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Céline Labart ∗
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Abstract

We present a parallel algorithm for solving backward stochastic differential equations
(BSDEs in short) which are very useful theoretic tools to deal with many financial
problems ranging from option pricing option to risk management. Our algorithm based
on Gobet and Labart (2010) exploits the link between BSDEs and non linear partial
differential equations (PDEs in short) and hence enables to solve high dimensional non
linear PDEs. In this work, we apply it to the pricing and hedging of American options
in high dimensional local volatility models, which remains very computationally
demanding. We have tested our algorithm up to dimension 10 on a cluster of 512 CPUs
and we obtained linear speedups which proves the scalability of our implementation.

Keywords : backward stochastic differential equations, parallel computing, Monte-
Carlo methods, non linear PDE, American options, local volatility model.

1 Introduction

Pricing and hedging American options with a large number of underlying assets is a
challenging financial issue. On a single processor system, it can require several hours of
computation in high dimensions. Recent advances in parallel computing hardware
such as multi–core processors, clusters and GPUs are then of high interest for the
finance community. For a couple of years, some research teams have been tackling the
parallelization of numerical algorithms for option pricing. Thulasiram and Bondarenko
(2002) developed a parallel algorithm using MPI for pricing a class of multidimensional
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financial derivatives using a binomial lattice approach. Huang and Thularisam (2005)
presented algorithms for pricing American style Asian options using a binomial tree method.
Concerning the parallelization of Monte–Carlo methods for pricing multi–dimensional
Bermudan/American options, the literature is quite rare. We refer to Toke and Girard
(2006) and to Dung Doan et al. (2010). Both papers propose a parallelization through grid
computing of the Ibáñez and Zapatero (2004) algorithm, which computes the optimal
exercise boundary. A GPGPU approach based on quantization techniques has recently been
developed by Pagès and Wilbertz (2011).

Our approach is based on solving Backward Stochastic Differential Equations (BSDEs in
short). As explained in the seminal paper by El Karoui et al. (1997b), pricing and hedging
European options in local volatility models boil down to solving standard BSDEs. From
El Karoui et al. (1997a), we know that the price of an American option is also linked to a
particular class of BSDEs called reflected BSDEs. Several sequential algorithms to solve BS-
DEs can be found in the literature. Ma et al. (1994) adopted a PDE approach, whereas
Bouchard and Touzi (2004) and Gobet et al. (2005) used a Monte–Carlo approach based
on the dynamic programming equation. The Monte–Carlo approach was also investigated
by Bally and Pagès (2003) and Delarue and Menozzi (2006) who applied quantization tech-
niques to solve the dynamic programming equation. Our approach is based on the algorithm
developed by Gobet and Labart (2010) which combines Picard’s iterations and an adaptive
control variate. It enables to solve standard BSDEs, ie, to get the price and delta of Euro-
pean options in a local volatility model. Compared to the algorithms based on the dynamic
programming equation, ours provides regular solutions in time and space (which is coherent
with the regularity of the option price and delta). To apply it to the pricing and hedging of
American options, we use a technique introduced by El Karoui et al. (1997a), which consists
in approximating a reflected BSDE by a sequence of standard BSDEs with penalisation.

The paper is organized as follows. In section 2, we briefly recall the link between BSDEs
and PDEs which is the heart of our algorithm. In section 3, we describe the algorithm and
in Section 4 we explain how the parallelization has been carried out. Section 5 describes
how American options can be priced using BSDEs. Finally, in Section 6, we conclude the
paper by some numerical tests of our parallel algorithm for pricing and hedging European
and American basket options in dimension up to 10.

1.1 Definitions and Notations

• Let Ck,l
b be the set of continuously differentiable functions φ : (t, x) ∈ [0, T ] × R

d with
continuous and uniformly bounded derivatives w.r.t. t (resp. w.r.t. x) up to order k
(resp. up to order l).

• Ck
p denotes the set of Ck−1 functions with piecewise continuous kth order derivative.

• For α ∈]0, 1], Ck+α is the set of Ck functions whose kth order derivative is Hölder
continuous with order α.
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2 BSDEs

2.1 General results on standard BSDEs

Let (Ω,F ,P) be a given probability space on which is defined a q-dimensional standard Brow-
nian motionW , whose natural filtration, augmented with P-null sets, is denoted (Ft)0≤t≤T (T
is a fixed terminal time). We denote (Y,Z) the solution of the following backward stochastic
differential equation (BSDE) with fixed terminal time T

− dYt = f(t,Xt, Yt, Zt)dt− ZtdWt, YT = Φ(XT ), (2.1)

where f : [0, T ]× R
d × R× R

q → R, Φ : Rd → R and X is the R
d-valued process solution of

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, (2.2)

with b : [0, T ]× R
d → R

d and σ : [0, T ]× R
d → R

d×q.
From now on, we assume the following Hypothesis, which ensures the existence and unique-

ness of the solution to Equations (2.1)-(2.2).

Hypothesis 1

• The driver f is a bounded Lipschitz continuous function, ie, for all
(t1, x1, y1, z1), (t2, x2, y2, z2) ∈ [0, T ] × R

d × R× R, ∃Lf > 0,

|f(t1, x1, y1, z1)− f(t2, x2, y2, z2)| ≤ Lf (|t1 − t2|+ |x1 − x2|+ |y1 − y2|+ |z1 − z2|).

• σ is uniformly elliptic on [0, T ]×R
d, ie, there exist two positive constants σ0, σ1 s.t. for

any ξ ∈ R
d and any (t, x) ∈ [0, T ]× R

d

σ0|ξ|2 ≤
d
∑

i,j=1

[σσ∗]i,j(t, x)ξiξj ≤ σ1|ξ|2.

• Φ is bounded in C2+α, α ∈]0, 1].

• b and σ are in C1,3
b and ∂tσ is in C0,1

b .

2.2 Link with semilinear PDEs

Let us also recall the link between BSDEs and semilinear PDEs. Although the relation is
the keystone of our algorithm, as explained in Section 3, we do not develop it and refer to
Pardoux and Peng (1992) or El Karoui et al. (1997b) for more details.

According to Pardoux and Peng (1992, Theorem 3.1), we can link the solution (Y,Z) of
the BSDE (2.1) to the solution u of the following PDE:

{

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x), (∂xuσ)(t, x)) = 0,

u(T, x) = Φ(x),
(2.3)

where L is defined by

L(t,x)u(t, x) =
1

2

∑

i,j

[σσ∗]ij(t, x)∂
2
xixj

u(t, x) +
∑

i

bi(t, x)∂xi
u(t, x).
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Theorem 1 ( Delarue and Menozzi (2006), Theorem 2.1). Under Hypothesis 1, the solution
u of PDE (2.3) belongs to C1,2

b . Moreover, the solution (Yt, Zt)0≤t≤T of (2.1) satisfies

∀t ∈ [0, T ], (Yt, Zt) = (u(t,Xt), ∂xu(t,Xt)σ(t,Xt)). (2.4)

3 Presentation of the Algorithm

3.1 Description

We present the algorithm introduced by Gobet and Labart (2010) to solve standard BSDEs.
It is based on Picard’s iterations combined with an adaptive Monte–Carlo method. We recall
that we aim at numerically solving BSDE (2.1), which is equivalent to solving the semilinear
PDE (2.3). The current algorithm provides an approximation of the solution of this PDE.
Let uk denote the approximation of the solution u of (2.3) at step k. If we are able to
compute an explicit solution of (2.2), the approximation of (Y,Z) at step k follows from (2.4):
(Y k

t , Z
k
t ) = (uk(t,Xt), ∂xu

k(t,Xt)σ(t,Xt)), for all t ∈ [0, T ]. Otherwise, we introduce XN the
approximation of X obtained with a N–time step Euler scheme:

∀s ∈ [0, T ], dXN
s = b(ϕN (s),XN

ϕN (s))ds+ σ(ϕN (s),XN
ϕN (s))dWs, (3.1)

where ϕN (s) = sup{tj : tj ≤ s} is the largest discretization time not greater than s and
{0 = t0 < t1 < · · · < tN = T} is a regular subdivision of the interval [0, T ]. Then, we write

(Y k
t , Z

k
t ) = (uk(t,XN

t ), ∂xu
k(t,XN

t )σ(t,XN
t )), for all t ∈ [0, T ].

It remains to explain how to build the approximation (uk)k of u. The basic idea is the
following:

uk+1 = uk + Monte–Carlo evaluations of the error(u− uk).

Combining Itô’s formula applied to u(s,Xs) and uk(s,XN
s ) between t and T and the

semilinear PDE (2.3) satisfied by u, we get that the correction term ck is given by

ck(t, x) = (u− uk)(t, x) = E

[

Ψ(t, x, fu,Φ,W )−ΨN
(

t, x,−(∂t + LN )uk, uk(T, .),W
)

|Gk
]

where

• LNu(s,XN
s ) = 1

2

∑

i,j[σσ
∗]ij(ϕ(s),XN

ϕ(s))∂
2
xixj

u(s,XN
s )+

∑

i bi(ϕ(s),X
N
ϕ(s))∂xi

u(s,XN
s ).

• fv : [0, T ] × R
d → R denotes the following function

fv(t, x) = f(t, x, v(t, x), (∂xvσ)(t, x)),

where f is the driver of BSDE (2.1), σ is the diffusion coefficient of the SDE satisfied
by X and v : [0, T ]× R

d → R is C1 w.r.t. to its second argument.

• Ψ and ΨN denote

Ψ(s, y, g1, g2,W ) =

∫ T

s
g1(r,X

s,y
r (W ))dr + g2(X

s,y
T (W )),

ΨN (s, y, g1, g2,W ) =

∫ T

s
g1(r,X

N,s,y
r (W ))dr + g2(X

N,s,y
T (W )),
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where Xs,y (resp. XN,s,y) denotes the diffusion process solving (2.2) and starting from
y at time s (resp. its approximation using an Euler scheme with N time steps), and W
denotes the standard Brownian motion appearing in (2.2) and used to simulate XN , as
given in (3.1).

• Gk is the σ-algebra generated by the set of all random variables used to build uk. In the
above formula of ck, we compute the expectation w.r.t. the law of X and XN and not
w.r.t. the law of uk, which is Gk measurable. (See Definition 2 for a rigorous definition
of Gk).

Note that Ψ and ΨN can actually be written as expectations by introducing a random
variable U uniformly distributed on [0, 1].

Ψ(s, y, g1, g2,W ) = EU

[

(T − s)g1(s+ (T − s)U,Xs,y
s+(T−s)U (W )) + g2(X

s,y
T (W ))

]

,

ΨN (s, y, g1, g2,W ) = EU

[

(T − s)g1(s+ (T − s)U,XN,s,y
s+(T−s)U (W )) + g2(X

N,s,y
T (W ))

]

.

In the following, let ψN (s, y, g1, g2,W,U) denote

ψN (s, y, g1, g2,W,U) = (T − s)g1(s+ (T − s)U,XN,s,y
s+(T−s)U (W )) + g2(X

N,s,y
T (W )) (3.2)

such that ΨN (s, y, g1, g2,W ) = EU [ψ
N (s, y, g1, g2,W,U)].

From a practical point of view, the PDE (2.3) is solved on [0, T ]×D where D ⊂ R
d such

that sup0≤t≤T |Xt| ∈ D with a probability very close to 1.

Algorithm 1 We begin with u0 ≡ 0. Assume that an approximated solution uk of class C1,2

is built at step k − 1. Here are the different steps to compute uk+1.

• Pick at random n points (tki , x
k
i )1≤i≤n uniformly distributed over [0, T ]×D.

• Evaluate the Monte–Carlo correction ck at step k at the points (tki , x
k
i )1≤i≤n using M

independent simulations

ck(tki , x
k
i ) =

1

M

M
∑

m=1

[

ψN
(

tki , x
k
i , fuk

+ (∂t + LN )uk,Φ− uk,Wm,k,i, Um,k,i
)]

.

• Compute the vector (uk(tki , x
k
i ))1≤i≤n. Now, we know the vector (uk + ck)(tki , x

k
i ))1≤i≤n.

From these values, we extrapolate the function uk+1 = uk + ck on [0, T ] ×D.

uk+1(t, x) = Pk(uk + ck)(t, x), for (t, x) ∈ [0, T ] ×D, (3.3)

where P k is a deterministic operator, which only uses the values of the function at the
points (tki , x

k
i )1≤i≤n to approximate the function on the whole domain [0, T ] × D. The

choice of the operator P k is discussed in Section 3.2.

Since ck is computed using Monte-Carlo simulations instead of a true expectation, the
values (ck(tki , x

k
i ))1≤i≤n are random variables. Therefore, uk+1 is a random function depending

on the random variables needed to compute uk and Wm,k,i, Um,k,i, 1 ≤ m ≤ M, 1 ≤ i ≤ n.
In view of this comment, the σ-algebra Gk has to be redefined to take into account this new
source of randomness.
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Definition 2 (Definition of the σ-algebra Gk). Let Gk+1 define the σ-algebra generated by the
set of all random variables used to build uk+1. Using (3.3) yields

Gk+1 = Gk ∨ σ(Ak,Sk),

where Ak is the set of random points used at step k to build the estimator Pk (see below),
Sk = {Wm,k,i, Um,k,i, 1 ≤ m ≤ M, 1 ≤ i ≤ n}, is the set of independent Brownian motions
used to simulate the paths Xm,k,N (xki ), and Gk is the σ-algebra generated by the set of all
random variables used to build uk.

3.2 Choice of the operator

The most delicate part of the algorithm is how to extrapolate a function h and its derivatives
when only knowing its values at n points (ti, xi)i=1,...,n ∈ [0, T ]×D.

3.2.1 A kernel operator

In the first version of Algorithm 1 presented in Gobet and Labart (2010), a function h was
extrapolated from the values computed on the grid by using a kernel operator of the form

h(t, x) =
n
∑

i=1

u(ti, xi)Kt(t− ti)Kx(x− xi),

where Kt is a one dimensional kernel whereas Kx is a product of d one dimensional kernels.
Hence, evaluating the function h at a given point (t, x) requires O(n× d) computations.

The convergence result established by Gobet and Labart (2010, Theorem 5.1) is based
on the properties of the operator presented in Gobet and Labart (2010, Section 4). Using
the linearity and the boundedness of the operator, they managed to prove that the errors
‖v−Pkv‖ and ‖∂xv−∂x(Pkv)‖ are bounded, which is a key step in proving the convergence of
the algorithm. At the end of their paper, they present an operator based on kernel estimators
satisfying the assumptions required to prove the convergence of the algorithm.

3.2.2 An extrapolating operator

The numerical properties of kernel operators are very sensitive to the choice of their window
parameters which is quite hard to tune for each new problem. Hence, we have tried to use an
other solution. Basically, we have borrowed the solution proposed by Longstaff and Schwartz
(2001) which consists in extrapolating a function by solving a least square problem defined by
the projection of the original function on a countable set of functions. Assume we know the
values (yi)i=1,...,n of a function h at the points (ti, xi)i=1,...,n, the function h can be extrapolated
by computing

α = arg min
α∈Rp

n
∑

i=1

∣

∣

∣

∣

∣

yi −
p
∑

l=1

αlBl(ti, xi)

∣

∣

∣

∣

∣

2

, (3.4)

where (Bl)l=1,...,p are some real valued functions defined on [0, T ]×D. Once α is computed, we

set ĥ(t, x) =
∑p

l=1 αlBl(t, x). For the implementation, we have chosen the (Bl)l=1,...,p as a free

family of multivariate polynomials. For such a choice, ĥ is known to converge uniformly to h
when p goes to infinity if D is a compact set and h is continuous on [0, T ]×D. Our algorithm
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also requires to compute the first and second derivatives of h which are approximated by the
first and second derivatives of ĥ. Although the idea of approximating the derivatives of a
function by the derivatives of its approximation is not theoretically well justified, it is proved
to be very efficient in practice. We refer to Wang and Caflish (2010) for an application of
this principle to the computations of the Greeks for American options.

Practical determination of the vector α In this part, we use the notation d′ = d+ 1.
It is quite easy to see from Equation (3.4) that α is the solution of a linear system. The value
α is a critical point of the criteria to be minimized in Equation (3.4) and the vector α solves

p
∑

l=1

αl

n
∑

i=1

Bl(ti, xi)Bj(ti, xi) =

n
∑

i=1

yiBj(ti, xi) for j = 1, . . . , p

Aα =
n
∑

i=1

yiB(ti, xi) (3.5)

where the p × p matrix A = (
∑n

i=1Bl(ti, xi)Bj(ti, xi))l,j=1,...,p and the vector
B = (B1, . . . , Bp)

∗. The matrix A is symmetric and positive definite but often
ill-conditioned, so we cannot rely on the Cholesky factorization to solve the linear system
but instead we have to use some more elaborate techniques such as a QR factorization with
pivoting or a singular value decomposition approach which can better handle an almost
rank deficient matrix. In our implementation of Algorithm 1, we rely on the routine dgelsy
from Lapack Anderson et al. (1999), which solves a linear system in the least square sense
by using some QR decomposition with pivoting combined with some orthogonalization
techniques. Fortunately, the ill-conditioning of the matrix A is not fate; we can improve the
situation by centering and normalizing the polynomials (Bl)l such that the domain
[0, T ] × D is actually mapped to [−1, 1]d

′
. This reduction improves the numerical behaviour

of the chaos decomposition by a great deal.

The construction of the matrix A has a complexity of O(p2nd′). The computation of α
(Equation 4.3) requires to solve a linear system of size p× p which requires O(p3) operations.
The overall complexity for computing α is then O(p3 + np2d′).

Choice of the (Bl)l. The function uk we want to extrapolate at each step of the algorithm
is proved to be quite regular (at least C1,2), so using multivariate polynomials for the Bl

should provide a satisfactory approximation. Actually, we used polynomials with d′ variates,
which are built using tensor products of univariate polynomials and if one wants the vector
space Vect{Bl, l = 1, . . . , p} to be the space of d′−variate polynomials with global degree

less or equal than η, then p has to be equal to the binomial coefficient
(d′+η

η

)

. For instance,

for η = 3 and d′ = 6 we find p = 84. This little example shows that p cannot be fixed by
specifying the maximum global degree of the polynomials Bl without leading to an explosion
of the computational cost, we therefore had to find an other approach. To cope with the curse
of dimensionality, we studied different strategies for truncating polynomial chaos expansions.
We refer the reader to Chapter 2 of Blatman (2009) for a detailed review on the topic. From
a computational point of view, we could not afford the use of adaptive sparse polynomial
families because the construction of the family is inevitably sequential and it would have
been detrimental for the speed-up of our parallel algorithm. Therefore, we decided to use
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sparse polynomial chaos approximation based on an hyperbolic set of indices as introduced
by Blatman and Sudret (2009).

A canonical polynomial with d′ variates can be defined by a multi-index ν ∈ N
d′ — νi

being the degree of the polynomial with respect the variate i. Truncating a polynomial chaos
expansion by keeping only the polynomials with total degree not greater than η corresponds
to the set of multi-indices: {ν ∈ N

d′ :
∑d′

i=1 νi ≤ η}. The idea of hyperbolic sets of indices is
to consider the pseudo q−norm of the multi-index ν with q ≤ 1







ν ∈ N
d′ :

(

d′
∑

i=1

νqi

)1/q

≤ η







. (3.6)

Note that choosing q = 1 gives the full family of polynomials with total degree not greater
than η. The effect of introducing this pseudo-norm is to favor low-order interactions.

4 Parallel approach

In this part, we present a parallel version of Algorithm 1, which is far from being embar-
rassingly parallel as a crude Monte–Carlo algorithm. We explain the difficulties encountered
when parallelizing the algorithm and how we solved them.

4.1 Detailed presentation of the algorithm

Here are the notations we use in the algorithm.

• uk = (uk(tki , x
k
i ))1≤i≤n ∈ R

n

• ck = (ck(tki , x
k
i ))1≤i≤n ∈ R

n

• n: number of points of the grid

• Kit: number of iterations of the algorithm

• M : number of Monte–Carlo samples

• N : number of time steps used for the discretization of X

• p: number of functions Bl used in the extrapolating operator. This is not a parameter
of the algorithm on its own as it is determined by fixing η and q (the maximum total
degree and the parameter of the hyperbolic multi-index set) but the parameter p is of
great interest when studying the complexity of the algorithm.

• (Bl)1≤l≤p is a family of multivariate polynomials used for extrapolating functions from
a finite number of values.

• αk ∈ R
p is the vector of the weights of the chaos decomposition of uk.

• d′ = d+ 1 is the number of variates of the polynomials Bl.

8



Algorithm 1 Iterative algorithm

1: u0 ≡ 0, α0 ≡ 0.
2: for k = 0 : Kit − 1 do

3: Pick at random n points (tki , x
k
i )1≤i≤n.

4: for i = 1 : n do

5: for m = 1 :M do

6: Let W be a Brownian motion with values in R
d discretized

on a time grid with N time steps.
7: Let U ∼ U[0,1].
8: Compute

ai,km = ψN
(

tki , x
k
i , fuk + (∂t + LN)uk,Φ− uk,W , U

)

.

/∗ We recall that uk(t, x) =
∑p

l=1α
k
l Bl(t, x) ∗/

9: end for

c
k
i =

1

M

M
∑

m=1

ai,km (4.1)

u
k
i =

p
∑

l=1

α
k
l Bl(t

k
i , x

k
i ) (4.2)

10: end for

11: Compute

α
k+1 = arg min

α∈Rp

n
∑

i=1

∣

∣

∣

∣

∣

(uk
i + c

k
i )−

p
∑

l=1

αlBl(t
k
i , x

k
i )

∣

∣

∣

∣

∣

2

. (4.3)

12: end for

4.2 Complexity of the algorithm

In this section, we study in details the different parts of Algorithm 1 to determine their
complexities. Before diving into the algorithm, we would like to briefly look at the evaluations
of the function uk and its derivatives. We recall that

uk(t, x) =

p
∑

l=1

α
k
l Bl(t, x)

where the Bl(t, x) are of the form tβl,0
∏d

i=1 xi
βl,i and the βl,i are some integers. Then the

computational time for the evaluation of uk(t, x) is proportional to p × d′. The first and
second derivatives of uk write

∇xu
k(t, x) =

p
∑

l=1

α
k
l ∇xBl(t, x),

∇2
xu

k(t, x) =

p
∑

l=1

α
k
l ∇2

xBl(t, x),
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and the evaluation of ∇xBl(t, x) (resp. ∇2
xBl(t, x)) has a computational cost proportional to

d2 (resp. d3).

• The computation (at line 6) of the discretization of the d−dimensional Brownian motion
with N time steps requires O(Nd) computations.

• The computation of each ak,im (line 8) requires the evaluation of the function uk and its
first and second derivatives which has a cost O(pd3). Then, the computation of cki for
given i and k has a complexity of O(Mpd3).

• The computation of α (Equation 4.3) requires O(p3 + np2d) operations as explained in
Section 3.2.2.

The overall complexity of Algorithm 1 is O(KitnM(pd3 + dN) +Kit(p
2nd+ p3)).

To parallelize an algorithm, the first idea coming to mind is to find loops with independent
iterations which could be spread out on different processors with a minimum of communi-
cations. In that respect, an embarrassingly parallel example is the well-known Monte-Carlo
algorithm. Unfortunately, Algorithm 1 is far from being so simple. The iterations of the outer
loop (line 2) are linked from one step to the following, consequently there is no hope paral-
lelizing this loop. On the contrary, the iterations over i (loop line 4) are independent as are
the ones over m (loop line 5), so we have at hand two candidates to implement parallelizing.
We could even think of a 2 stage parallelism : first parallelizing the loop over i over a small
set of processors and inside this first level parallelizing the loop over m. Actually, M is not
large enough for the parallelization of the loop over m to be efficient (see Section 3.2). It
turns out to be far more efficient to parallelize the loop over i as each iteration of the loop
requires a significant amount of work.

4.3 Description of the parallel part

As we have just explained, we have decided to parallelize the loop over i (line 4 in Algorithm 1).
We have used a Robbin Hood approach. In the following, we assume to have P +1 processors
at hand with n > P . We use the following master slave scheme:

1. Send to each of the P slave processors the solution αk computed at the previous step
of the algorithm.

2. Spread the first P points (tki , x
k
i )1≤i≤P to the P slave processors and assign each of them

the computation of the corresponding cki .

3. As soon as a processor finishes its computation, it sends its result back to the master
which in turn sends it a new point (tki , x

k
i ) at which evaluating ψN to compute cki and

this process goes on until all the (cki )i=1,...,n have been computed.

At the end of this process, the master knows ck, which corresponds to the approximation of
the correction at the random points (tki , x

k
i )1≤i≤n. From these values and the vector uk, the

master computes αk+1 and the algorithm can go through a new iteration over k.
What is the best way to send the data to each slave process?
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• Before starting any computations, assign to each process a block of iterations over i
and send the corresponding data all at once. This way, just one connection has to
be initialised which is faster. But the time spent by the master to take care of its
slave is longer which implies that at the beginning the slave process will remain longer
unemployed. When applying such a strategy, we implicitly assume that all the iterations
have the same computational cost.

• Send data iteration by iteration. The latency at the beginning is smaller than in the
block strategy and performs better when all iterations do not have the same computa-
tional cost.

Considering the wide range of data to be sent and the intensive use of elaborate structures,
the most natural way to pass these objects was to rely on the packing mechanism of MPI.
Moreover, the library we are using in the code (see Section 4.5) already has a MPI binding
which makes the manipulation of the different objects all the more easy. The use of packing
enabled to reduce the number of communications between the master process and a slave
process to just one communication at the beginning of each iteration of the loop over i (line 4
of Algorithm 1).

4.4 Random numbers in a parallel environment

One of the basic problem when solving a probabilistic problem in parallel computing is the
generation of random numbers. Random number generators are usually devised for sequential
use only and special care should be taken in parallel environments to ensure that the sequences
of random numbers generated on each processor are independent. We would like to have
minimal communications between the different random number generators, ideally after the
initialisation process, each generator should live independently of the others.

Several strategies exist for that.

1. Newbies in parallel computing might be tempted to take any random number generator
and fix a different seed on each processor. Although this naive strategy often leads
to satisfactory results on toy examples, it can induce an important bias and lead to
detrimental results.

2. The first reasonable approach is to split a sequence of random numbers across sev-
eral processors. To efficiently implement this strategy, the generator must have some
splitting facilities such that there is no need to draw all the samples prior to any compu-
tations. We refer to L’Ecuyer and Côté (1991); L’Ecuyer et al. (2002) for a presentation
of a generator with splitting facilities. To efficiently split the sequence, one should know
in advance the number of samples needed by each processor or at least an upper bound
of it. To encounter this problem, the splitting could be made in substreams by jumping
ahead of P steps at each call to the random procedure if P is the number of processors
involved. This way, each processor uses a sub-sequence of the initial random number
sequence rather than a contiguous part of it. However, as noted by Entacher et al.
(1999), long range correlations in the original sequence can become short range corre-
lations between different processors when using substreams.

Actually, the best way to implement splitting is to use a generator with a huge period
such as the Mersenne Twister (its period is 219937−1) and divide the period by a million
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or so if we think we will not need more than a million independent substreams. Doing
so, we come up with substreams which still have an impressive length, in the case of
the Mersenne Twister each substream is still about 219917 long.

3. A totally different approach is to find generators which can be easily parametrised
and to compute sets of parameters ensuring the statistical independence of the related
generators. Several generators offer such a facility such as the ones included in the
SPRNG package (see Mascagni (1997) for a detailed presentation of the generators
implemented in this package) or the dynamically created Mersenne Twister (DCMT in
short), see Matsumoto and Nishimura (2000).

For our experiments, we have decided to use the DCMT. This generator has a sufficiently
long period (2521 for the version we used) and we can create at most 216 = 65536 independent
generators with this period which is definitely enough for our needs. Moreover, the dynamic
creation of the generators follows a deterministic process (if we use the same seeds) which
makes it reproducible. The drawback of the DCMT is that its initialization process might be
quite lengthy, actually the CPU time needed to create a new generator is not bounded. We
give in Figure 1 the distribution.

0.4 0.8 1.2 1.6 2.0 2.4
0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

Figure 1: Distribution of the CPU time needed for the creation of one Mersenne Twister
generator

4.5 The library used for the implementation

Our code has been implemented in C using the PNL library (see Lelong (2007-2011)). This
is a scientific library available under the Lesser General Public Licence and it offers various
facilities for implementing mathematics and more recently some MPI bindings have been
added to easily manipulate the different objects available in PNL such as vectors and matrices.
In our problem, we needed to manipulate matrices and vectors and pass them from the master
process to the slave processes and decided to use the packing facilities offered by PNL through
its MPI binding. The technical part was not only message passing but also random number
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generation as we already mentioned above and PNL offers many functions to generate random
vectors or matrices using several random number generators among which the DCMT.

Besides message passing, the algorithm also requires many other facilities such as multi-
variate polynomial chaos decomposition which is part of the library. For the moment, three
families of polynomials (Canonical, Hermite and Tchebichev polynomials) are implemented
along with very efficient mechanism to compute their first and second derivatives. The im-
plementation tries to make the most of code factorization to avoid recomputing common
quantities several times. The polynomial chaos decomposition toolbox is quite flexible and
offers a reduction facility such as described in Section 3.2.2 which is completely transparent
from the user’s side. To face the curse of dimensionality, we used sparse polynomial families
based on an hyperbolic set of indices.

5 Pricing and Hedging American options in local volatility

models

In this Section, we present a method to price and hedge American options by using Algo-
rithm 1, which solves standard BSDEs.

5.1 Framework

Let (Ω,F ,P) be a probability space and (Wt)t≥0 a standard Brownian motion with values in
R
d. We denote by (Ft)t≥0 the P-completion of the natural filtration of (Wt)t≥0.

Consider a financial market with d risky assets, with prices S1
t , · · · , Sd

t at time t, and let Xt

be the d-dimensional vector of log-returns Xi
t = logSi

t , for i = 1, · · · , d. We assume that (Xt)
satisfies the following stochastic differential equation:

dXi
t =



r(t)− δi(t)−
1

2

d
∑

j=1

σij
2(t, eXt)



 dt+
d
∑

j=1

σij(t, e
Xt)dW j

t , i = 1, · · · , d (5.1)

on a finite interval [0, T ], where T is the maturity of the option. We denote by Xt,x
s a

continuous version of the flow of the stochastic differential Equation (5.1). Xt,x
t = x almost

surely.
In the following, we assume

Hypothesis 2

1. r : [0, T ] 7−→ R is a C1
b function. δ : [0, T ] 7−→ R

d is a C1
b function.

2. σ : [0, T ] ×R
d 7−→ R

d×d is a C1,2
b function.

3. σ satisfies the following coercivity property:

∃ε > 0 ∀(t, x) ∈ [0, T ]× R
d,∀ξ ∈ R

d
∑

1≤i,j≤d

[σσ∗]i,j(t, x)ξiξj ≥ ε
d
∑

i=1

ξ2i

We are interested in computing the price of an American option with payoff Φ(Xt), where
Φ : Rd 7−→ R+ is a continuous function (in case of a put option, Φ(x) = (K − 1

d (e
x1 + · · · +

exd)+).
From Jaillet et al. (1990), we know that if
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Hypothesis 3 Φ is continuous and satisfies |Φ(x)| ≤MeM |x| for some M > 0,

the price at time t of the American option with payoff Φ is given by

V (t,Xt) = esssupτ∈Tt,TE
(

e−
∫ τ

t
r(s)dsΦ(Xτ )|Ft

)

,

where Tt,T is the set of all stopping times with values in [t, T ] and V : [0, T ] × R
d 7−→ R+

defined by V (t, x) = supτ∈Tt,TE
(

e−
∫ τ

t
r(s)dsΦ(Xt,x

τ )
)

.

We also introduce the amount ∆(t,Xt) involved in the asset at time t to hedge the American
option. The function ∆ is given by ∆(t, x) = ∇xV (t, x).

In order to link American option prices to BSDEs, we need three steps:

1. writing the price of an American option as a solution of a variational inequality (see
Section 5.2)

2. linking the solution of a variational inequality to the solution of a reflected BSDE (see
Section 5.3)

3. approximating the solution of a RBSDE by a sequence of standard BSDEs (see Section
5.4)

We refer to Jaillet et al. (1990) for the first step and to El Karoui et al. (1997a) for the
second and third steps.

5.2 American option and Variational Inequality

First, we recall the variational inequality satisfied by V . We refer to Jaillet et al. (1990,
Theorem 3.1) for more details. Under Hypotheses 2 and 3, V solves the following parabolic
PDE

{

max(Φ(x)− u(t, x), ∂tu(t, x) +Au(t, x)− r(t)u(t, x)) = 0,
u(T, x) = Φ(x).

(5.2)

where
Au(t, x) =

∑d
i=1(r(t)−δi(t)− 1

2

∑d
j=1 σ

2
ij(t, e

x))∂xi
u(t, x)+ 1

2

∑

1≤i,j≤d[σσ
∗]ij(t, ex)∂2xixj

u(t, x)
is the generator of X.

5.3 Variational Inequality and Reflected BSDEs

This section is based on El Karoui et al. (1997a, Theorem 8.5). We assume

Hypothesis 4 Φ is continuous and has at most a polynomial growth (ie, ∃C, p > 0 s.t.
|Φ(x)| ≤ C(1 + |x|p)).

Let us consider the following reflected BSDE











−dYt = −r(t)Ytdt− ZtdWt + dHt,

YT = Φ(XT ), Yt ≥ Φ(Xt),∀t,
∫ T
0 (Yt − Φ(Xt))dHt = 0.

(5.3)
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Then, under Hypotheses 2 and 4, u(t, x) = Y t,x
t is a viscosity solution of the obstacle problem

(5.2), where Y t,x
t is the value at time t of the solution of (5.3) on [t, T ] where the superscripts

t, x mean that X starts from x at time t. We also have (∇xu(t, x))
∗σ(t, x) = Zt,x

t (∗ means
transpose). Then, we get that the price V and the delta ∆ of the option are given by

V (t,Xt) = Yt, ∆(t,Xt) = (Ztσ(t,Xt)
−1)∗.

5.4 Approximation of a RBSDE by a sequence of standard BSDEs

We present a way of approximating a RBSDE by a sequence of standard BSDEs. The idea
was introduced by El Karoui et al. (1997a, Section 6) for proving the existence of a solution
to RBSDE by turning the constraint Yt ≥ Φ(Xt) into a penalisation. Let us consider the
following sequence of BSDEs indexed by i

Y i
t = Φ(XT )−

∫ T

t
r(s)Y i

s ds+ i

∫ T

t
(Y i

s − Φ(Xs))
−ds−

∫ T

t
Zi
sdWs, (5.4)

whose solutions are denoted (Y i, Zi). We define H i
t = i

∫ T
t (Y i

s −Φ(Xs))
−ds. Under Hypothe-

ses 2 and 4, the sequence (Y i, Zi,H i)i converges to the solution (Y,Z,H) of the RBSDE (5.3),
when i goes to infinity. Moreover, Y i converges increasingly to Y . The term H i is often called
a penalisation. From a practical point, there is no use solving such a sequence of BSDEs,
because we can directly apply our algorithm to solve Equation (5.4) for a given i. Therefore,
we actually consider the following penalized BSDE

Yt = Φ(XT )−
∫ T

t
r(s)Ysds + ω

∫ T

t
(Ys −Φ(Xs))

−ds−
∫ T

t
ZsdWs, (5.5)

where ω ≥ 0 is penalization weight. In practice, the magnitude of ω must remain reasonably
small as it appears as a contraction constant when studying the speed of convergence of our
algorithm. Hence, the larger ω is, the slower our algorithm converges. So, a trade-off has
to be found between the convergence of our algorithm to the solution Y of (5.5) and the
accuracy of the approximation of the American option price by Y .

5.5 European options

Let us consider a European option with payoff Φ(XT ), where X follows (5.1). We denote
by V the option price and by ∆ the hedging strategy associated to the option. From
El Karoui et al. (1997b), we know that the couple (V,∆) satisfies

−dVt = −r(t)Vtdt−∆∗
tσ(t,Xt)dWt, VT = Φ(XT ).

Then, (V,∆) is solution of a standard BSDE. This corresponds to the particular case ω = 0
of (5.5), Y corresponding to V and Z to ∆∗

tσ(t,Xt).

6 Numerical results and performance

6.1 The cluster

All our performance tests have been carried out on a 256−PC cluster from SUPELEC Metz.
Each node is a dual core processor : INTEL Xeon-3075 2.66 GHz with a front side bus at
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1333Mhz. The two cores of each node share 4GB of RAM and all the nodes are interconnected
using a Gigabit Ethernet network. In none of the experiments, did we make the most of the
dual core architecture since our code is one threaded. Hence, in our implementation a dual
core processor is actually seen as two single core processors.

The accuracy tests have been achieved using the facilities offered by the University of
Savoie computing center MUST.

6.2 Black-Scholes’ framework

We consider a d−dimensional Black-Scholes model in which the dynamics under the risk
neutral measure of each asset Si is supposed to be given by

dSi
t = Si

t((r − δi)dt+ σidW i
t ) S0 = (S1

0 , . . . , S
d
0 ) (6.1)

where W = (W 1, . . . ,W d). Each component W i is a standard Brownian motion. For
the numerical experiments, the covariance structure of W will be assumed to be given by
〈W i,W j〉t = ρt1{i 6=j} + t1{i=j}. We suppose that ρ ∈ (− 1

d−1 , 1), which ensures that the
matrix C = (ρ1{i 6=j} + 1{i=j})1≤i,j≤d is positive definite. Let L denote the lower triangular
matrix involved in the Cholesky decomposition C = LL∗. To simulate W on the time-grid
0 < t1 < t2 < . . . < tN , we need d×N independent standard normal variables and set















Wt1

Wt2
...

WtN−1

WtN















=

















√
t1L 0 0 . . . 0√
t1L

√
t2 − t1L 0 . . . 0

...
. . .

. . .
. . .

...
...

. . .
. . .

√
tN−1 − tN−2L 0√

t1L
√
t2 − t1L . . .

√
tN−1 − tN−2L

√
tN − tN−1L

















G,

where G is a normal random vector in R
d×N . The vector σ = (σ1, . . . , σd) is the vector of

volatilities, δ = (δ1, . . . , δd) is the vector of instantaneous dividend rates and r > 0 is the
instantaneous interest rate. We will denote the maturity time by T . Since we know how to
simulate the law of (St, ST ) exactly for t < T , there is no use to discretize equation (6.1)
using the Euler scheme. In this Section N = 2.

6.2.1 European options

We want to study the numerical accuracy of our algorithm and to do that we first consider
the case of European basket options for which we can compute benchmark price by using
very efficient Monte-Carlo methods, see Jourdain and Lelong (2009) for instance, while it is
no more the case for American options.
In this paragraph, the parameter ω appearing in (5.5) is 0.

European put basket option. Consider the following put basket option with maturity T
(

K − 1

d

d
∑

i=1

Si
T

)

+

(6.2)

Figure 2 presents the influence of the parameters M , n and q. The results obtained for
n = 1000, M = 50, 000 and q = 1 (curve (+)) are very close to the true price and moreover
we can see that the algorithm stabilizes after very few iterations (less than 10).
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Figure 2: Convergence of the algorithm for a European put basket option with d = 5, ρ = 0.1, T = 3,

S0 = 100, σ = 0.2, δ = 0, r = 0.05 K = 100, η = 3, ω = 0. The benchmark price computed with a

high precision Monte–Carlo method yields 2.0353 with a confidence interval of (2.0323, 2.0383).

• Influence of M : curves (+) and (×) show that taking M = 5000 is not enough to get
the stabilization of the algorithm.

• Joined influence of n andM : curves (×) and (�) show the importance of well balancing
the number of discretization points n with the number of Monte–Carlo simulations
M . The sharp behaviour of the curve (�) may look surprising at first, since we are
tempted to think that a larger numbers of points n will increase the accuracy. However,
increasing the number of points but keeping the number of Monte–Carlo simulations
constant creates an over fitting phenomenon because the Monte–Carlo errors arising at
each point are too large and independent and it leads the approximation astray.

• Influence of q: we can see on curves (+) and (∗) that decreasing the hyperbolic index
q can lead a highly biased although smooth convergence. This highlights the impact of
the choice of q on the solution computed by the algorithm.

To conclude, we notice that the larger the number of Monte–Carlo simulations is, the
smoother the convergence is, but when the polynomial family considered is too sparse it can
lead to a biased convergence.

European call basket option. Consider the following put basket option with maturity T

(

1

d

d
∑

i=1

Si
T −K

)

+

(6.3)
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Figure 3: Convergence of the price of a European call basket option with d = 10, ρ = 0.2, T = 1,

S0 = 100, σ = 0.2, δ = 0, r = 0.05, K = 100, n = 1000 and ω = 0. The benchmark price computed

with a high precision Monte–Carlo method yields 7.0207 with a confidence interval of (7.0125, 7.0288).

Figure 3 illustrates the impact of the sparsity of the polynomial basis considered on the
convergence of the algorithm. The smoothest convergence is achieved by the curve (+), ie
when M = 30, 000, η = 5 and q = 0.6. The algorithm stabilizes very close to the true price
and after very few iterations.

• Influence of η : for a fixed value of q, the sparsity increases when η decreases, so the
basis with η = 4, q = 0.6 is more sparse than the one with η = 5, q = 0.6. We compare
curves (+) (η = 5) and (×) (η = 4) for fixed values of q (= 0.6) and M (= 30, 000). We
can see that for η = 4 (curve (×)) the algorithm stabilizes after 7 iterations, whereas
for η = 6 (curve (+)) less iterations are needed to converge.

• Influence of M : for fixed values of η (= 5) and q (= 0.6), we compare curves (+)
(M = 30000) and (∗) (M = 5000). Using a large number of simulations is not enough
to get a good convergence, as it is shown by curve (∗).

Actually, when the polynomial basis becomes too sparse, the approximation of the solution
computed at each step of the algorithm incorporates a significant amount a noise which has
a similar effect to reducing the number of Monte–Carlo simulations. This is precisely what
we observe on Figure 3: the curves (×) and (∗) have a very similar behaviour although one
of them uses a much larger number of simulations.

6.2.2 American options

In this paragraph, the penalisation parameter ω appearing in (5.5) is 1.
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Pricing American put basket options. We have tested our algorithm on the pricing of
a multidimensional American put option with payoff given by Equation (6.2)
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Figure 4: Convergence of the price of an American put basket option with d = 5, ρ = 0.2, T = 1,

S0 = 100, σ = 0.25, δ = 0.1, K = 100, r = 0.05 and ω = 1.

Figure 4 presents the influence of the parameters M and q.

• Influence of M : when zooming on Figure 4, one can indeed see that the curves using
30000 Monte–Carlo simulations are a little smoother than the others but these extra
simulations do not improve the convergence as much as in Figures 2 and 3 (compare
curves (+) and (�), Figure 4). The main explanation of this fact is that put options
have in general less variance than call options and in Figure 2 a maturity of T = 3 was
used which leads to a larger variance than with T = 1.

• Influence of q : once again, we can observe that increasing the sparsity of the polynomial
basis (ie, decreasing q) can lead to a biased convergence. When q = 0.6, we get a biased
result (see curves (∗) and (△)), even for M large (curve (△), M = 30000).

Then, it is advisable for American put options to use almost full polynomial basis with
fewer Monte–Carlo simulations in order to master the computational cost rather than doing
the contrary.

Hedging American put basket options. Now, let us present the convergence of the
approximation of the delta at time 0. Table 1 presents the values of the delta of an American
put basket option when the iterations increase. We see that the convergence is very fast (we
only need 3 iterations to get a stabilized value). The parameters of the algorithm are the
following ones: n = 1000, M = 5000, q = 1, η = 3 and ω = 1.
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Iteration ∆1 ∆2 ∆3 ∆4 ∆5

1 -0.203931 -0.205921 -0.203091 -0.205264 -0.201944

2 -0.105780 -0.102066 -0.103164 -0.102849 -0.108371

3 -0.109047 -0.105929 -0.105604 -0.105520 -0.111327

4 -0.108905 -0.105687 -0.105841 -0.105774 -0.111137

5 -0.108961 -0.105648 -0.105725 -0.105647 -0.111274

Table 1: Convergence of the delta for an American put basket option with d = 5, ρ = 0.2, T = 1,

S0 = 100, σ = 0.25, δ = 0.1, K = 100, r = 0.05.

6.3 Dupire’s framework

We consider a d-dimensional local volatility model in which the dynamics under the risk-
neutral measure of each asset is supposed to be given by

dSi
t = Si

t((r − δi)dt+ σ(t, Si
t)dW

i
t ) S0 = (S1

0 , . . . , S
d
0 )

where W = (W 1, . . . ,W d) is defined and generated as in the Black-Scholes framework. The
local volatility function σ we have chosen is of the form

σ(t, x) = 0.6(1.2 − e−0.1te−0.001(xert−s)2)e−0.05
√
t, (6.4)

with s > 0. Since there exists a duality between the variables (t, x) and (T,K) in Dupire’s
framework, one should choose s equal to the spot price of the underlying asset. Then, the
bottom of the smile is located at the forward money. The parameters of the algorithm in this
paragraph are the following : n = 1000, M = 30000, N = 10, q = 1, η = 3.

Pricing and Hedging European put basket options. We consider the put basket option
with payoff given by (6.2). The benchmark price and delta are computed using the algorithm
proposed by Jourdain and Lelong (2009), which is based on Monte-Carlo methods.

Concerning the delta, we get at the last iteration the following vector ∆ = (−0.062403 −
0.061271 − 0.062437 − 0.069120 − 0.064743). The benchmark delta is −0.0625.

Pricing and Hedging American put basket options. We still consider the put payoff
given by (6.2). In the case of American options in local volatility models, there is no bench-
mark. However, Figure 6 shows that the algorithm converges after few iterations. We get
a price around 6.30. At the last iteration, we get ∆ = (−0.102159 − 0.102893 − 0.103237 −
0.110546 − 0.106442).

6.4 Speed up.

Remark 3. Because in high dimensions, the sequential algorithm can run several hours before
giving a price, we could not afford to run the sequential algorithm on the cluster to have a
benchmark value for the reference CPU time used in the speed up measurements. Instead we
have computed speed ups as the ratio

speed up =
CPU time for 8 processors / 8

CPU time for n processors × n
(6.5)

This explains why we may get in the tables below some speed ups slightly greater than 1.
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Figure 5: Convergence of the algorithm for a European put basket option with d = 5, ρ = 0, T = 1,

S0 = 100, δ = 0, K = 100, r = 0.05, η = 3, ω = 0. The benchmark price computed with a high

precision Monte–Carlo method yields 1.745899 with a confidence interval of (1.737899, 1.753899).

1 2 3 4 5 6 7 8 9 10
6

7

8

9

10

Figure 6: Convergence of the algorithm for an American put basket option with d = 5, ρ = 0, T = 1,

S0 = 100, δ = 0.1, K = 100, r = 0.05 and ω = 1.

Our goal in this paper was to design a scalable algorithm for high dimensional problems,
so it is not surprising that the algorithm does not behave so well in relatively small dimension
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as highlighted in Table 2. In dimension 3, the speed ups are linear up to 28 processors but
then they dramatically decrease toward zero: this can be explained by the small CPU load
of the computation of the correction term at a given point (ti, xi). The cost of each iteration
of the loop line 4 of Algorithm 1 is proportional to Mpd3 and when d is small so is p —
the number of polynomials of total degree less or equal than η. For instance, for d = 3 and
η = 3, we have p = 20, which gives a small complexity for each iteration over i. Hence, when
the number of processors used increases, the amount of work to be done by its processor
between two synchronisation points decreases to such a point that most of the CPU time is
used for transmitting data or waiting. This explains why the speed ups decrease so much.
Actually, we were expecting such results as the parallel implementation of the algorithm has
been designed for high dimensional problems in which the amount of work to be done by
each processor cannot decrease so much unless several dozens of thousands of processors are
used. This phenomena can be observed in Table 3 which shows very impressive speed ups:
in dimension 6, even with 256 processors the speed ups are still linear which highlights the
scalability of our implementation. Even though computational times may look a little higher
than with other algorithms, one should keep in mind that our algorithm not only computes
prices but also hedges, therefore the efficiency of the algorithm remains quite impressive.

Nb proc. Time Speed up

8 543.677 1
16 262.047 1.03737
18 233.082 1.03669
20 210.114 1.03501
24 177.235 1.02252
28 158.311 0.981206
32 140.858 0.964936
64 97.0629 0.70016
128 103.513 0.328267
256 162.936 0.104274

Table 2: Speed ups for the American put option with d = 3, r = 0.02, T = 1, σ = 0.2, ρ = 0,

S0 = 100, K = 95, M = 1000, N = 10, K = 10, n = 2000, r = 3, q = 1, ω = 1. See Equation (6.5) for

the definition of the “Speed up” column.

7 Conclusion

In this work, we have presented a parallel algorithm for solving BSDE and applied it to the
pricing and hedging of American option which remains a computationally demanding problem
for which very few scalable implementations have been studied. Our parallel algorithm shows
an impressive scalability in high dimensions. To improve the efficiency of the algorithm, we
could try to refactor the extrapolation step to make it more accurate and less sensitive to the
curse of dimensionality.
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Nb proc. Time Speed up

8 1196.79 1
16 562.888 1.06308
24 367.007 1.08698
32 272.403 1.09836
40 217.451 1.10075
48 181.263 1.10042
56 154.785 1.10457
64 135.979 1.10016
72 121.602 1.09354
80 109.217 1.09579
88 99.6925 1.09135
96 91.9594 1.08453
102 85.6052 1.0965
110 80.2032 1.08523
116 75.9477 1.08676
128 68.6815 1.08908
256 35.9239 1.04108

Table 3: Speed ups for the American put option with d = 6, r = 0.02, T = 1, σ = 0.2, ρ = 0,

S0 = 100, K = 95, M = 5000, N = 10, K = 10, n = 2000, r = 3, q = 1, ω = 1. See Equation (6.5) for

the definition of the “Speed up“ column.
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A. Ibáñez and F. Zapatero. Valuation by simulation of american options through computation
of the optimal exercise frontier. Journal of Financial Quantitative Analysis, 93:253–275,
2004.

24



P. Jaillet, D. Lamberton, and B. Lapeyre. Variational inequalities and the pricing of American
options. Acta Appl. Math., 21:263–289, 1990.

B. Jourdain and J. Lelong. Robust adaptive importance sampling for normal random vectors.
Annals of Applied Probability, 19(5):1687–1718, 2009.
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