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Abstract Applicative fields based on the analysis of large images must deal
with two important problems. First, the size in memory of such images usually
forbids a global image analysis hereby inducing numerous problems for the
design of a global image partition. Second, due to the high resolution of such
images, global features only appear at low resolutions and a single resolution
analysis may loose important information. The tiled top-down pyramidal model
has been designed to solve this two major challenges. This model provides a
hierarchical encoding of the image at single or multiple resolutions using a
top-down construction scheme. Moreover, the use of tiles bounds the amount
of memory required by the model while allowing global image analysis. The
main limitation of this model is the splitting step used to build one additional
partition from the above level. Indeed, this step requires to temporary refine
the split region up to the pixel level which entails high memory requirements
and processing time. In this paper, we propose a new splitting step within the
tiled top-down pyramidal framework which overcomes the previously mentioned
limitations.

Key words: Irregular pyramid; Topological model; Tiled data structure; Com-
binatorial map;

1 Introduction

High resolution image analysis usually entails memory issues that prevent them
from being processed by common models. Moreover, in multi-resolution images, the
amount of details at full resolution is likely to mask global features which only appear
at lower resolutions. For instance, applicative fields such as whole slide microscopic
imaging produce large multi-resolution images with resolutions up to 40 000×40 000:
low resolutions let appear global features such as tissues delimitations while high
resolutions allow to discern the different phases of mitosis within cells. As a result,
analyzing such images implies a hierarchical representation with memory constraint.



The segmentation of an image defines an image partition into connected re-
gions. Models for such partitions usually encode either geometrical or topological
features of the partition. Operations involving both types of information are thus
hard or costly to implement. For example, RAG-based data structures lack efficient
access to regions’ geometry. This drawback has entailed the design of topologi-
cal maps [BDM03, DBF04] for an efficient representation of both geometrical and
topological information while allowing modifications of a partition through split and
merge operations. Yet, they cannot apply to multi-resolution images since they do
not encode a hierarchy of partitions.

Quadtrees and regular pyramids’ frameworks provide a multi-resolution descrip-
tion of the image and a hierarchical segmentation scheme [BCR90] inducing a hi-
erarchy of regions that may be defined onto such models. However, both models
present several drawbacks: a given regular pyramid may fail to encode connected
regions of any size and shape nor provide an efficient access to the neighborhood of
a region. Moreover, both quadtrees and regular pyramids do not ensure that con-
nected regions defined at a given level remain connected at the level below. The
irregular pyramid framework has been introduced by [Mee89, MMR91] to overcome
these limitations with different segmentation schemes such as [JM92, Kro95]. Finally,
in order to access both geometrical and topological information, [BK03, GSDL06]
proposed a model of irregular pyramids composed of combinatorial maps. When ap-
plied to high resolution images, the bottom-up construction scheme of combinatorial
pyramids raises at least two issues: memory usage and relevance of extracted infor-
mation. Indeed, a bottom-up scheme starts from an explicit encoding of the whole
initial partition: for large images this requires a large amount of memory especially
if additional levels must also be computed. Moreover, in hierarchical data analysis,
extracted information is usually more relevant if the construction scheme allows to
use a region to influence the way its children (defined at a higher resolution) are
processed. As a result, [GDB09] have introduced the tiled top-down framework for
combinatorial pyramids.

A tiled top-down pyramid is a hierarchical model based on topological maps [BDM03,
DBF04] and thus, provides an efficient access to both geometrical and topological
information. A top-down pyramidal model allows to reduce memory usage by en-
coding upper levels in the pyramid and refining only areas of interest. Moreover, the
subdivision in tiles allows to bound the required amount of memory. Yet, its main
drawback comes from its construction process [GBD09]: in order to refine a region,
a first step splits it into basic regions enclosing single pixels before the application
of a merging step. This step may thus require a large amount of available mem-
ory to make temporary regions. Since the main operation in a top-down scheme
consists in regions’ splitting, we have explored alternative splitting techniques for
combinatorial models. Different approaches have been proposed such as insertion
operations [BD99] or incremental extractions [DBF04, BDM03] but those methods
are not designed for a causal hierarchical model [GCM06]. This causal property
is fundamental within the tiled top-down pyramidal framework since it ensures the
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Recalls

existence of a hierarchy.

In this paper, we propose a new method for the construction of tiled top-down
pyramids which avoids the temporary split of a region into basic regions enclosing a
single pixel while preserving the causality of the pyramid. In Section 2, we present
the different topological models used to define a tiled top-down pyramid. In Sec-
tion 3, we detail our causal extraction for such pyramids. Finally, experiments and
segmentation results are proposed in Section 4 in order to emphasize the advantage
of our method.

2 Recalls

2.1 Combinatorial Maps

In two dimensions, a combinatorial map (noted 2-map) is a set of vertices, edges and
faces that encodes the subdivision and incidence relationships of a topological space
[Lie89]. A complete decomposition of an image results in a set of abstract basic
elements called darts. We introduce two operators noted βi, i ∈ {1, 2} that apply on
darts in order to represent adjacency relationships (Figure 1).

Definition 1 (2-dimensional combinatorial map). A two-dimensional combinatorial
map M (or 2-map) is a triplet M = (D, β1, β2) where:

(1) D is a finite set of darts;

(2) β1 is a permutation1 on D;

(3) β2 is an involution2 on D.

Intuitively, we can consider a map as a planar graph where βi operators explicitly
define the relationships between edges and where darts allow to differentiate the two
extremities of an edge (a dart may be assimilated to a half-edge). In practice, the
β1 permutation allows to turn around a face: it links a dart of a face to the next
one encountered while turning clockwise around it. The β2 involution separates two
adjacent faces: it links a dart to the other dart that belongs to the same edge but has
an opposite orientation. For instance, in Figure 1(d), β1(3) = 4 and β2(4) = 5. As a
result, a 2-map is a connected set of cells of 0, 1, and 2 dimensions. For i ∈ {0, 1, 2},
an i-cell respectively denotes a vertex, an edge and a face. The degree of an i-cell is
its number of distinct incident (i + 1)-cells.

2.2 Topological Maps

Since combinatorial maps only describe topological relationships, an extension of
the model which also encodes geometrical information has been introduced for a full

1A permutation is a one to one mapping from S onto S.
2An involution f is a one to one mapping from S onto S such that f = f−1.
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(a) (b) (c) (d)

Figure 1: Combinatorial maps: construction by successive decompositions. (a) Orig-
inal image; (b) Decomposed faces; (c) Decomposed edges; (d) 2-Map: arrows repre-
sent darts, β1 and β2 operators are respectively represented by arcs and segments.

representation of a partition: the model of topological map [BDM03, DBF04]. A
topological map combines three distinct models: a 2-map that encodes topological
relationships, a matrix of interpixel elements [Kov89, KKM90] that encodes the
geometry of the partition elements, and a tree of regions for inclusion relationships.
These three models are illustrated in Figure 2 and described below.

Minimal combinatorial map As illustrated in Figure 2(b), a 2-map encodes
topological relationships through β1 and β2 operators (Section 2.1). The combina-
torial map is minimal in number of cells: there is not any vertex with a degree lower
or equal to 2 and therefore, the removal of any element would change the topology.
For implementation purposes, darts and regions are linked together: a dart knows
the region it belongs to and a region knows a representative dart (arbitrary chosen
on the external border of the region). Note that the infinite region may be omitted
in some figures for visibility reasons.

Matrix of interpixel elements Pointels, linels and pixels [KKM90] represent
the geometry of a partition. Associating geometrical information to a topological
element is an operation called embedding. Similarly to vertices, edges and faces, we
respectively refer to pointels, linels and pixels as i-cells, i ∈ {0, 1, 2}. We respectively
denote by pointel(d) and linel(d) the first pointel and linel of the embedding of a
dart d. For example, in Figure 2(c), the embedding of the edge (1,2) is the sequence
of linels (l1, l2, l3); linel(1) = l1, pointel(2) = p2; degree(p1) = degree(p2) = 3.

Tree of regions The tree of regions describes inclusion relationships: a region is
the father of the regions it contains. In Figure 2(d), r1 contains r2, r3 and r4, r2

and r3 are adjacent. The root of the tree encodes the background of the image and
is called the infinite region (noted r∞).

2.3 Tiled Top-down Framework for Combinatorial Pyramids

A hierarchical extension of the topological map model is proposed by [GBD09].
Contrary to bottom-up methods, this framework uses a top-down approach which
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2.3 Tiled Top-down Framework for Combinatorial Pyramids

(a) (b) (c) (d)

Figure 2: Topological map: three complementary models for image representation.
(a) Original image; (b) Combinatorial map for topological relationships. Dotted
arrow denotes the dart of the infinite region; (c) Interpixel matrix for geometrical
encoding: pointels and linels are represented by bold circles and segments; (d) Tree
of regions.

induces a segmentation process based on a rough partition refined at further levels:
it results in a major memory reduction since regions may only be encoded at the top
level of the pyramid. Moreover, it allows to take advantage of the focus of attention
over interesting regions: the segmentation of a region can be adapted according
to the features of its parent. Despite this memory reduction, [GDB09] proposes
a subdivision of the levels into topological tiles in order to bound the amount of
required memory.

A topological tile is a topological map with an additional involution β′
2 which

applies on darts belonging to a border shared by two adjacent tiles [GDB09] to ensure
their topological connection. The juxtaposition of topological tiles composes a tiled
topological map. Such a map may contain fictive elements along the tiles’ borders
when, according to a given merging criterion, pixels on both sides of a tile’s border
belong to a same region. Linels encoding these fictive borders are marked by a flag
indicating their fictive state. Tiled combinatorial maps (Definition 2) redefine the
operators β1 and β2 [GDB09] to abstract those fictive elements (Figure 3(c)).

Definition 2 (Tiled combinatorial map). Let T be a set of connected topological
tiles T = {t(i, j)}(i,j)∈{0,...,W }×{0,...,H}. Let D be the set of darts of T with a real

embedding. A tiled combinatorial map M is a triplet M = (D, δ1, δ2) where, ∀d ∈ D:

(1) δ1 is a permutation on D such as:

δ1(d) = β1((β′
2β1)n(d)) with n = min{p ∈ N | linel(β1((β′

2β1)p(d)) is real}

(2) δ2 is an involution on D such as:

δ2(d) =

{

β′
2(d) if β′

2(d) exists

β2(d) otherwise

A tiled top-down topological pyramid is a stack of finer and finer partitions
denoted by P = {Gk}k∈{0,...,n} where Gk+1 is a tiled combinatorial map (Definition 2)

deduced from Gk by splitting operations. Within a pyramid, a tile is denoted by
t(i, j, k) where (i, j, k) are the coordinates (i, j) of t at level Gk. Besides, the pyramid
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(a) (b) (c) (d)

Figure 3: Representation of a top-down pyramid composed of two levels Gk and
Gk+1. (a) Original image: a tile t is decomposed in two tiles t1 and t2 (ratio =
2 × 2); (b) Interpixel matrix: fictive borders appear between t1 and t2; (c) Tiled
combinatorial maps: δ1 and δ2 are represented by arcs and segments. Dotted arrows
denote darts with a fictive embedding; (d) Relationships between darts.

may swap or load tiles between memory and disk and spread global modifications:
if an operation modifies a tile’s border, adjacent tiles that are either on disk or in
memory should be updated. Note that a stack of successively refined partitions
differs from the notion of resolution used within the regular pyramid framework:
top-down pyramids can be constructed either from single or multi-resolution images.
Although, the pyramid mixes both regular and irregular notions, the top-down model
remains an irregular pyramid since it handles fictive borders between the tiles. The
resulting sequence of partitions is a causal structure [GCM06] where hierarchical
relationships are encoded through up/down relationships between tiles, darts and
regions.

A first strategy to build the pyramid is to start from a single region and refine
it according to segmentation criteria. The operation is performed in three steps.
First, the last level is duplicated and up/down relationships are set. Second, a
splitting criterion indicates the regions to refine. Those regions are split into a set of
basic regions enclosing a single pixel. Third, the basic regions are merged according
to a merging criterion. Since any couple of adjacent regions may be merged, this
refinement step may encode any subdivision of the parent region. Yet, this solution
presents a major drawback: the splitting step in one region per pixel is a bottom-up
refinement that encodes every pixel of the split region. Such an operation implies
useless calculus and important memory requirements.

6



A Causal Extraction Scheme for Tiled Top-down Pyramids

(a) (b)

Figure 4: Extraction constraints for a tiled top-down pyramid. Gk is a single tile t

decomposed in Gk+1 into 4 subtiles (ratio = 2×2). (a) Causal constraint: preserves
existing borders; (b) Top-down constraint: the focus of attention only refines regions
whose splitting criterion is true. Dotted arrows denote fictive borders.

3 A Causal Extraction Scheme for Tiled Top-down Pyra-

mids

Our main objective consists in avoiding the bottom-up refinement step temporary
creating one region per pixel. We propose with Algorithm 1 a hierarchical extension
of the extraction scheme introduced by [DBF04]. In order to adapt it to the tiled
top-down pyramidal framework, we must fulfill two main constraints:

• the causal constraint entails that existing borders are preserved from one level
to an other: any border defined in Gk must exist in Gk+1 and darts and regions
of Gk must be connected to their children in Gk+1.

• the top-down constraint (focus of attention): since we use a splitting criterion
which determines whether a region should be refined in the next level, no border
should be created within regions whose splitting criterion is false.

Those two constraints are illustrated in Figure 4. In Figure 4(a), the causality is
ensured as each border defined in Gk exists in Gk+1 with up/down relationships set
accordingly. For example, when the darts 3 and 4 are created, they must be linked
with their respective parents 1 and 2. In Figure 4(b), the focus of attention for the
top-down construction is respected as regions whose splitting criterion is set to false
are not refined: no border is inserted in down(r1) while r2 is refined in Gk+1.

The global scheme of the extraction algorithm is the following. All the pixels of
a tile t in Gk+1 are traversed with a scanline traversal from top-left to bottom-right
corner. For each pixel p, we create the region enclosing it (line 1 of Algorithm 1)
which results in the insertion of two new borders between the p and its top and left
neighbors. Then, we determine whether those borders should be kept or removed
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Algorithm 1: Causal extraction algorithm.

Data: A tile t in Gk.
Result: Extraction of the sons of t in Gk+1.
S1 ← embedding structure of t;
S2 ← regions structure of t;
foreach son t′ of t in Gk+1 do

foreach pixel p(x, y) in t′ do

p← p(x, y), p′ ← p(x− 1, y), p′′ ← p(x, y − 1);
Create region r enclosing p;1

if SameRegion(p, p′, S1, S2) then2

Remove border between region(p) and region(p′);

if SameRegion(p, p′′, S1, S2) then3

Remove border between region(p) and region(p′′);

Set up/down relationships for r and its darts;4

Simplify and compute the tree of regions for t′;5

(line 2-3) by calling Algorithm 2. First, our two constraints must be respected: a
border is kept if it corresponds to an existing border in Gk (line 1 of Algorithm 2)
and is removed if it corresponds to a forbidden refinement (line 2). Once those two
conditions are verified, a merging criterion determines if the border is kept (line 3).
Since a topological map aims at representing regions, the merging criterion has to
define a partition: we may use a quantization of the tile up but conversely, a criterion
based on a minimum gradient would lead to the creation of an inconsistent map with
dangling edges. The last step finalizes the extraction by removing degree two vertices
and computing the tree of regions (line 5 of Algorithm 1) as described in [DBF04].
In the following, we implicitly use projections between levels: if p is a pixel of Gk+1,
region(p) in Gk refers to the region of the projection of pixel p in Gk. In order
to answer the first two conditions of Algorithm 2, two external structures related
to up(t) called embedding structure and regions structure are required and detailed
below.

Embedding structure This structure establishes the correspondence between
darts and their embedding in a tile by mapping each linel to its dart. Thus, we
can determine from the embedding of a dart d in Gk+1 if there exists a dart d′ in
Gk whose embedding is down-projected onto the one of d. In this case, the border is
kept and we establish up/down relationships between d = down(d′) and d′ = up(d)
(line 4 of Algorithm 1).

Regions structure Similarly to an image of labels, this structure maps each tile’s
pixel to its region. It allows to know the splitting criterion of a pixel p in the above
level. For instance in Figure 4(b), we can determine that region(p7) in Gk is r1
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Experiments

Algorithm 2: SameRegion.

Data: Two adjacent pixels p and p′ of a tile t at Gk+1.
embedding structure and regions structure of up(t) at Gk.

Result: true if p and p′ belong to the same region.
r ← region(p) in Gk, r′ ← region(p′) in Gk;
if r 6= r′ then

return false;1

if splitting_criterion(r) = false then

return true;2

return merging_criterion(p, p′);3

Table 1: Memory usage and runtime comparisons between the burst-merge refine-
ment construction and the causal extraction process for a multi-resolution histolog-
ical image.

level size number number burst-merge causal extract.
(pixels) of darts of regions runtime (s) ram (MB) runtime (s) ram (MB)

4 000×3 036 483 662 187 033 181 104 105 90
8 000×6 072 962 368 392 395 354 106 272 90

32 000×24 291 4 670 978 1 767 890 4 611 100 3 869 92

whose splitting criterion is false (r1 must not be refined) so we do not keep the
border between p7 and p5.

4 Experiments

This section has two main objectives: show the advantage of our causal extraction
algorithm compared to the initial burst-merge refinement and present first segmen-
tation results obtained on histological images.

In Table 1, we provide runtime3 and memory usage for our causal extraction algo-
rithm (column 6-7) compared to a burst-merge refinement (column 4-5) with a fixed
tile size of 512 × 512. We can notice that our extraction method globally improves
the computational time from 15 to 40% with a reduction of memory usage around
10%. The computational time is mostly due to pixel traversal (to get colorimetric
information for the regions) and segmentation criteria computation.

We illustrate the results of our extraction in Figure 5. This example shows the
tiled map of the same small area of an histological image at different resolutions
(4 000×3 036, 8 000×6 072, 32 000×24 291). The segmentation is based on an image
quantization algorithm in two classes [KMN+02].

3The model is implemented in C++ and computations are carried out on an Intel E5300@2GHz
with 2GB RAM.
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Figure 5: Causal extraction of a tiled top-down pyramid from a multi-resolution
histological image. From left to right: low resolution of the original image, three
different levels of the pyramid with increasing resolutions encoding a same small
area.

5 Conclusion

In this paper, we have presented an alternative construction scheme for the extrac-
tion of tiled top-down pyramids that overcomes the main drawbacks of the previous
method. First, our method requires less computational time and memory usage. Sec-
ond, it still preserves the top-down hierarchical relationships of the model. Therefore,
our method can favorably act as a replacement for the burst and merge refinement
step during the construction of a tiled top-down pyramid. Finally, our causal ex-
traction algorithm presents interesting perspectives for parallel computation that we
plan to implement in our future work.
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