
HAL Id: hal-00567981
https://hal.science/hal-00567981

Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An efficient algorithm for computing the distance
between close partitions

Daniel Cosmin Porumbel, Jin-Kao Hao, Pascale Kuntz

To cite this version:
Daniel Cosmin Porumbel, Jin-Kao Hao, Pascale Kuntz. An efficient algorithm for computing
the distance between close partitions. Discrete Applied Mathematics, 2011, 159 (1), pp.53-59.
�10.1016/j.dam.2010.09.002�. �hal-00567981�

https://hal.science/hal-00567981
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Efficient Algorithm for Computing the

Distance Between Close Partitions

Daniel Cosmin Porumbel a,b Jin Kao Hao a Pascale Kuntz b

aLERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers, France

bLINA, Polytech’Nantes, rue Christian Pauc, 44306 Nantes, France

Abstract

A K− partition of a set S is a splitting of S into K non-overlapping classes that cover
all elements of S. Numerous practical applications dealing with data partitioning or
clustering require computing the distance between two partitions. Previous articles
proved that one can compute it in polynomial time—minimum O(|S| + K2) and
maximum O(|S| + K3)—using a reduction to the linear assignment problem. We
propose several conditions for which the partition distance can be computed in
O(|S|) time. In practical terms, this computation can be done in O(|S|) time for any

two relatively resembling partitions (i.e. with distance less than |S|
5) except specially

constructed cases. Finally, we prove that, even if there is a bounded number of classes
for which the proposed conditions are not satisfied, one can still preserve the linear
complexity by exploiting decomposition properties of the similarity matrix.

Key words: partition distance, partition metric, similarity between partitions,
clustering comparison, similarity measure

1 Introduction

A K− partition of a set S is a splitting of S into K non-overlapping classes
(clusters, parts, blocks or cells), that cover all elements of S. We assume no
restriction on the cardinality of a class in this paper; it can be empty and it
can also be equal to S. Given two K−partitions P1 and P2 (even with different
numbers of non-empty classes), the partition distance between P1 and P2 is
defined as the minimum number of elements that need to be moved between
classes of P1 so that the resulting partition equals P2. The similarity is defined
as the maximum number of elements that do not require to be moved in order
to obtain two equal partitions.

1

This definition of partition distance was first stated in 1965 by Régnier [15] and
the currently used computation methodology was presented by Day in 1981
[6]. The method transforms the distance problem into the linear assignment
problem on a K×K matrix. Solving the linear assignment problem by classical
algorithms is known to take O(K2) time in the best case and up to O(K3)
time in the worst case (i.e. with the Hungarian algorithm [13]). A complete
description of this methodology is available [11] and it is used by all recent
studies ([4,5,3,12,8]) dealing with partition distances.

In this paper, we introduce an algorithm that computes the distance in O(|S|)
steps if certain conditions are satisfied, e.g. if each class in P1 shares with a class
of P2 at least half of the elements in each class (see Theorem 1 and Corollary 2).
Furthermore, we prove a more general result: one can use strong decomposition
properties on the similarity matrix so as to preserve the linear theoretical
complexity even if the Theorem 1 conditions do not hold for a bounded number

of classes (i.e. at maximum 3

√

|S|, see Theorem 3). In addition, we show that
the approach can be very useful in practice to compute any small distance. For
illustration, we give an application example in the context of a graph coloring
algorithm that needs to compute billions of small distances (less than |S|

5
); for

the vast majority of small distances, the conditions are indeed satisfied.

The proposed algorithm can be used in numerous applications concerned with
close partitions, as for example those comparing a reference partition (a ”gold
standard”) with a partition determined by an algorithm. A classical example
is image segmentation, where a segmentation partition can be evaluated ac-
cording to its distance from a correct/ideal segmentation [3]. In biology, the
distance is used to appreciate the difference (error) between a known parti-
tion of a population (a family structure) and a reconstruction based on genetic
data [12,1]. In clustering, one often obtains different partitions with different
clustering algorithms and needs to find a consensus between them. To do this,
one determines a central partition, i.e. a partition that minimizes the average
distance to all other partitions [5,2]. If there is no much disagreement between
the clustering algorithms, the partitions they produce will be sufficiently sim-
ilar to be handled by the algorithm proposed in this paper.

From a theoretical viewpoint, the partition distance satisfies several interest-
ing properties. For instance, it is known that the partition distance constitutes
a metric in the space of partitions [3]. More in-depth studies [4] show that,
although the distance ranges from 0 to |S|, it can never reach |S|−1 and more

precise upper bounds are provided (e.g. |S| −
⌈

|S|
K

⌉

). A comparison between

the distance function and other similar measures for partitions (e.g. the Rand
index commonly used for comparing two data clusterings) is available [8],
showing the distribution of several indexes between close partitions. The dis-
tribution of the distances between random partitions is also studied, showing
how one can interpret the value of a distance [7]. Finally, generalizations of

2

this distance measure are available [2,1].

In the next section, we give a set of basic definitions. Section 3 discusses the
conditions required for determining the distance in O(|S|) steps. Section 4 ex-
tends the application of the proposed algorithm when some of these conditions
are only partially satisfied. Section 5 shows an application of the algorithm to
compute distances between graph colorings, which is followed by conclusions.

2 Distance Definition

A K−partition P of a finite set S = {1, 2, . . . , |S|} is a function P : S →
{1, 2, . . . , K}. It can also be defined as a set of classes {P 1, P 2, . . . , PK} such
that

⋃

1≤i≤K P i = S and P i ∩ P j = ∅, for all i, j ∈ {1, 2, . . . , K},i 6= j. The
two definitions are equivalent since P i = {x ∈ S|P (x) = i}; P (x) identifies
the number of the class of element x so that x ∈ P P (x) for all x ∈ S. If the P

function is not surjective, some classes of the partition need to be empty.

Given two K−partitions P1 and P2 of S, we denote by Dist(P1, P2) the dis-
tance between P1 and P2, i.e. the minimum number of elements that need to
be moved between classes of P1 so that the resulting partition becomes equal
with P2. The similarity Sim(P1, P2) is a complementary measure of the dis-
tance denoting the maximum number of elements of P1 that do not need to
be moved in order to obtain equal partitions. The two measures satisfy the
following equation:

Sim(P1, P2) + Dist(P1, P2) = |S|. (1)

Alternatively, the distance can also be interpreted as the minimum number of
elements one needs to erase from S such that the two partitions restricted
to the set of remaining elements of S (denoted by S ′) are equal [11]. S ′

represents a set of elements that are shared by the two partitions and thus
|S ′| = Sim(P1, P2).

To calculate the similarity |S ′|, one needs to find the one-to-one correspon-
dence σ : {1, 2, . . . , K} → {1, 2, . . . , K} (assignment) maximizing the sum:

Sim(P1, P2) = MAXσ(
∑

1≤i≤K

Ti,σ(i)), (2)

where T is the K × K similarity matrix T (P1, P2) with elements:

Tij = |P i
1 ∩ P

j
2 | (3)

To determine the maximum of the sum in formula (2), one can solve a classical

3

assignment problem: determine the maximum weighted matching of the com-
plete bipartite graph having vertices {P 1

1 , P 2
1 , . . . , PK

1 } ∪ {P 1
2 , P 2

2 , . . . , PK
2 }

and edges (P i
1, P

j
2) weighted by Tij for all i, j ∈ {1, 2, . . . , K}. Most papers

[6,11,4,12] just suggest to determine the maximal assignment σ̄ by applying a
classical Hungarian algorithm of time complexity between O(K2) and O(K3)
[13].

Normalized similarity and normalized distance Very often, it is useful to
use the normalized values of the similarity and the distance: sP1,P2

= Sim(P1,P2)
|S|

and dP1,P2
= Dist(P1,P2)

|S|
. These values represent a better indicator of the pro-

portion of elements shared by two partitions, sP1,P2
, or that require to be

moved, dP1,P2
. Clearly, the following formula holds for any S, P1 and P2:

dP1,P2
+ sP1,P2

= 1.

Note that since the distance is always strictly less than |S|, one can also
normalize it with respect to other values, for example the maximum distance
[4]. However, the simple normalization above suffices for the purpose of this
paper.

To exemplify these notions, consider S = {1, 2, . . . , 10} and the 2−partitions
P1 determined by P 1

1 = {1, 2, 3, 4, 5} and P 2
1 = {6, 7, 8, 9, 10} and P2 deter-

mined by P 1
2 = {1, 2, 3, 4, 6, 7} and P 2

2 = {5, 8, 9, 10}. Computing the ma-

trix T with formula (3) yields T =

4 1

2 3

 . The best assignment σ̄, that

maximizes the sum in formula (2), is σ̄(1) = 1 and σ̄(2) = 2. We obtain

Sim(P1, P2) = T1σ̄(1) + T2σ̄(2) = 7 and sP1,P2
= Sim(P1,P2)

|S|
= 0.7. The distance

is thus Dist(P1, P2) = |S| − Sim(P1, P2) = 3 and the normalized value is
dP1,P2

= 0.3. Indeed, one needs to change the class of 3 elements of S (ele-
ments 5, 6 and 7) to transform P1 into P2.

3 Distance Computation

In this section, we describe the new O(|S|) time algorithm and the necessary
conditions for calculating the similarity—and implicitly the distance via (1)—
of two given partitions P1 and P2 of a set S. The algorithm has two major
steps: (i) construct the similarity matrix T (P1, P2), and (ii) find the best σ̄ in
formula (2). The space complexity of our algorithm is of order O(|S| + K2).

4

3.1 Similarity matrix T in O(|S|) time

Our algorithm works on a K × K similarity matrix T , but only uses |S|
elements (at maximum): Tij = TP1(x),P2(x), where x ∈ S. This construction
step of T can be done in O(|S|) time. More precisely, one first performs the
memory allocation for T (without any initialization, using an appropriate
memory allocator 1) and goes through each x ∈ S by setting TP1(x),P2(x) = 0
(in O(|S|) time). Then one goes through again each x ∈ S by incrementing
TP1(x),P2(x) := TP1(x),P2(x) + 1 (in O(|S|) time). In fact, the matrix structure
is only used for indexing reasons, to quickly address the positions TP1(x),P2(x)

with x ∈ S.

From now on, the values at positions TP1(x),P2(x) with x ∈ S will be called
relevant. The rest of the elements of T are considered irrelevant because the
algorithm never needs them, neither for reading nor for writing.

3.2 Maximal assignment in O(|S|) steps

This section discusses the conditions in which O(|S|) steps are enough to
determine the partition distance. We use the similarity matrix T from the
previous section and the objective is to find a maximal assignment σ̄, i.e. a
bijective function σ̄ maximizing the sum

∑

1≤i≤K Ti,σ(i) in formula (2).

Theorem 1 If for all i ∈ {1, 2, . . . , K}, there exists j ∈ {1, 2, . . . , K} such
that Tij > Tij1 and Tij > Ti1j, for all j1 6= j, i1 6= i, then the partition distance
can be determined in O(|S|) time.

Proof We consider that the input consists of set S and partitions P1 and
P2, where S is {1, 2, . . . |S|} and P1 and P2 are two vectors denoting P1(x)
and P2(x) for all x ∈ S. In the first step, the algorithm computes in O(|S|)
time the relevant elements of T (see Section 3.1) and also Tiσ̄(i), the unique
maximum element of each row i. To determine these row-maximums, one
goes only through the O(|S|) relevant elements T and performs the following
instruction: if Tij is greater than the current maximum on row i (initially, this
maximum is zero), the current maximum is updated to Tij.

Since Tiσ̄(i) is a strict maximum on row i, any other mapping σ : S → S would
lead to a no larger sum

∑

1≤i≤K Ti,σ(i). Checking that σ̄ is bijective follows from
the fact that if σ̄(i) = σ̄(i′) = j, then both Tij and Ti′j represent the unique

1 A good example of memory allocator is TLSF (rtportal.upv.es/rtmalloc/),
that “performs the allocation/deallocation in constant time maintaining a very low
memory fragmentation.” [14, p. 150].

5

maximum of column j, and so, i and i′ need to be the same. ✷

The inequalities in the conditions from this theorem need to be strict, because

otherwise one can not determine a bijective σ̄, e.g. if T =

2 1

2 1

. The case

solved by this theorem can be seen as a dual of a specific Hungarian algorithm
case in which the first step uncovers K mutually independent zeros (i.e. not
lying in the same row or column). However, we compute the partition distance
without converting the problem to a minimization problem (the Hungarian
algorithm solves minimization problems) and without performing the O(K ×
K) row/column reductions needed by the Hungarian algorithm.

A similar condition could be expressed without mentioning the matrix T .

Corollary 2 If for all i ∈ {1, 2, . . . , K}, there exists j ∈ {1, 2, . . . , K} such

that |P i
1 ∩ P

j
2 | >

|P i
1
|

2
and |P i

1 ∩ P
j
2 | >

|P j

2
|

2
, then the partition distance can be

determined in O(|S|) time.

Proof The given hypothesis conditions represent a particular case of the con-
ditions in Theorem 1. From (3), we have

∑

1≤k≤K Tik =
∑

1≤k≤K |P i
1∩P k

2 |. Since
all P k

2 are disjoint and their union is S,
∑

1≤k≤K |P i
1 ∩ P k

2 | = |P i
1 ∩ S| = |P i

1|.
Therefore, for all i ∈ {1, 2, . . . K}, we have

∑

1≤k≤K

Tik = |P i
1|. (4)

By similar reasoning, we can conclude that:

∑

1≤k≤K

Tkj = |P j
2 |. (5)

Using the hypothesis conditions, it follows that Tij > Tij1 and Tij > Ti1j,
for all j1 6= j, i1 6= i and the proof can be finished by using Theorem 1. ✷

The main practical drawback of the conditions of this Corollary and of The-
orem 1 is that, if there is a single row i on which they are not satisfied, the
rest of the construction can not be used for determining the best assignment.
The next theorem overcomes this issue and moreover, it can not be related to
a dual of a step of the Hungarian algorithm. We show how one can determine
the best assignment i

σ̄
→ j on a row i by looking only at the elements on row

i and column j—recall that the Hungarian algorithm returns only complete
solutions and it takes no such intermediate (early) decisions on particular rows
or columns.

Theorem 3 If for a given row i ∈ {1, 2, . . . , K}, there exists column j ∈
{1, 2, . . . , K} such that Tij ≥ Tij1 +Ti1j for all j1 6= j, i1 6= i, one can construct

6

a maximal assignment σ̄ such that σ̄(i) = j. If the number of rows i not

satisfying this condition is bounded (i.e. less than 3

√

|S|), the partition distance

can be determined in O(|S|) time.

Proof Following a very similar algorithm to the one in Theorem 1, one can
determine matrix T and also the maximum value on each row and on each
column. By going through the O(|S|) relevant elements once again, one marks
all maximum elements that are discovered on each row. Since only a marked
row-maximum Tij can satisfy Tij ≥ Tij1 + Ti1j for all j1 6= j, i1 6= i, the algo-
rithm just needs to check for each row-maximum Tij that it is greater than
Ti,− + T−,j, where Ti,− and T−,j are the second maximum values in row i and
column j, respectively. We consider that Ti,− = Tij if and only if row i has
at least two maximum value elements. Furthermore, determining the second
maximum value of a row (or column, respectively) is very similar to determin-
ing the first maximum. Thus, the hypothesis condition can be checked for all
rows in O(|S|) time.

Let Tij be an element marked by the above O(|S|) procedure, such that Tij ≥
Tij1 + Ti1j for all j1 6= j, i1 6= i. We need to show that one can construct an
maximum assignment by mapping i to j. Let σ be a maximal assignment. If
σ(i) = j, then σ constitutes the searched assignment. Otherwise, let j1 = σ(i)
and i1 = σ−1(j). Using the hypothesis condition, one obtains:

Tij + Ti1j1 ≥ Ti1j + Tij1 = Ti1σ(i1) + Tiσ(i) (6)

By composing the transposition permutation (i, i1) with σ, one obtains a new
bijective mapping σ̄ that differs from σ only on positions i and i1, such that
the values on these positions are switched, i.e. σ̄(i) = j and σ̄(i1) = j1. The
difference of value between assignments σ̄ and σ (see (2)) is Tij +Ti1j1 −(Ti1j +
Tij1) ≥ 0. Using (6), σ̄ also needs to be a maximal assignment.

To summarize, an algorithm could establish a partial best assignment on all
rows i that satisfy the hypothesis condition, regardless of the rows that do not
satisfy this condition. This assignment on these rows is determined by mapping
row i to any column j satisfying Tij ≥ Tij1 + Ti1j for all j1 6= j, i1 6= i. If there
are two rows i1 and i2 pointing to the same j, then Ti1j and Ti2j need to be
the only non-zero elements on row i1 and i2. As such, one can map i1 to j and
i2 can be mapped to any other value on row i2.

The rest of the assignment can be constructed by applying the Hungarian
algorithm on the remaining elements. Under the given hypothesis condition,

the number of unassigned σ̄ elements is K ′ =
⌊

3

√

|S|
⌋

in the worst case. To

complete the assignment, one first marks the K ′ unassigned rows and the K ′

unassigned columns. A new K ′ × K ′ matrix is also allocated and initialized
to zero in less than O(|S|). Then, one goes through the relevant elements

7

of T and copies into a new K ′ × K ′ matrix all elements situated at the in-
tersection of a marked row and column. Finally, the Hungarian algorithm
determines the maximum assignment value on this restricted matrix using
maximum O(K ′3) = O(|S|) operations, resulting in a total time complexity of
O(|S|) for the whole algorithm. ✷

A similar condition could be expressed without mentioning the matrix T , in
a simpler manner.

Corollary 4 If for all i ∈ {1, 2, . . . , K}, there exists j ∈ {1, 2, . . . , K} such

that |P i
1 ∩P

j
2 | ≥

|P i
1
∪P

j

2
|

2
, then the partition distance can be computed in O(|S|)

steps.

Proof This proposition follows from equations (4) and (5) as it becomes a
particular case of Theorem 3. However, this corollary also has the advantage
that it is very easy to implement because |P i

1 ∪ P
j
2 | = |P i

1| + |P j
2 | − |P i

1 ∩ P
j
2 |

and |P i
1| and |P j

2 | can be easily determined. ✷

Regarding the most general proofs of this section, note that Theorem 1 and

Theorem 3 do not result one from another. For example, if T =

3 2

2 3

, only

Theorem 1 can be used; if T =

2 2

0 2

, one should use Theorem 3. In the next

section, we show how Theorem 3 and Corollary 4 can also be used in practice
to construct only a part of the solution.

4 Extensions

In case the hypothesis conditions of Theorem 3 or Corollary 4 only hold for
a restricted set of rows i ∈ {1, 2, . . . , K}, we can still perform important time
complexity reductions. First, let us prove the following proposition:

|P i
1 ∩ P

j
2 | ≤

|P i
1 ∪ P

j
2 |

2
for all i, j ∈ {1, 2, . . . , K} ⇒ Sim(P1, P2) ≤

2

3
|S|. (7)

Let σ̄′ be a maximal assignment and j = σ̄′(i), where i is any row. One

can write Tij ≤
|P i

1
∪P

j

2
|

2
as Tij ≤

|P i
1
|+|P j

2
|−|P i

1
∩P

j

2
|

2
, or 3Tij ≤ |P i

1| + |P j
2 |. Mak-

ing the sum over all rows i, one obtains 3
∑

1≤i≤K Tiσ̄′(i) ≤
∑

1≤k≤K |P k
1 | +

∑

1≤k≤K |P k
2 | = 2|S|, which proves (7).

We use the conditions of Corollary 4 only for a greater readability, but the

8

same result could be derived for the conditions of Theorem 3, i.e. if Tij <

Tij1 + Ti1j for all j1 6= j, i1 6= i, then |P i
1 ∩ P

j
2 | ≤

|P i
1
∪P

j

2
|

2
is also satisfied—see

(4) and (5).

Now, we present the actual reduction of the Sim(P1, P2) computation into
smaller pieces. We divide S into two subsets A and B such that only the
computation on B requires an algorithm of higher complexity. Let us denote
by I the set of elements i for which there is ji ∈ {1, 2, . . . , K} such that

|P i
1 ∩ P

ji

2 | >
|P i

1
∪P

ji
2
|

2
. We write J = {j ∈ S| there exists i ∈ I s.t.j = ji} and

let
A =

⋃

i∈I

P i
1 ∪ P

ji

2 (8)

and B = S − A. Using A in Corollary 4 (or Theorem 3), one finds there
exists a maximal assignment σ̄ satisfying σ̄(i) = ji, for all i ∈ I. Since J is
the image of I through the bijective σ̄, then {1, 2, . . . , K} − J is the image
of {1, 2, . . . , K} − I. The rest of σ̄ can be constructed only using rows and
columns from these two sets, which contain values generated only by classes
of B (i.e. subsets P i

1, P
j
2 ⊆ B).

Writing Sim(P1, P2)|X the similarity between partitions P1 and P2 restricted
to set X ⊂ S, we obtain Sim(P1, P2) = Sim(P1, P2)|A + Sim(P1, P2)|B. Since
no confusion arises, we can simply write: |S|·sP1,P2

= |A|·sP1,P2
|A+|B|·sP1,P2

|B
and we can even omit the index P1,P2

:

sS =
|A|

|S|
sA +

|B|

|S|
sB,

where sX is the normalized similarity between P1 and P2 restricted to set X.

The sets A and B can be directly determined from set I using (8) and I can be
determined in O(|S|) time, following the reasoning of Theorem 3. Furthermore,
sA can be determined in O(|A|) < O(|S|) as explained in Section 3.2; sB can
be determined in maximum O((K − |I|)3) using the Hungarian algorithm. To
summarize, the total time complexity of computing the similarity this way is
O(|S|) + O((K − |I|)3) at maximum.

Using (7), we obtain sB ≤ 2
3
. This means that if the total similarity is high

(i.e. for example sS > 0.9), S can be split in two parts:

(1) A, on which the normalized similarity sA is very high (e.g. sA > sS > 0.9)
and can be computed in O(|S|).

(2) B, on which the normalized similarity is much lower sB ≤ 2
3

and can not
be computed in O(|S|).

In case the total similarity of P1 and P2 is high, even if we cannot always
compute it in O(|S|) time, we can always identify the part of S where the

9

matching is stronger (i.e. A) in O(|S|) time. This could be particularly useful
for applications that only need to find the best class matches between two
partitions.

5 An Application Example

In this section we present numerical experiments in the context of a graph
coloring heuristic algorithm that needs to compute billions of distances to
build up a search space clusterization. The graph K−coloring problem is a
partition problem: divide the vertex set S of the graph into K disjoint classes
such that there is no edge with both end vertices in the same class (i.e. of the
same color). To check the distance of two given K−colorings, the partition
distance is typically used [9] and the Hungarian algorithm is used for the
computation([10]).

We have computed one billion small distances by applying the heuristic col-
oring algorithm on two standard coloring graphs 2 with 1000 vertices (so that
|S| = 1000) and 20 and respectively 86 colors (so that K is 20 and respec-
tively 86). The considered distances are small as they are computed between
close positions in a series of neighboring colorings; two neighboring coloring
differ only by the color of a single vertex. However, even if there are also
greater distances, we only count in this statistics the pairs (P1, P2) satisfying

Dist(P1, P2) <
|S|
5

. The practical objective was to analyze the structure of the
search space of a heuristic algorithm in order to control the exploration diver-
sity. For each distance calculation, we apply our partition distance algorithm
following this methodology:

(1) If the condition in Corollary 4 is satisfied, the algorithm simply computes
the correct distance in O(|S|) time.

(2) Otherwise, the algorithm detects that the condition is not satisfied (it
returns IMPOSSIBLE in O(|S|) time, see algorithm in appendix A.)
and the O(K3) Hungarian algorithm is executed.

The first step was sufficient for more than 99.99% cases. More precisely, in
more than 109 computed distances, we found less than 103 (i.e. 737 when K =

20 and 880 for the K = 86 case) pairs (P1, P2) for which Dist(P1, P2) <
|S|
5

but the hypothesis condition in Corollary 4 is not satisfied. If we consider even
smaller distances (more exactly, only pairs (P1, P2) such that Dist(P1, P2) <
|S|
10

) the O(|S|) time algorithm is sufficient for all practical cases we encoun-
tered.

2 DIMACS Graphs dsjc1000.1 and dsjc1000.5, available (for example) from
http://mat.gsia.cmu.edu/COLOR/instances.html

10

The explanation of this practical success lies in the fact that the similarity
restricted to different classes (subsets) of S presents quite homogeneous values
in practice. Thus, if the total similarity is high (i.e. sP1,P2

> 0.9 equivalent to

Dist(P1, P2) <
|S|
10

in our example), the sX values are quite close to 0.9 for
most classes X of the partitions. Thus, the cardinal of set B (on which sB < 2

3
,

and the conditions from section 3.2 are not met) is very limited, usually B is
empty in practice.

However, theoretically one can still construct a counter-example to this by
taking two partitions such that P 1

1 = P 1
2 and |P 1

1 | = 0.9|S|. In this case
sP1,P2

≥ 0.9, but the two partitions, which are very similar on A = P 1
1 , can be

totally different on B = S − A. The most difficult part is the computation of
the similarity restricted to B; only this one may still require between O(K2)
and O(K3) time.

6 Conclusions

This paper introduces a very fast algorithm for computing the distance be-
tween two close partitions P1 and P2 of a set S under the conditions specified
in Section 3. From a practical perspective, the partition distance between two
given partitions can be calculated in O(|S|) time, if they have a distance less

than |S|
5

. This should be contrasted with the conventional methods based on
the Hungarian algorithm that requires O(|S| + K2) time for the same cases
considered in this paper.

Moreover, the proposed algorithm can also be useful even if the required condi-
tions are not totally satisfied as it is explained in Section 4. In such a situation,
the algorithm can be used to identify the subset of S on which the matching
is stronger, i.e. where the normalized similarity is at least 2

3
. Finally, a part of

the proposed algorithm can be useful for solving general assignment problems
dealing with sparse matrices.

Acknowledgments: This work is partially supported by the CPER project ”Pôle
Informatique Régional” (2000-2006) and the Régional Project MILES (2007-
2009). We are grateful for the comments of two anonymous referees whose
ideas have helped us to improve the paper.

References

[1] T.Y. Berger-Wolf, S.I. Sheikh, B. DasGupta, M.V. Ashley, I.C. Caballero,
W. Chaovalitwongse, and S.L. Putrevu. Reconstructing sibling relationships

11

in wild populations. Bioinformatics, 23(13):i49, 2007.

[2] P. Berman, B. DasGupta, M.Y. Kao, and J. Wang. On constructing an optimal
consensus clustering from multiple clusterings. Information Processing Letters,
104(4):137–145, 2007.

[3] J.S. Cardoso and L. Corte-Real. Toward a Generic Evaluation of Image
Segmentation. IEEE Transactions on Image Processing, 14(11):1773–1782,
2005.

[4] I. Charon, L. Denoeud, A. Guénoche, and O. Hudry. Maximum Transfer
Distance Between Partitions. Journal of Classification, 23(1):103–121, 2006.

[5] J.F.P. da Costa and P.R. Rao. Central partition for a partition-distance and
strong pattern graphs. REVSTAT–Statistical Journal, 2(2):127–143, 2004.

[6] W.H.E. Day. The complexity of computing metric distances between partitions.
Mathematical Social Sciences, 1:269–287, 1981.

[7] L. Denoeud. Transfer distance between partitions. Advances in Data Analysis

and Classification, 2(3):279–294, 2008.

[8] L. Denoeud and A. Guénoche. Comparison of distance indices between
partitions. In Data Science and Classification, pages 21–28. Springer, 2006.

[9] P. Galinier and J.K. Hao. Hybrid Evolutionary Algorithms for Graph Coloring.
Journal of Combinatorial Optimization, 3(4):379–397, 1999.

[10] C.A. Glass and A. Pruegel-Bennett. A polynomially searchable exponential
neighbourhood for graph colouring. Journal of the Operational Research

Society, 56(3):324–330, 2005.

[11] D. Gusfield. Partition-distance: A problem and class of perfect graphs arising
in clustering. Information Processing Letters, 82(3):159–164, 2002.

[12] D.A. Konovalov, B. Litow, and N. Bajema. Partition-distance via the
assignment problem. Bioinformatics, 21(10):2463–2468, 2005.

[13] H.W. Kühn. The Hungarian Method for the Assignment Problem. Naval

Research Logistics Quarterly, 2:83–97, 1955.

[14] M. Masmano, I. Ripoll, P. Balbastre, and A. Crespo. A constant-time dynamic
storage allocator for real-time systems. Real-Time Systems, 40(2):149–179,
2008.

[15] S. Régnier. Sur quelques aspects mathématiques des problèmes de classification
automatique. Mathématiques et Sciences Humaines, 82:20, 1983. reprint of ICC

Bulletin, 4, 175- 191, Rome, 1965.

12

Algorithm 1 Algorithm corresponding to Corollary 4
Inputs:

• |S|, so that S = {1, 2, . . . , |S|}
• P1 and P2 as |S|-vectors (i.e. position x in P1 represent P1(x), for all x ∈

S)
Return value:

• the distance Σ, if the condition in Corollary 4 is satisfied
• IMPOSSIBLE, otherwise.
Begin

(1) init Σ = 0
(2) init K = maximum value in vectors P1 and P2

(3) allocate the K × K matrix T (without filling any element)
(4) init K−vectors M and σ̄ to 0 (the maximum on each row and the

maximal assignment that is constructed)
(5) init K−vectors |P1| and |P2| to 0 (denoting the cardinal of each class)
(6) FOR x = 1 TO |S|

• set i = P1(x) and j = P2(x)
• set Tij = 0

(7) FOR x = 1 TO |S|
• set i = P1(x) and j = P2(x)
• increment Tij, |P

i
1|, |P

j
2 |

• IF Tij > Mi, THEN set Mi = Tij and σ̄(i) = j.
(8) FOR i = 1 TO K

• IF Mi = 0, THEN CONTINUE (with next i)

• IF 3Mi ≤ |P i
1| + |P

σ̄(i)
2 |, THEN RETURN IMPOSSIBLE

• set Σ = Σ + Ti,σ̄(i)

(9) RETURN Σ
End

A A complete algorithm example

The algorithm we present in this appendix corresponds to Corollary 4 and
as one can see, it is quite simple. By detailing it, one can also implement a
similar version corresponding to any other theorem in the paper. The number
of classes does not need to be the same for P1 and P2 because K is not given in
the input; it is computed as the maximum number of classes in any partition.

13

