalisability
on a degenerate Moyal space.

Back to our model (2.2), it is clear that we can easily apply the same kind of mixed
representation and get

Lemma 3.1 Let G be a Feynman graph corresponding to the model (2.2) at κ = 0. Its
degree of convergence obeys the following bound:

ω(G) > N − 4 + 4g + 2(b− 1). (3.3)

Proof. The quadratic parts corresponding to the commutative and non-commutative di-
rections commute with each other. Therefore the Schwinger representation of the cor-
responding propagators factorize. Then to prove the lemma it is enough to apply the
standard bounds in the commutative directions and the method developped in [2] in the
non-commutative directions. �

Recall that on the fully non-commutative R4
Θ, the power counting is ω > N − 4 +

8g + 4(b − 1). The N − 4 part is the usual power counting of the commutative φ4

model whereas the rest has a purely non-commutative origin. On the degenerate four-
dimensional Moyal space, only half of the directions are non-commutative so that we gain
only half of 8g + 4(b − 1) and get (3.3). The consequence is that the planar two-point
graphs with two broken faces (N = b = 2, g = 0) diverge logarithmically. They must be
renormalised.

Remark. One could ask if the addition of an harmonic potential also in the commutative
directions could solve the problem. Unfortunately one can easily convince oneself (for
example in p-space) that such an infrared modification of a commutative and local model
doesn’t change anything to the power counting.

3.2 The case κ 6= 0

In this subsection we are going to compare the power countings of graphs with and without
insertions. To this aim, we recall briefly how to get the bound ω(G0) > N(G0)− 4 on the
degree of convergence of a graph G0 without κ-insertions in momentum space. We first
have to perform the so-called momentum routing. This is the optimal way of using the
delta functions attached to each Moyal vertex. For this we must choose a spanning rooted
tree in G0. Then we associate to this tree a set of branchb delta functions which allow to
solve v(G0)− 1 momenta both in the commutative and non-commutative directions [4].

In a slice i, a propagator is bounded by

Ĉi(p, p; p, q) 6 K e−M
−2ip2

e−M
2i(p+q)2−M−2i(p−q)2

. (3.4)

For each line l of G0, the integration over pl + ql gives a factor M−2il . We recover the
power counting factor of 1

p2 in four dimensions. Then if l is a loop line, the integrations

bGiven a spanning rooted tree T (G) and a line l ∈ T , the branch b(l) is the set of vertices v such that
l is on the unique path in the tree between v and the root of T .
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over pl and pl − ql deliver together M4il . If l is a tree line, these integrations are made
with a delta function and bring O(1). We get the bound

|AG0| 6Kn
∏

l∈E(G)

M−2il
∏

l∈L(G)

M4il 6 Kn
∏
i,k

M−ω(Gik), ω = N − 4. (3.5)

We now turn to the computation of an upper bound on the amplitude of a graph G
with κ-insertions. The graph G is equipped with a scale attribution µ(G) which assigns
an integer to each edge in E(G). To get the power counting of such a graph we need
to perform the momentum routing and pick up a tree TG. Note that each generalised
line is considered as one single line so that the tree TG is composed of both simple and
generalised lines.

Let us focus on a generalised line ` between two Moyal vertices. It is made of n(`)
insertions and so n+ 1 edges `k, k ∈ J1, n+ 1K. The corresponding analytical expression
is:

A` :=κ2nĈi`1 (p, p; p, 0)
( n∏
k=2

Ĉi`k (p, 0; p, 0)
)
Ĉi`n+1 (p, 0; p, q). (3.6)

Thanks to the bound (3.4), we have

A` 6κ
2nKn+1 e−(

Pn+1
k=1 M

−2i`k )p2

e−M
2i`1 p2−M

2i`n+1 q2

. (3.7)

Let im := mink∈J1,n+1K i`k , i1 := max{i`1 , i`n+1} and i2 := min{i`1 , i`n+1}. Then exchanging
p and q if necessary, A` is bounded by

A`(p; p, q) 6κ2nKn+1 e−(n+1)M−2imp2

e−M
2i1p2−M2i2q2

. (3.8)

In the following, we consider that a generalised line ` is a line of scale i` := im(`). This
will be important in the choice of an optimised tree.

Remark (No Moyal vertex). The bound (3.8) does ot depend on the scales i`2 , . . . , i`n.
This reflects the fact that the corresponding subgraphs are logarithmically divergent. These
graphs are made of propagators linked together by κ-insertions but do not contain any
Moyal vertex. Let G be such a subgraph with n propagators. The corresponding analytical
expression is:

AG =

∫
R2

d2p φ̂(p, 0)φ̂(−p, 0)
n∏
k=2

Ĉi`k (p, 0; p, 0). (3.9)

To renormalise such a graph, we expand the propagators around p = 0:

Ĉi`(p, 0; p, 0) =Ĉi`(0, 0; 0, 0) +

∫ 1

0

ds p · ∇Ĉi`(sp, 0; sp, 0) (3.10)

The graph G being only log. divergent, only the zeroth order term is divergent. It con-
tributes to the renormalisation of κ2.

In the following of this article, we will not anymore make any reference to these par-
ticular subgraphs keeping nevertheless in mind that they are log. divergent and can be
renormalised by a change of κ2.
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Before we state the power counting lemma, we need to give a few definitions:

Definition 3.1 (Bridge). Let G be a graph and l ∈ E(G). The line l is a bridge if
deleting l increases the number of connected components of G.

Definition 3.2 (Admissible generalised line). Let Gµ be a graph with scale attribu-
tion µ and l ∈ Eκ(G). There exists a unique k(l) ∈ N such that l ∈ Eκ(Gil

k ). The line l
is said admissible if it is a bridge in Gil

k .

The admissibility of a generalised line depends both on the location of the line in the
graph and on the scale attribution as shown in figure 3.

κ2i j

k

k

(a) Admissible line

κ2i k

j

j

(b) Non-admissible line

Figure 3: Scale attribution and admissibility, i > j > k

Definition 3.3 (Tree-like graph). Let G be a graph. It is said tree-like if for all l ∈
Eκ(G), l is a bridge (independently of the scale attribution). By convention, a graph
without insertion is tree-like.

A tree-like graph is then a tree of generalised lines the nodes of which are graphs with
only simple lines and Moyal vertices.

Lemma 3.2 (Power counting) Let G be a Feynman graph of the model (2.2). Let µ(G)
be a scale attribution. Then we have:

• if G is not tree-like, the amplitude AµG is bounded by

|AµG| 6K
v(G)

∏
i,k

M−ω(Gik), ω > N + 4nκ (3.11a)

for the connected components which are not tree-like.

• If G is tree-like, for all connected component Gi
k, its degree of convergence obeys:

– if Gi
k is non planar

ω >N (3.11b)

– if g(Gi
k) = 0, b(Gi

k) > 2

ω >N − 2, (3.11c)
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– if Gi
k is planar regular and Eκ(G

i
k) 6= ∅

ω >N − 2 (3.11d)

– if Gi
k is planar regular and Eκ(G

i
k) = ∅

ω >

{
N − 4 + 2Nκ if Nκ < N

N − 4 + 2(Nκ − 1) if Nκ = N .
(3.11e)

This lemma proves that the only graphs (and subgraphs) which need to be renormalised
are tree-like. Moreover they are either planar and regular: in that case, if they have four
external points, they don’t have any insertion. If they are two-point graphs, they have
zero, one or two external insertions and possibly internal ones also. Or they are planar
with two broken faces.

3.3 Proof (1/2): truncated diagrams

In this section we prove all the bounds of lemma 3.2 except the improvement related to
the number of external insertions Nκ. This is postponed to subsection 3.4.

Let G be a Feynman graph. Its amplitude is given by:

AµG(℘1, . . . , ℘N) =

∫
R8e

∏
l∈E(G)

d4pl1d
4pl2 Ĉ

il(pl1 , pl2)
∏

v∈V (G)

δv e
−ıϕ̂ (3.12)

To get the bound (3.11a), we start by bounding the oscillations by one. Then we perform
a momentum routing. To this aim we choose an optimised spanning rooted treec and
trade the vertex delta functions for an equivalent set of branch delta functions. This
allows to solve one momentum per tree line: at each vertex (except the root) the delta
function solves the unique momentum hooked to this vertex which is on the path in the
tree between the vertex and the root. For a simple line, let us call the combination p+q a
short variable. The momentum routing replaces the solved tree momenta by pL+pEx+δp
where pL (resp. pEx, δp) is a linear combination of loop momenta of simple line (resp.
external momenta, short variables or momenta of generalised lines). As a result we have
to integrate

• in the commutative directions, over one momentum per loop line (thanks to the
conservation of momentum along the lines)

• and in the non-commutative directions, over one momentum per tree line and two
momenta per loop line.

Moreover there remains a global delta function which ensures the exact conservation of
the external momenta in the commutative directions and an approximate conservation in
the non-commutative directions (see [4] for details about an equivalent position routing).

cHere “optimised” means that the tree is a subtree in each connected component.
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Let l ∈ T ∩E0. In the commutative directions, its corresponding momentum has been
solved thanks to the delta function δb(l). In the non-commutative directions, this delta
function allows to solve pl− ql (see equation (3.4)). We still have to integrate over pl + ql
which delivers a factor bounded by M−2il .

Let ` ∈ T ∩Eκ. We use the delta function corresponding to the branch b(`) to integrate
over p and either p or q. The result is bounded by:∫

R6

d2p d2p d2qA`(p; p, q)δb(`) 6KM
−2(i2−im)M−2im . (3.13)

Let l ∈ L∩E0. We integrate over p, p and q. Thanks to the bound (3.4), the result is
bounded by M−2ilM4il .

Let ` ∈ L ∩ Eκ. We have to integrate A` over p, p and q. The result is bounded by:∫
R6

d2p d2p d2qA`(p; p, q) 6KM−2(i1−i2)M−4(i2−im)M−2im . (3.14)

As a consequence, we have

|AµG| 6 Kv(G)
∏
l∈E

M−2il
∏

l∈L∩E0

M4il
∏
l∈Eκ

M−2(i2−im)
∏

l∈L∩Eκ

M−2(i1−i2). (3.15)

The last two products are clearly related to the external insertions and contribute to the
improvement of the power counting by the factor 2Nκ. In subsection 3.4, we will explain
how to improve these factors to reproduce completely the bounds of lemma 3.2. Until
there we just bound these products by one. Then we have

|AµG| 6 Kv(G)
∏
l∈E

M−2il
∏

l∈L∩E0

M4il 6 Kv(G)
∏
i,k

M−ω(Gik), with ω = N − 4 + 4nκ. (3.16)

This proves that if a subgraph Gi
k is divergent, nκ(G

i
k) = 0 and all its generalised lines are

in the tree. This means that for all l ∈ Eκ(Gi
k) and for any choice of an optimised tree in

Gi
k, l is in the tree. This implies that l is a bridge in a Gil

k′ . In other words if a connected
component is divergent, all its generalised lines are admissible. Nevertheless this doesn’t
prove yet the bound (3.11a) because an admissible line l is only a bridge in a Gil

k but not
necessarily in the full graph G, as shown in the figure 3a. We have to improve our bound.

Let us consider a connected component Gi
k and an admissible generalised line l ∈

Eκ(G
i
k) which is not a bridge in Gi

k. This line belongs to the tree T (Gi
k) so that we use

the delta function δb(l) to integrate over pl or ql. In the propagator Ĉil , pl (say) is replaced

by pL+pEx+ δp. Usually, we bound Ĉil by M−2il but if pL 6= 0, we can use it to integrate
over a loop momentum to get M−2il 6 M−2i = M2iM−4i. The gain is M−4i and makes
Gi
k convergent. Thus for any connected component Gi

k and any line l ∈ Eκ(G
i
k) with

il > i, Gi
k divergent implies that l is a bridge in Gi

k. All the generalised lines have to be
bridges in G = G0 and so G has to be tree-like to be divergent. If not, the improvement
factor M4 plus the bound (3.16) give the equation (3.11a).

We have proven that if a graph is divergent, all its connected component are tree-like
which is equivalent to G itself being tree-like. So let us consider such a graph and prove
the bounds (3.11b - 3.11d).
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We start with the bound (3.16) with nκ = 0 (because G is tree-like). We are going to
improve it thanks to the oscillations of AG. In [3], one of us contributed to proving, in
x-space, that non-planar graphs are convergent. We just use here the same method but
in momentum space: if two line l and l′ cross each other, there exists an oscillation of the
type pl ∧ pl′ (see lemma 2.3). Note that the presence of generalised lines does not alter
that result because they are tree lines and only loop lines may cross each other. We use
such an oscillation to integrate over pl′ say. The gain with respect to the bound (3.16) is
M−2(il+il′ ) 6M−4 min{il,il′}. It leads to the bound (3.11b).

Let us now consider a planar connected component but with at least two broken faces.
Then there exists an oscillation of the type pl ∧ pe where pe is an external momentum of
the subgraph. Once more this oscillation allows to integrate over pe. The gain is M−2il

and gives the bound (3.11c).

Let G be a planar regular tree-like graph. The bound (3.16) for nκ = 0 gives already
ω > N − 4. To improve it and get (3.11d), we must prove the following: given a tree-like
graph G and a generalised line l, l is necessarily on the path in the tree between two
external points.
The graph being tree-like, l is a bridge. G can consequently be depicted as in figure
4 where the two blobs represent any tree-like graphs. To each of these graphs, an odd
number of external points are hooked. In particular each of them contains at least one
external point.

κ2

l

qp

Figure 4: A tree-like graph

Thanks to the momentum routing, the momentum q (say) equals minus the sum of the
momenta entering the right blob. Then we can use the propagator of the line l to integrate
over one of these external momenta, in the non-commutative directions. From the bound
(3.8), the result is bounded by M−2il . This makes the improvement from (3.16) to (3.11d).

There now remains to prove how appear the factors Nκ in (3.11e). This is the subject
of the next section.

3.4 Proof (2/2): external insertions

The basic mechanism which implies an improvement of the power counting thanks to the
external insertions is the following.

Let us consider a graph G with Nκ external insertions and the lowest scale of which
is j. It has so Nκ external legs which correspond to Ĉi(p, p; p, 0). Thanks to the equation
(3.8), the integration over p gives a factor M−2i 6 M−2j. If Nκ < N , the graph has
N−Nκ external momenta and Nκ external insertions. We use the global delta function of
G to solve one external momentum in function of the others. Then each external insertion
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delivers a factor M−2i. If Nκ = N , the global delta function solves the momentum of one
of these insertions. This gives the degree of convergence in (3.11e).

Nevertheless we still have to prove that the procedure which lead to the bound (3.16)
reproduces this improvement in all the connected components. Of course this is related
to the last two products in equation (3.15).
Let us consider a connected component Gi

k with Nκ external insertions. These insertions
correspond to generalised lines at lower scales. If these lines are loop lines, the bound
(3.14) gives a factor M−2(i1−i2)M−4(i2−im) which is precisely the gain of two powers per
external insertion. But for the generalised lines which are in the tree, the argument is
subtler. Each such line bears two momenta, one of them being solved by the momentum
routing. This is the “highest” of the two in the tree. The momentum routing solves
then at most one such momentum among the momenta corresponding to the external
insertions. If Nκ = N , this corresponds to the fact that the global delta function δGik
solves this momentum and that we cannot get a better improvement than 2(N − 1). If
Nκ < N , it could very well happen that an external insertion is on the unique path
between Gi

k and the root of T (G). In this case, we would not get a gain of 2Nκ. But we
can use the propagator of that external insertion to integrate over an external momentum
(which is not another external insertion). The result is M−2i = M−2(i−im)M−2im . This
reproduces the bound (3.11e) and is also compatible with (3.11d). This ends the proof of
lemma 3.2.

4 Renormalisation

Thanks to the power counting lemma 3.2 we know which types of graphs are divergent.
In this section, we prove that the divergent parts of these graphs reproduce the five terms
of the Lagrangean (2.2).

4.1 The four-point function

The only divergent four-point graphs are planar regular and contain no κ-insertion (neither
internal nor external). The “Moyality” of the corresponding Feynman amplitudes has
already been proven in [3] in the case of a non-degenerate Moyal space using the x-
space representation. The only differences here are that we use the momentum space
representation and that our non-commutative space is half commutative. Nevertheless,
our proof would be so close to the one in [3] that we do not feel the need to reproduce it
here.

4.2 The two-point function

4.2.1 The planar regular case

Let G be a planar regular two-point graph. We distinguish mainly three different cases:

1. Eκ(G) = ∅ and Nκ(G) = 0,

2. Eκ(G) 6= ∅ and Nκ(G) = 0 and
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3. Nκ(G) 6= 0.

No insertion at all As in the case of the four-point function, there is no major dif-
ference between our degenerate model and the case treated in [3]. The two-point graphs
contribute to the flow of the mass, wave-functionsd and oscillator frequency Ω.

With internal insertions Let G be a connected planar regular tree-like graph with
Eκ 6= ∅ and Nκ = 0. Let i be the lowest of its scales. We now prove that its divergent
part renormalises κ2.

For all line l ∈ E(G), let plL be a linear combination of loop momenta in the com-
mutative directions. Let plL (resp. δpl) be a linear combination of loop momenta (resp.
short variables and momenta of generalised lines) in the non-commutative directions. Fi-
nally let δp be the sum of all the short variables of G plus the sum of all the momenta
of the generalised lines. The amplitude of G integrated over external fields and after a
momentum routing is given by:

AµG =:

∫
R6

d2p d2p d2q φ̂(p, p)φ̂(−p, q)A(p, p, q) (4.1)

=

∫
R4+2(v−1)+6n

d2p d2p φ̂(p, p)φ̂(−p,−p− δp) eıϕ̂
∏

l∈L(G)

d2pl d
2pl d

2ql Ĉ
il(pl, pl; pl, ql)∏

l∈T ∩E0

d2ql Ĉ
il(p+ plL, ql + p + plL + δpl; p+ plL, ql)

∏
l∈T ∩Eκ

d2ql Ĉ
il(p, p + δpl; p, ql).

The oscillation is of the type ϕ̂ = p ∧ δp.
Note that after the momentum routing, there is no loop momenta in the generalised

lines. This is because all such lines are bridges. This allows to bound the external
momentum p by |p| 6 M−i. We then perform a Taylor expansion of the external fields
around p = 0. In the commutative directions, as usual, we expand the tree propagators
around p = 0. Thanks to the power counting lemma, we know that such an amplitude is
only log. divergent. As a consequence, only the zeroth order term of these expansions is
divergent.

AµG =

∫
R2

d2p φ̂(p, 0)φ̂(−p, 0)

∫
R2+2(v−1)+6n

d2p eıϕ̂
∏

l∈L(G)

d2pl d
2pl d

2ql Ĉ
il(pl, pl; pl, ql)∏

l∈T ∩E0

d2ql Ĉ
il(plL, ql + p + plL + δpl; +plL, ql)

∏
l∈T ∩Eκ

d2ql Ĉ
il(0, p + δpl; 0, ql)

+ convergent contributions. (4.2)

The planar regular tree-like graphs with internal insertions contribute to the renormali-
sation of κ2.

dThe coefficients in front of the Laplacean in the commutative and non-commutative directions renor-
malise separately.
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With external insertions Let G be a connected planar regular tree-like graph with
Nκ 6= 0. Let i be the lowest of its scales. We now prove that its divergent part renormalises
κ2. Let us first consider that G has only one external insertion. In this case, its amplitude
is

AµG =

∫
R6

d2p d2p d2q φ̂(p, 0)Ĉ(p, 0; p, p)A(p, p, q)φ̂(−p, q) (4.3)

where A is defined by the equation (4.1). In contrast with the previous case, even if
Eκ = ∅, the external momentum p (and consequently q) is bounded by M−i. This is due
to the external insertion. Then we can safely expand the external field around q = 0, and
A and the external propagator around p = 0. This leads to

AµG =

∫
R2

d2p φ̂(p, 0)φ̂(−p, 0)

∫
R4

d2p d2q Ĉ(0, 0; 0, p)A(0, p, q) + convergent terms. (4.4)

If Nκ(G) = 2, the amplitude is

AµG =

∫
R6

d2p d2p d2q φ̂(p, 0)Ĉ(p, 0; p, p)A(p, p, q)Ĉ(−p, q;−p, 0)φ̂(−p, 0). (4.5)

We expand A and the external propagators around p = 0. The divergent part of this
expansion renormalises κ2 too.

4.2.2 The planar irregular case

Let G be a planar irregular (b(G) = 2) two-point graph. Let us first treat the case of a
graph without any insertion. Its amplitude would be

AµG =

∫
R4+2(v−1)+6n

d2p d2p φ̂(p, p)φ̂(−p,−p− δp) eıϕ̂
∏

l∈L(G)

d2pl d
2pl d

2ql Ĉ
il(pl, pl; pl, ql)∏

l∈T

d2ql Ĉ
il(p+ plL, ql + p + plL + δpl; p+ plL, ql)

where the oscillation is of the type ϕ̂ = p ∧ (δp + pL) (see lemma 2.3). The oscillation
between the external momentum p and some loop momenta pL allows to prove that p is
actually bounded by M−i (see [4] for the details). We can then perform the same types
of expansions as before to get a renormalisation of κ2.

If G contains internal or external insertions, it should now be clear that its amplitude
contributes also to the flow of κ2. Indeed, whatever the reason, if one can control the size
of the (non-commutative) external momentum, one can expand the external fields around
0 as was done in the preceding cases.
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5 Conclusion

Motivated by the work of Wan and Wang [12] and by the possibility of defining a renor-
malisable model on non-commutative Minkowski space, we addressed here the problem of
the renormalisability of a self-interacting quantum field on a degenerate Moyal space. On
such a space, part of the coordinates are commutative. Contrary to the non-commutative
Φ?4

4 model [1], the harmonic oscillator term is not sufficient to make the model renormal-
isable. We proved that the model contains indeed additionnal divergencies of the type
(Trφ)2. By adding such a counterterm, we defined a renormalisable model (see (2.2)).

The interest for such a study is twofold. On one side, the appearence of such countert-
erms (of the type “product of traces”) is quite natural on non-commutative spaces and
has already been noticed in different works, see [17] for an example. It is often mentioned
that the studied models are renormalisable at one-loop order provided one adds such a
term. Our work is the first study to all orders of such a quantum field theory.

One the other side, a (non-commutative) model on a degenerate space could open a
way towards non-commutative Minkowski space. There already exists lots of works about
quantum field theory on non-commutative Minkowski space concerning mainly causal-
ity, unitarity, definition of the appropriate Feynman rules etc. But no renormalisable
model is known. On commutative spaces, using a regularization à la Feynman, one can
prove the perturbative renormalisability of a Minkowskian model from the corresponding
Euclidean version. This results in the perturbative definition of the time-ordered Green
functions. Could we do an equivalent on a non-commutative space? It turns out that
with a proper (i.e. preserving unitarity) definition of a time-ordered product on non-
commutative Minkowski space [18, 19], one is lead to the conclusion that such a product
is not equivalent to the use of a Feynman propagator. Therefore the usual techniques
employed on commutative spaces may not apply. However one could address a simpler
question namely the perturbative renormalisability of a field theory on a non-commutative
Minkowski space with a commuting timee. This is where our present proposition could
enter into the game.
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