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Abstract: as part of the OptiEnR research project, the present paper deals with outdoor 

temperature and thermal power consumption forecasting. This project focuses on 

optimizing the functioning of a multi-energy district boiler (La Rochelle, west coast of 

France), adding to the plant a thermal storage unit and implementing a model-based 

predictive controller. The proposed short-term forecast method is based on the concept 

of time series and uses both a wavelet-based multi-resolution analysis and multi-layer 

artificial neural networks. One could speak of "MRA-ANN" methodology. The discrete 

wavelet transform allows decomposing sequences of past data in subsequences (named 

coefficients) according to different frequency domains, while preserving their temporal 

characteristics. From these coefficients, multi-layer Perceptrons are used to estimate 

future subsequences of 4 hours and 30 minutes. Future values of outdoor temperature 

and thermal power consumption are then obtained by simply summing up the estimated 

coefficients. Substituting the prediction task of an original time series of high variability 

by the estimation of its wavelet coefficients on different levels of lower variability is the 

main idea of the present work. In addition, the sequences of past data are completed, for 

each of their components, by both the minute of the day and the day of the year to place 

the developed model in time. The present paper mainly focuses on the impact on forecast 

accuracy of various parameters, related with the discrete wavelet transform, such as 

both the wavelet order and the decomposition level, and the topology of the neural 

networks used. The number of past sequences to take into account and the chosen time 

step were also major concerns. The optimal configuration for the tools used leads to very 

good forecasting results and validates the proposed MRA-ANN methodology. 

 

Keywords: wavelet-based multi-resolution analysis, artificial neural networks, outdoor 

temperature, thermal power consumption, hot water distribution network, district boiler. 

 
1. Introduction 

 

The actual European energy context reveals that the building sector is one of the largest 

sectors of energy consumption. In France, about 25% of Greenhouse Gases (GHG) emissions and 

45% of energy consumption are due to buildings [1]. Consequently, the adopted "Energy 

Performance of Buildings Directive" (Official Journal of the European Communities, 2002) [2], 

focusing on energy use in buildings, requires all the European Union (EU) members to enhance 

their building regulations and to improve energy efficiency. With the aim of surmounting the 

actual energy crisis (mainly caused by both the rarefaction of fossil fuels and excessive energy 

consumption), managing energy demand, promoting renewable energy and finding ways for 

energy savings are worldwide concerns [3]. 

The present paper, the first of a series of three dealing with the modeling and the optimization 

of a district boiler as part of the OptiEnR project, focuses on the development of a forecasting tool 

using a wavelet-based multi-resolution analysis and artificial neural networks. The OptiEnR 

project began in late 2008 and will proceed, at least, until late 2010. It includes researchers from 

the ELIAUS laboratory of the University of Perpignan Via Domitia (south of France) and 

engineers from two French companies, Cofely GDF-SUEZ [4] and Weiss France [5]. Cofely GDF-

SUEZ is currently the leading European brand for environmental and energy efficiency services 

while Weiss France designs, manufactures and installs automatic boiler rooms for all types of 

wood, biomass, wastes and fluids. The considered district boiler, which will be described later in 

the paper, is situated at La Rochelle, west coast of France, and managed by Cofely GDF-SUEZ. It 

supplies domestic hot water and heats residential and public buildings, using mainly wood and 

sometimes fuel or gas if necessary. The OptiEnR project focuses on optimizing the performance of 

the boiler, adding to the plant a thermal storage unit and using a model-based predictive optimal 

controller. Its main objective is to minimize the use of fossil energy, stocking renewable energy 
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during low-demand periods and using it during high-demand periods. The project consists of the 

following successive tasks (Figure 1): the first task is to forecast outdoor temperature and thermal 

power consumption (of the hot water distribution network); the second task focuses on modeling 

the district boiler; the third task deals with studying the feasibility of integrating to the plant a 

thermal storage unit and finding the most adequate storage material; the fourth task is to model 

the thermal storage while the fifth task focuses on optimizing the boiler functioning using both a 

Model Predictive Controller (MPC) [6-7] and the forecasted parameters (first task). As above-

mentioned, the present paper deals with the first task, the next papers of the series dealing with 

the tasks 2 (paper 2) and 3 to 5 (paper 3). 

 
 

Figure 1. Diagram of the OptiEnR project. In red, the forecast module presented in the paper. 

 

Schemes for hourly temperature forecasting have been mainly developed in the context of short 

or long-term load forecasting and power utilities management. The complex and nonlinear nature 

of temperature variations as well as the abundance of historical data suggest that computational 

intelligence data-based modeling techniques would be good candidates to forecast temperature. In 

1996, Liu et al. [8] evaluated fuzzy logic, artificial neural networks and auto-regressive models for 

very short-term load forecasting. They concluded that the just-mentioned tools can be good 

candidates for this application. In 1996 and 1997, Khotanzad et al. [9-10] also used backpropagation 

neural networks to forecast hourly temperature for the next seven days, using daily high and low 

temperatures and an adaptive daily update of the weights. The main drawback of this approach is 

that the large size of the neural networks involved leads to a large number of weights to be 

optimized. In 1998, Hwang et al. [11] also used artificial neural networks and proposed a new and 

effective learning algorithm allowing solving both the problems of underfitting and overfitting. 

Yoo and Pimmel [12] developed in 1999 a self-supervised adaptive neural network to perform 

short term load forecasts. They used this kind of neural networks to extract correlational features 

from temperature and load data. The levels of error compared favorably with those given by other 

techniques. In 2000, Sharif and Taylor [13] used separate artificial neural networks for load 

forecasting of one hour to four hours ahead. We can also highlight that Gonzàlez and Zamarreño 

[14] used in 2001 a radial basis functions neural network to develop a short-term temperature 

forecaster, without using the daily high and low temperature values. They obtained good results. 

One year later (2002), the same authors, Gonzàlez and Zamarreño [15], proposed a short-term 

hourly environmental temperature forecaster based on a state space neural network. Its  training 

was based on a random optimization method. Because of the non-stationary characteristic of 

temperature, training was executed daily with the aim of updating the network weights. The 

outdoor temperature dynamics was satisfactorily captured.  However, and, as it was highlighted 

by Hippert et al. in 2000 [16], a large input dimensionality compared with the number of training 

records can lead to unstable networks and/or overfitting. As a consequence, one can remark that 

Tassadducq et al. [17] used in 2002 a backpropagation neural network to forecast the temperature 

at a given hour of the next day, only using the temperature at the same hour of the present day. 

In 2008, Chaabene and Ben Ammar [18] introduced a new methodology for dynamic forecasting of 

meteorological parameters. An ANFIS [19-21] neuro-fuzzy system offered daily time distribution 

of irradiance and ambient temperature relying on the meteorological behavior during the days 

before. First, the obtained medium term forecasting was then modeled using an ARMA model [22-

23]. Next, a Kalman filter [24-26] provided short-term forecasting. The developed models were 

tested and validated, leading again to very good results. 



Because artificial neural networks also suffer from the difficulty of finding both an optimal 

topology and adequate training parameters [27], some different approaches were proposed. In 

1957, Allen [28] tested a simple parametric model for minimum temperature prediction. In 1985, 

Schneider et al. [29] fitted a two-harmonics Fourier model to the temperature data of the past 21 

days to produce a temperature day profile. Hourly forecasts were then obtained by stretching or 

contracting this profile. Fan and McDonald [30] proposed in 1994 a load forecasting model consisting 

of time series, nonlinear load-weather functions and a residual function represented by an ARMA 

model [22-23]. In 1996, Chow and Leung [31] presented a novel technique for electric load forecasting 

based on neural weather compensation. They proposed a nonlinear generalization of the Box and 

Jenkins approach [32-33] for nonstationary time series forecasting and obtained very good 

results. In 2000, Chen and Hwang [34] used fuzzy time series [35-38] to deal with temperature 

forecasting problems and overcome the drawback related to historical data represented by 

linguistic values. They proposed a new fuzzy time series model, called two-factor time-variant 

fuzzy time series model. Based on the proposed model, they developed two algorithms for 

temperature prediction and obtained good forecasting results. Using the same model, Lee et al. 

[39] established in 2006 two-factor high-order fuzzy logical relationships based on historical data. 

Again, the proposed method got a higher forecasting accuracy rate than the existing methods. In 

2004, Abdel-Aal [40] used abductive networks to forecast hourly temperature. Abductory inductive 

mechanism is a supervised inductive machine-learning tool for automatically synthesizing 

abductive network models from a database of inputs and outputs representing a training set of 

solved examples. This tool can automatically synthesize adequate models that embody the 

inherent structure of complex and highly nonlinear systems. Abdel-Aal developed next-day and 

next-hour models. Performance compares favorably with neural networks models developed using 

the same data, and with more complex neural networks that requires daily training. Performance 

is significantly superior to naïve forecasts based on persistence and climatology. In 2008, Dong 

and Pedrycz [41] introduced the concept of granular time series. It can be mainly applied to long-

term forecasting and trend forecasting to overcome the curse of dimensionality (which plagues 

most predictors when carrying out long-term forecasts) and cope with uncertainly present in 

many times series. Dong and Pedrycz used a technique of fuzzy clustering to construct information 

granules on a basis of available numeric data present in the original time series. In the sequel, 

they developed a temperature forecasting model which captures the essential relationships between 

such information granulates and in this manner constructs a fundamental forecasting mechanism. 

Dong and Pedrycz demonstrated that the model they proposed comes with a number of advantages 

which manifest when processing with a large number of data. The same year (2008), Lee et al. [42] 

presented a new method for temperature prediction, based on high-order fuzzy logical relationships 

and genetic simulated annealing techniques [43-47]. Simulated annealing techniques were used 

to adjust the length of each interval in the universes of discourse with the aim of increasing the 

forecasting accuracy rate. The proposed method provided very good accuracy. 

One can also highlight some interesting and recent works, although not directly related to 

temperature forecasting but having many similarities with the proposed methodology. In 2007, 

González-Romera et al. [48] used artificial neural networks to extract the trend component from 

monthly electric demand data and then performed separate predictions of both tendency and 

fluctuation, which were summed up to obtain the series forecasting. A mean absolute percentage 

error of about 2% was obtained. The same authors, González-Romera et al., proposed a novel 

hybrid approach to investigate the periodic behavior of the Spanish monthly electric demand 

series [49]: this behavior is forecasted with a Fourier series [50] while the trend is predicted using 

an artificial neural network. Satisfactory results were obtained. These results improve those 

reached when only neural networks or ARIMA models [51-52] were used for the same purpose. As 

highlighted by the authors, a correct separation of trend and fluctuation and the optimization of 

the forecasting tools used to carry out the predictions are the key issues in the success of this 

technique. Furthermore, the combined use of a neural network and a Fourier series provides a 

simpler structure than that with only one neural network to carry out the whole prediction.  

The proposed methodology deals with the concept of time series, even if not only past values 

are considered for estimating future values, and uses a wavelet-based Multi-Resolution Analysis 

and multi-layer Artificial Neural Networks. One could speak of "MRA-ANN" methodology. The 

discrete wavelet transform allows decomposing sequences of past data in subsequences (named 

coefficients) according to different frequency domains [53]. From these coefficients, Multi-Layer 

Perceptrons (MLP) are used to estimate future subsequences of 4 hours and 30 minutes. Future 



values of outdoor temperature and thermal power consumption are then obtained by simply 

summing up the estimated coefficients. Substituting the prediction task of an original time series 

of high variability by the prediction, using MLP neural networks (many other neural networks 

have been tried but no significant improvement of the accuracy was observed), of its wavelet 

coefficients on different levels of lower variability, is the main idea of the present work. Then, the 

reconstruction of future values is performed by simply summing up the estimated coefficients. In 

addition, the sequences of past data are completed, for each of their components, by both the 

minute of the day and the day of the year to place the developed model in time. First, the paper 

focuses (section 2) on the considered district boiler and its working, and highlights the required 

upgrades. Section 3 describes both the data used to develop and validate the forecasting tool and 

the proposed MRA-ANN methodology. The wavelet-based multi-resolution analysis and the multi-

layer Perceptron are also described. Sections 4 (outdoor temperature) and 5 (thermal power 

consumption of the hot water distribution network) present the forecasting results. Section 4 

deals also with the impact on forecast accuracy of parameters such as both wavelet order and 

decomposition level, and with the topology of the ANN used. The final part of the paper concludes 

the present work and remembers the aim of the OptiEnR project. 

 
2. The district boiler of La Rochelle 

 

The district boiler of La Rochelle, whose synopsis is shown in Figure 2, is composed of a 

breaking pressure bottle, a cogeneration plant and two thermal boilers. The first one, a large 4.5 

MW wood boiler, uses renewable energy (it is fed with woodchip). The second one, a 7 MW gas-fuel 

oil boiler, uses fossil energy. Both boilers have smokes and air-to-water heat exchangers. They 

supply hot water to the collecting hydraulic circuit according to a temperature set-point which is 

defined from outdoor temperature. During the cold season (from October to May), the wood boiler 

is continuously running while its heating power is adapted to the demand. The gas-fuel oil boiler 

functions during very cold periods only, when the wood boiler fails to respond to the demand. The 

primary hydraulic circuit (3000 m3), or "distribution network", supplies hot water to heat residential 

and public buildings (for example schools), for a total of 2700 accommodations. Domestic hot 

water is also produced, for a total of 3500 accommodations. The cogeneration plant, connected to 

the "return" part of the primary hydraulic circuit, produces electricity using gas and warms up 

the cold water before it goes back to the collecting hydraulic circuit. The breaking pressure bottle 

pulls apart the two hydraulic circuits, because of the difference between their respective flows. 

 

 
 

Figure 2. Synopsis of the district boiler of La Rochelle. Its current situation (in black) and future 

perspectives (in red, blue and green).  



Table 1 presents the coverage rate of each of the three heat generators. Let us remember that 

the main goal of the OptiEnR project deals with the minimization of the gas-fuel oil boiler coverage 

rate, leading to the reduction of the fossil energy consumption. As a consequence, the wood boiler 

coverage rate will be maximized. To reach this objective, we proposed to add a thermal storage 

unit to the plant (Figure 2) with the aim of stocking hot water when the demand is low and using 

it when the demand can’t be met by the wood boiler. This is a classical solution to optimize the 

functioning of boilers used to heat buildings [54-56]. Thus, the gas-fuel oil boiler will be only used 

when both the hot water demand is very high and the thermal storage unit is empty. The flow of 

the water passing through this unit (   ) will be adjusted thanks to the control of the thermal 

storage feed pump (    ). With the aim of optimizing the use of this thermal storage unit and 

reducing the fossil boiler coverage rate, a model predictive controller will define over the next 4 

hours and 30 minutes the optimal sequence of     and the wood boiler set-point temperature 

(    ), taking into consideration some parameters measured at the district boiler as well as both 

the forecasted outdoor temperature (    ) and thermal power consumption (of the distribution 

network) (   ). The wood boiler (    ) and gas-fuel oil boiler (     ) feed pumps are controlled 

using a standard on/off controller.      is the distribution network feed pump allowing controlling 

the water differential pressure according to outdoor temperature variations (Figure 2). 
  

Table 1. Coverage rates of the three heat generators. 
 

Heat generator Coverage rate 

Wood boiler 50% 

Gas-fuel boiler 15 to 20% 

Cogeneration plant 30 to 35% 

 

3. Materials and methods 
 

3.1. Database: outdoor temperature and thermal power consumption 
 

Outdoor temperature (    ) is measured at the district boiler and used for computing both the 

boilers and the primary circuit temperature set-points and the differential pressure set-point. 

That is why forecasting accurately this parameter, also used by the Model Predictive Controller 

(MPC) for managing the thermal storage unit, is of paramount interest. When taking a look at 

the data, one can highlight some interesting characteristics: first, outdoor temperature increases 

during the considered period (one speaks of "increase trend"); secondly, a 24-hour pseudo-period 

has been detected; finally, climatic phenomena impact on the parameter variability throughout 

the day. Of course, we want the proposed forecast methodology, based on a multi-resolution analysis 

and artificial neural networks, to be able of detecting these characteristics and taking advantage 

of them to make accurate forecasts. Let us also note that a meteorological station located in La 

Rochelle measures outdoor temperature and provides to the district boiler operators forecasted 

temperatures for five future days (from D+3 to D+7), with a sampling time set to 3 hours. With the 

aim of comparing these measured and forecasted temperatures with the temperatures measured 

at the district boiler, the considered vectors are upsampled from 3 hours to 5 minutes. Indeed, the 

sampling time of all the parameters measured and used to develop the boiler model is set to 5 

minutes. Table 2 allows comparing both the forecasted and measured outdoor temperatures with 

the measurements done at the district boiler of La Rochelle. 
 

Table 2. Comparison of both the forecasted and measured outdoor temperatures provided by the 

meteorological station with the measurements done at the district boiler. FIT: similarity criterion; 

MRE: Mean Relative Error. 
 

Outdoor temperature FIT (%) MRE (%) 

Measured at the meteorological station 59.7 4.17 

Forecasted at the meteorological station (    
   ) 43.1 6.14 

Forecasted at the meteorological station (    
   ) 38.9 6.61 

Forecasted at the meteorological station (    
   ) 34.2 6.99 

Forecasted at the meteorological station (    
   ) 27.6 7.88 

Forecasted at the meteorological station (    
   ) 17.1 9.01 



Table 2 highlights first that both the outdoor temperatures measured at the meteorological 

station and at the district boiler are quite similar. As a result, one can suppose that the temperature 

forecasted at the meteorological station is usable for managing the thermal storage unit using a 

MPC. Indeed, both the temperatures forecasted at the station and measured at the district boiler 

are also quite similar (Figure 3), with a FIT and a MRE ranging between 17.1% (    
   ) and 43.1% 

(    
   ) and between 6.14% (    

   ) and 9.01% (    
   ) respectively. Unfortunately, Figure 3 highlights 

that the peaks of temperature are significantly under-estimated. As a consequence, the MPC 

could give the order to start the gas-fuel oil boiler unnecessary. So, instead of improving the district 

boiler performance and decreasing the use of fossil energy, more gas and fuel will be consumed. 

That is why, finally, the outdoor temperature forecasted at the meteorological station will not be 

used by the MPC, a forecast module being developed and presented in this paper. 
 

 
 

Figure 3. The outdoor temperatures forecasted at the meteorological station (    
   ) and measured 

at the district boiler (    
   

) (from early January to late March). 
 

Figure 4 depicts the calculated thermal power consumption of the hot water distribution network 

(   
   ) during the first months of 2009 (from early January to late March). This parameter is not 

measured in situ and has an exogenous influence on the district boiler functioning because it 

impacts on the temperature of the water back from the distribution network.    
    is calculated 

using the difference between    
      

  (the temperature of the hot water leaving the breaking 

pressure bottle and entering the distribution network) and    
  (the temperature of the cold water 

coming back from the distribution network) as well as the flow of the water passing through this 

network (   ).     is estimated using the opening percentage of the distribution network feed 
pump valve (   ), related to the water differential pressure (   ), its set-point (    ) and outdoor 

temperature (Figure 2). As depicted by Figure 4, the thermal power consumption and the outdoor 

temperature are inversely proportional. 
 

 
 

Figure 4. Calculated thermal power consumption of the hot water distribution network (   
   

). 



3.2. Wavelet-based multi-resolution analysis 

 

3.2.1. Continuous Wavelet Transform (CWT) 

 

The continuous wavelet transform is used with the aim of decomposing a signal into wavelets 

i.e. into highly localized small oscillations [57-58]. Whereas the Fourier transform [59-60] 

decomposes a given signal into infinite length sines and cosines, losing all time-localization 

information, the CWT’s basis functions are scaled and shifted versions of the time-localized 

mother wavelet. So, this mother wavelet is a continuous in both time and frequency function that 

can be considered as a source function from which scaled and translated basis functions are 

generated. The CWT is used to obtain a time-frequency representation of a signal that offers very 
good both time and frequency localization. Considering a mother wavelet     , one can obtain the 

following wavelet series        , where   is the scale factor and   is the translation factor according 

to the following expression (equation 1) [61]: 

 

        
 

    
  

   

 
              

 

For any function           , its continuous wavelet transform can be expressed as follows 

(equation 2): 

 

     
 

    
         

   

 
   

  

  

 

 
where    is the complex conjugate of  .      is called the wavelet coefficient. The continuous 

wavelet coefficients can be used with the aim of reconstructing the function      in the following 

way (equation 3): 

 

     
 

  
             

  

  

     

  

  

  

 

 

3.2.2. Discrete Wavelet Transform (DWT) and bank of filters  

 

 
 

Figure 5. Multi resolution analysis leading to the 3-level decomposition of a signal x. 

 

Because translating the mother wavelet leads to redundant information, one can use, instead 

of the continuous wavelet transform, the discrete one. In this case, both scale ( ) and translation 

( ) factors are restricted to only discrete values such that     
  and        

 , where     , 

    , and         . Basically, the discrete wavelet multi-resolution analysis, commonly based 

on Daubechies orthogonal wavelet basis [57], allows decomposing a signal into approximations 

(i.e. low frequency coefficients) and details (i.e. high frequency coefficients) using a filter bank 

composed of both low-pass (  ) and high-pass (  ) filters [62]. This process can be repeated   

times, producing   levels of decomposition, but decomposing (downsampling) the approximations 

(3) 

(2) 

(1) 



(the low frequency coefficients) only. Indeed, the high frequency coefficients are neglected. So, a 

signal   can be first decomposed into an approximation    and a detail    (that is the level 1 of 

the decomposition). Then    can be decomposed into an approximation    and a detail    (that is 

the level 2 of the decomposition) and so on. Considering   levels of decomposition, the reconstruction 

process allows recovering the initial signal, summing the   details            and the 

approximation    of level  . As an example, Figure 5 depicts the 3-level decomposition of a signal 

  and its reconstruction [62]. 

 

3.2.3. The Daubechies wavelets family 

 

Different families of wavelets whose qualities vary according to several criteria can be used for 

analyzing sequences of data points [63]. The main criteria are (1) the speed of convergence to 0 of 

these functions when the time   or the frequency   goes to infinity, which quantifies both time 

and frequency localizations, (2) the symmetry, (3) the number of vanishing moments of   and (4) 

the regularity, which is useful for getting nice features, like smoothness of the reconstructed 

signal. The most commonly used wavelets are the orthogonal ones (Daubechies, Symlet or Coiflet 

wavelets) [64]. Because the Daubechies wavelets [57] (Figure 6) have the highest number of 

vanishing moments, this family has been chosen for carrying out the wavelet-based multi-

resolution analysis of the considered sequences of data points. 

 

 
 

Figure 6. The Daubechies wavelets family, according to the wavelets order. In black: the wavelets, 

in grey: the associated scaling functions. 

 

3.3. The multi-layer Perceptron neural network 

 

3.3.1. Network topology 

 

The Perceptron, the simplest neural network, is only able to classify data into two classes [65]. 

Basically it consists of a single neuron with a number of adjustable weights [66]. It uses an 

adaptative learning rule. Given a problem which calls for more than two classes, several 

Perceptrons can be combined: the simplest form of a layered network just has an input layer of 

source nodes that connect to an output layer of neurons. The single-layer Perceptron can only 

classify linearly separable problems. For non-separable problems it is necessary to use more 

layers. A multi-layer network has one or more hidden layers whose neurons are called hidden 

neurons. The network is fully connected, every node in a layer is connected to all nodes in the 

next layer. According to the previous remarks, the network used for the present work is a multi-

layer Perceptron. It consists of one layer of linear output neurons and one hidden layer of 

nonlinear neurons [67] (Figure 7). According to previous tests, more than one hidden layer proved 

to cause slower convergence during the learning phase because intermediate neurons not directly 

connected to output neurons learn very slowly. Based on the principle of generalization versus 

convergence, both number of hidden neurons and iterations completed during the training phase 

were optimized [68]. The multi-layer Perceptron neural network learns using an algorithm called 

backpropagation. During this iterative process, input data are repeatedly presented to the 

network. With each presentation, the network output is compared to the desired output and an 

error is computed. This error is then fed back to the network and used to adjust the weights such 

that it decreases with each iteration and the model gets closer and closer to produce the desired 

output [69]. 



 
 

Figure 7. Topology of the multi-layer Perceptrons used for estimating the wavelet coefficients of 

forecasted sequences: one hidden layer of nonlinear neurons and an output layer of linear neurons. 

 

3.3.2. The Levenberg-Marquardt algorithm 

 

Several training methods were used, but the Levenberg-Marquardt algorithm [70] proved to be 

the fastest and the most robust. It is particularly adapted for networks of moderate size and has 

memory reduction feature for use when the training set is large. Like the quasi-Newton methods, 

the Levenberg-Marquardt algorithm was designed to approach second-order training speed 

without having to compute the Hessian matrix. When the performance function has the form of a 

sum of squares, then the Hessian matrix can be approximated as: 

 
       

 

The gradient can be computed as: 

 
       

 

where   is the Jacobian matrix that contains first derivatives of the network errors with respect to 

the weights and biases, and   is a vector of network errors. The Jacobian matrix can be computed 

through a standard backpropagation technique that is much less complex than computing the 

Hessian matrix. The Levenberg-Marquardt algorithm uses this approximation to the Hessian 

matrix in the following Newton-like update:  

 
                          

 

When the scalar   is zero, this is just Newton’s method, using the approximate Hessian 

matrix. When μ is large, this becomes gradient descent with a small step size. Newton’s method is 

faster and more accurate near an error minimum, so the aim is to shift towards Newton’s method 

as quickly as possible. Thus,   is decreased after each successful step and is increased only when 

a tentative step would increase the performance function. In this way, the performance function 

will always be reduced at each iteration of the algorithm. The main drawback of the Levenberg-

Marquardt algorithm is that it requires the storage of some matrices that can be quite large for 

certain problems. The size of the Jacobian matrix is      , where   is the number of training 

sets and   is the number of weights and biases in the network. It turns out that this matrix does 

not have to be computed and stored as a whole. For example, if we were to divide the Jacobian 

into two equal submatrices we could compute the approximate Hessian matrix as follows: 

 

          
   

    
  
  
    

       
     

 

Therefore, the full Jacobian does not have to exist at one time. The approximate Hessian can 

be computed by summing a series of subterms. Once one subterm has been computed, the 

corresponding submatrix of the Jacobian can be cleared. 

(7) 

(6) 

(5) 

(4) 



3.4. Forecast methodology 

 

This section deals with the description of the proposed forecast methodology, based on both the 

concept of time series and the use of a wavelet-based multi-resolution analysis and multi-layer 

artificial neural networks. One speaks of MRA-ANN methodology. 

 

3.4.1. Overall approach 

 

A time series is a sequence of data points, measured typically at successive times and spaced 

at, often uniform, time intervals [71]. Time series forecasting is the use of a model to forecast 

future events based on known past events [72]. The aim of the proposed MRA-ANN methodology 
is forecasting, thanks to artificial neural networks, a sequence of   data points, using         
past sequences, also of length  . According to the respective values of  ,   and of the sampling 

time   (set initially to 30 minutes; forecasted sequences are then upsampled to be in agreement 

with the sampling time of all the parameters measured at the district boiler), the results can be 

more or less accurate. Indeed, the further the forecasting horizon (set to 4h30, as requested by the 

boiler operators and taking into account the main objective of the OptiEnR research project, this 

leads to    ), the more inaccurate it can be. Inaccuracy can also be the result of a lack of usable 

information provided by past sequences or the result of a too low number   of considered past 

sequences. Past sequences are examples to be learned and used to forecast future values of the 

considered parameters (in this case, the outdoor temperature and the thermal power consumption 

of the hot water distribution network). To help the model to place itself in time, past sequences 

are completed, for each of their components, by the minute of the day and the day of the year. The 

proposed neuronal model has been developed (artificial neural networks have been trained) using 

half of the available sequences and validated thanks to the remaining sequences (Figure 8). 

 

 
 

Figure 8. Development phase of the forecast neuronal model. 

 

3.4.2. Wavelet-based multi-resolution analysis contribution 

 

Since the data usually consist of low and high frequencies components including noise, 

obtaining the essential frequency-domain features from these data becomes an important aspect 

of data analysis, visualization and forecasting. As a consequence, understanding and being able to 

learn from data, using artificial neural networks, is not as easy as one may think. Usually, tools 

such as artificial neural networks learn very well, optimizing their topologies and all the training 

parameters, from limited frequency domain data. When the data consist of low and high frequencies 

components, a useful approach can be to develop one forecast model for each of the frequency 

domains and then to combine the information provided by all of the models to build the desired 

signal. That is why one needs a tool allowing, on one hand, decomposing a signal according to 



different scales of frequency, while preserving its temporal characteristics (which is fundamental 

when proposing a forecast methodology based on time series), and, on the other hand, rebuilding 

this signal. This tool is the wavelet-based multi-resolution analysis. It allows decomposing, 

according to both a decomposition level ( ) and a wavelet order ( ), a signal into approximations 

and details, using a filter bank composed of low-pass and high-pass filters. Keeping in mind the 

previously-mentioned characteristics of both the outdoor temperature and the thermal power 

consumption of the hot water distribution network, one can easily understand that the wavelet-

based multi-resolution analysis allows isolating the overall trend and the 24-hour pseudo period 

characterizing the considered time series (approximation coefficients) from the variability caused 

by climatic phenomena (detail coefficients). As previously-mentioned, the wavelet coefficients are 

of lower variability than the original and to-be-forecasted time series, which favors the estimation 

of future values. All the series of   past sequences (of length  ) considered to develop the model 

are so decomposed into   details and an approximation of level  . For each series, the target 

sequence   is also decomposed in the same way (Figure 9). 

 

 
 

Figure 9. Decomposition of past and target sequences into   details and an approximation of level  . 



3.4.3. Multi-layer Perceptrons for forecasting details and approximations of future sequences 

Substituting the prediction task of an original time series of high variability by the prediction 

of its detail and approximation coefficients on different levels of lower variability is the key-point 

of the proposed MRA-ANN methodology. In this sense, a multi-layer Perceptron neural network is 

needed, and it has of course to be trained using the coefficients of the considered past sequences, 

for estimating each of the   details and the approximation of level   of the target sequence (the 

sequence to be forecasted). Let us remember that a sequence is composed of data points as well as 

temporal indicators (for each observation, the minute of the day and the day of the year). So, for a 

decomposition of level  , the overall forecast model is composed of     multi-layer Perceptrons. As 

previously mentioned, summing up the estimated coefficients allows rebuilding the to-be-forecasted 

sequence (Figure 10). Similar approaches have already been applied to the forecasting of parameters 

such as electric consumption [73-74], solar irradiation [75-76] or wind speed [77]. The particularities 

of the proposed methodology lies in the use of sequences (to train the artificial networks or to be 

forecasted), in the addition of temporal information allowing a better understanding of how the 

considered parameters (     and    ) evolve in time, and in the use of a specific artificial neural 

network for estimating one of the wavelet coefficients of the future values we want to forecast. Of 

course, and this is the main weakness of such an approach, we have to train and find the right 

topology for each of the neural networks used. 

   

 
 

Figure 10. Multi-layer Perceptrons for forecasting details and approximations of future sequences. 

Rebuilding of these sequences (MRA-ANN methodology). 

 

3.4.4. Selection of the most accurate models 

As previously mentioned, the respective values of   (the number of considered past sequences), 

  (the length of the sequences),   (the sampling time),   (the wavelet decomposition level) and   

(the wavelet order) impact the forecast accuracy. The networks topology, basically the number of 

hidden neurons, as well as training parameters, such as the number of iterations, the learning 

rate and the error goal, also impact the networks generalization capability. That is why the 

present paper deals with the study and the quantification of all of these influences. It focuses also 

on the impact on the model performance of the random initialization of all the networks synaptic 

weights and on the relevance of developing "specialized" models (each model is developed to 

forecast outdoor temperature during only a specific period of the year). As it will be highlighted in 

the results section and because the Mean Relative Error (MRE) distribution (considering the 

networks validation phase) can be considered as a Gaussian function, with more or less skewness, 



one can easily select the most accurate models. According to statistical considerations, a model is 

selected, for a given configuration related with all the above-mentioned parameters and with a 

random initialization of all the network synaptic weights, when the validation error is inferior to 

the mean error (considering all the tested configurations) minus twice the deviation standard. 

The     selected models define the overall forecast model.  

 
4. Outdoor temperature forecasting 

 

This section of the paper presents experimental results in forecasting outdoor temperature. All 

the parameters mentioned in section 3.4.4 have been optimized to obtain the most accurate 

models. With the aim of reducing the complexity of this optimization problem, all the considered 

parameters have not been studied at the same time. As a consequence, the models configurations 

obtained are probably not optimal configurations but, most certainly, sub-optimal configurations. 

According to the common topology (the number of hidden neurons) of the multi-layer Perceptrons 

used, the influence of both the wavelet order and the wavelet decomposition level is, first, studied 

(section 4.1). Next, the impact of the number of both the considered past sequences and specialized 

models (section 4.2) as well as of the sampling time (section 4.3), considering optimal values of  , 

  and  , is studied. As mentioned in section 3.4.1, the forecasting horizon has been set to 4h30. It 

is a good compromise between accuracy and computation time, keeping in mind that forecasted 

sequences will be used by a model predictive controller to manage a thermal storage unit.  

 

4.1. Influence of both the wavelet order and the wavelet decomposition level 

 

As just above-mentioned, the two first parameters studied are both the wavelet order and the 

wavelet decomposition level. Only the number of hidden neurons varies, the sampling time is set 

to 30 minutes while only one past sequence of 9 points is considered (    and    ). Figure 11 

and 12 present the validation MRE according to  ,   and   (the networks common number of 

hidden neurons), ranging respectively between 2 and 10, between 1 and 9 and between 2 and 50. 

Let us note that the wavelet decomposition level has been averaged over its variation interval to 

obtain Figure 10. It is interesting to note that the best results (the most accurate forecasts) are 

achieved for a wavelet order equal to 4, using 5 hidden neurons (Figure 11). This can be explained 

by both the specific shape and frequency spectrum of a wavelet. This spectrum can be found, or 

not, in the analyzed signal. Considering, for example, a two-order wavelet, its shape is too 

different from the signal form and this leads to bad results. 
  

 
 

Figure 11. Influence of the wavelet order according to the networks topology. 

 

Having a quick look at Figure 12 (the wavelet order has been averaged over its variation interval), 

it can be noticed that when the wavelet decomposition level is high, only few hidden neurons are 

needed for accurately forecasting outdoor temperature. More hidden neurons are needed when 

the decomposition level is low. One can consider, and this is a very interesting result, that the 

number of hidden neurons to be used for accurately forecasting outdoor temperature is inversely 



proportional to the decomposition level. Indeed, for a too low decomposition level, each coefficient 

contains an important part of the initial information and, as a consequence, many hidden neurons 

are required to correctly model these coefficients using artificial neural networks. For a high 

decomposition level, the detail and approximation coefficients contain a small amount of information; 

that is why both their modeling and forecasting are easier and require, for each artificial neural 

network used, fewer hidden neurons. On the other side, let us remember that the higher the 

decomposition level, the more the networks needed (one for each coefficient to be estimated). The 

most accurate forecasts are achieved for a 5-level decomposition and 5 hidden neurons. 

 

 
 

Figure 12. Influence of the wavelet decomposition level according to the networks topology (the 

number of hidden neurons). 

 

Figure 13 depicts the linked influence of the wavelet order and the wavelet decomposition level 

(the common number of hidden neurons for all of the neural networks used has been averaged 

over its variation interval). It highlights specific domains of low MRE, one can speak of "valleys", 

and specific domains of higher MRE. Taking a look at Figure 13, it becomes apparent that, 

beyond an adequate wavelet decomposition level, the wavelet order is more influential than the 

decomposition level itself. Two valleys are clearly visible when the wavelet order is set to 4 or 

when it is set to 7 (the best choice seems to be 4). These valleys are very slightly dependent on the 

decomposition level. 
  

 
 

Figure 13. Linked influence of the wavelet order and the wavelet decomposition level. 



As a result of this first part of the study, one can conclude that the most accurate forecasts are 

achieved when decomposing the considered sequences into 5 levels, using Daubechies wavelets of 

order 4 and multi-layer Perceptrons which respective hidden layers are composed of 5 neurons. 

These results were taken into account to study the influence of the number of considered past 

sequences. Let us note that similar results were obtained with a sampling time set to 10 minutes. 
 

4.2. Influence of both the number of considered past sequences and the number of specialized models 
 

In this section, the influence of both the number   of considered past sequences and the 

number   of specialized models is analyzed. Several simulations have been carried out, considering 

a number of past sequences, a number of specialized models and a number of hidden neurons 

ranging respectively between 1 and 8, 1 and 3 and 3 and 21. Figure 14 depicts the influence of the 

number of considered pas sequences, considering only one overall model, according to the common 

topology of the neural networks used to model all of the wavelet decomposition coefficients. The 

results highlight the necessity of considering at least 4 past sequences (the optimal number) to 

obtain good forecasts. This clearly reduces the validation MRE observed. However, for a too high 

number of considered past sequences, the forecasts accuracy deteriorates gradually. Again, the 

common optimal number of hidden neurons for all of the multi-layer Perceptrons used is equal to 

5. With this topology, considering 4 past sequences instead of 1 for developing and validating the 

overall model, the MRE is reduced of about 12.5% (from 4.8% to 4.2%). 
 

 
 

Figure 14. Influence of the number of considered past sequences according to the networks topology 

(one overall model). 
   

 
 

Figure 15. Influence of the number of considered past sequences according to the networks topology 

(three specialized models). 
 

Figure 15 depicts the influence of the number of considered past sequences, but now considering 

three specialized models (each model is developed to forecast outdoor temperature during a 

specific period of the year only), according to the common topology of the neural networks used to 



model all of the wavelet decomposition coefficients. Each of the three specialized models being 

trained using less (three times less) information than when developing and validating an overall 

model, less hidden neurons are needed for accurately estimating, using multi-layer neural 

networks, approximation and detail coefficients. As a consequence, the influence of a bad networks 

sizing (too many hidden neurons favors overfitting) is more visible.  

Considering the right number of hidden neurons for all of the neural networks used to model 

the wavelet decomposition coefficients, Figure 16 depicts the influence of the number of considered 

past sequences according to the number of specialized models. Analyzing this figure, one can 

easily conclude that using several specialized models, instead of a unique overall model, does not 

improve the forecasts accuracy, quite the opposite… Whereas the main objective of developing 

specialized models was to dissociate and better understand (learn) the various behaviors outdoor 

temperature might have, one can notice that both the too restrictive historical data considered 

(from mid January to early April) and the networks training using less examples do not allow 

reducing the MRE. The networks generalization capability seems to be negatively impacted. So, 

one can suppose that considering, for example, one year or historical data, developing specialized 

models according to the various seasons of the year (temperature evolution is quite different from 

a season to another) would be very useful. 

 

 
 

Figure 16. Influence of the number of considered past sequences according to the number of 

specialized models. 

 

4.3. Influence of the sampling time 

 

 
 

Figure 17. Influence of the number of considered past sequences according to the networks topology 

(sampling time = 10 minutes). 

 

Finally, the influence of the sampling time on the models performance has also been studied, 

considering a wavelet order and a wavelet decomposition level equal to 4 and 5 respectively. One 

can conclude that reducing the sampling time from 30 minutes to 10 minutes does not impact 



significantly the forecasts accuracy. Figures 17 and 18 depict, with a sampling time set to 10 

minutes, the influence of the number of considered past sequences according to the topology of the 

neural networks used and the number of specialized models (in this case, the right number of 

hidden neurons for all of the neural networks used to model the wavelet decomposition 

coefficients is used) respectively. Both figures highlight that four past sequences and a unique 

overall model lead to the best results (in this case, the MRE observed is about 4.3%). A reduced 

sampling time impacts significantly on the common topology of the neural networks used to 

model all of the wavelet decomposition coefficients only. The common number of hidden neurons 

is about 15 (it was only of 5 with a sampling time set to 30 minutes). One can suppose that, because 

a reduced sampling time increases the length of the sequences (in this case, up to 27 points), more 

information has to be learned and, as a consequence, requires more hidden neurons for all of the 

neural networks used. 

 

 
 

Figure 18. Influence of the number of considered past sequences according to the number of 

specialized models (sampling time = 10 minutes). 

 

4.4. Optimal configuration and experimental results 

 

As a conclusion of the study about outdoor temperature forecasting, Table 3 depicts the optimal 

configuration to meet performance needs when applying the MRA-ANN methodology, according to 

the wavelet order ( ), the wavelet decomposition level ( ), the topology (the common number of 

hidden neurons  ) of the artificial neural networks used for estimating the detail and approximation 

coefficients, the number of considered past sequences ( ), the number of specialized models ( ) 

and, finally, the sampling time ( ).  

 

Table 3. Optimal configuration for outdoor temperature forecasting (MRA-ANN methodology). 

 

Parameter Symbol Optimal value 

Wavelet order   4 

Wavelet decomposition level   5 

Common number of hidden neurons   5 

Number of considered past sequences   4 

Number of specialized models   1 

Sampling time (minutes)   30 

 
Figure 19 allows comparing, from February 15, 2009 to March 02, 2009, the outdoor 

temperatures measured at the district boiler (    
   ), forecasted at the meteorological station (    

   ) 

and forecasted thanks to the MRA-ANN methodology based on a multi-resolution analysis and 

the use of artificial neural networks (    
    ). Clearly, the proposed methodology provides better 

forecasts than the meteorological station. The temperature peaks are far better modeled (as 

previously mentioned, it was one of the major objectives of the work, the forecasted temperature 

being used by a MPC for optimizing the boiler functioning). Indeed, one can note that frequent 

differences of about 5°C between the measured and forecasted (at the meteorological station) 

outdoor temperatures are reduced, using the developed model, to only 1°C. 



Table 4 specifies, for the considered period (from February 15, 2009 to March 02, 2009) and the 

two forecasted outdoor temperatures (by the meteorological station and using the MRA-ANN 

methodology), the Mean Relative Error (MRE), the Mean Absolute Error (MAE) as well as the 

curve fitting (FIT) obtained. First, one can remark, considering the temperature forecasted at the 

meteorological station as a reference, that the developed model allows reducing both the MRE 

and the MAE by 33% (from 6.28% to 4.14%) and 29.4% (from 1.75°C to 1.15°C) respectively. The 

curve fitting is improved of about 40% (from 42.6% to 60.6%). As a conclusion, one can highlight 

the model performance and the validity of the proposed MRA-ANN methodology. 

 

 
 

Figure 19. Outdoor temperature measured at the district boiler (    
   

), forecasted at the 

meteorological station (    
   ) and forecasted using the MRA-ANN methodology (    

    ). 

 

Table 4. Forecasting performance criteria (outdoor temperature). 
 

Forecasted outdoor temperature MRE [%] MAE [°C] FIT [%] 

    
    6.28 1.75 42.6 

    
     4.14 1.15 60.6 

 

5. Thermal power consumption forecasting 

 

This section of the paper presents experimental results in forecasting thermal power 

consumption. Two different ways of doing were considered: first, using the previously forecasted 

outdoor temperature (both parameters are strongly correlated) and, secondly, as we did for outdoor 

temperature, applying the MRA-ANN methodology. Finally, a hybrid approach is proposed. 
 

5.1. Use of the forecasted outdoor temperature 
 

As previously mentioned (section 3.1), outdoor temperature and thermal power consumption 

are inversely proportional. That is why the first of the two proposed approaches deals with a 

simple linear curve fitting, optimizing both the parameters   and   of Equation 8 thanks to the 

minimization of the difference between    

    (the calculated thermal power consumption) and 

   

        

    
   

 (the thermal power consumed by the hot water distribution network and estimated 

using the outdoor temperature forecasted at the meteorological station (         
   )) or    

        

   
    

 

(the thermal power consumed by the hot water distribution network and estimated using the 

outdoor temperature forecasted thanks to the MRA-ANN methodology (         
    )). Let us note 

that          and        if     
    is used while          and          with     

    . 
 

 
   
   

    
   

    
     

 

   
               

  (8) 



Table 5 (lines 1 to 2) and Figure 20 present the results of the thermal power consumption (   ) 

forecasting. These results validate the first proposed approach: one can easily predict the thermal 

power consumption of the hot water distribution network using outdoor temperature. Whatever 

the forecasted temperature used, the results are quite similar. For the previously-mentioned 

period (from February 15, 2009 to March 02, 2009), the MRE, the MAE and the FIT are about 
6.97%, 761.9 kW and 37.6% when using     

    and about 6.94%, 758.3 kW and 38.4% with     
    . 

However, having a quick look at Figure 20, one can remark, first, that the amplitude is not always 

well estimated and, secondly, that the curves are not always completely in phase. So, it could be 

interesting to use the proposed MRA-ANN methodology for directly forecasting the thermal power 

consumption of the hot water distribution network. 

 

Table 5. Forecasting performance criteria (thermal power consumption). 

 
Thermal power consumption (   ) 

forecasted using: 
MRE [%] MAE [kW] FIT [%] 

    
    6.97 761.9 37.6 

    
     6.94 758.3 38.4 

MRA-ANN methodology 6.07 663.6 44.7 

Hybrid approach 5.85 639.1 46.9 

 

 
 

Figure 20. Thermal power consumption forecasted using     
    (   

    
   

) or     
     (   

    
    

). Comparison 

with the calculated    
   

. 

 

5.2. Use of the MRA-ANN methodology 
 

 
 

Figure 21. Thermal power consumption forecasted using     
     (   

    
    

), the MRA-ANN methodology 

(   
    ) and the hybrid approach (   

   ). Comparison with the calculated    
   . 



The MRA-ANN methodology proposed to forecast outdoor temperature, based on a multi-

resolution analysis and artificial neural networks, has also been used for directly estimating the 

thermal power consumption of the hot water distribution network (   ). Due to the high correlation 

between the just-mentioned parameters, the optimal configuration found for outdoor temperature 

forecasting (Table 3) has been re-used to develop and validate the new model. Table 5 (line 3) and 

Figure 21 present the results of the thermal power consumption forecasting, using the MRA-ANN 

methodology. The MRE, the MAE and the FIT are about 6.07%, 663.6 kW and 44.7% respectively. 

These results are better than when dealing with a linear curve fitting, using the forecasted 
outdoor temperature (    

    ): one can highlight that the model allows reducing both the MRE and 

the MAE by 12.5%, from 6.94% to 6.07% and from 758.3 kW to 663.6 kW respectively. The curve 

fitting is improved of about 16.4% (from 38.4% to 44.7%). However, taking a look at Figure 21, 

one can remark that the peaks of consumption are again not always well estimated. That is why a 

last approach is proposed, combining time series forecasting (the MRA-ANN methodology) and 

linear curve fitting. 
 

5.3. Hybrid approach 
 

As just mentioned, a last approach is proposed, combining the MRA-ANN methodology and 

linear curve fitting, for predicting the thermal power consumption of the hot water distribution 

network. One can highlight that time series forecasting (section 5.2) provides better results than 

linear curve fitting (using the forecasted outdoor temperature, section 5.1) but sometimes 

underestimates peaks of consumption. Both approaches are valid but have different characteristics. 

That is why it appears that they can be used in tandem to improve the forecasts accuracy. The 

idea is so to combine the forecasted sequences provided by each of the two considered approaches 

(   
     and    

    
    

) using a weighted mean whose coefficients   and   are optimized in the following 

way (equation 9): 
 

 
   
   

    
       

    

   
         

    
    

      
    

  

 

The optimal values of   and   are about 0.28 and 0.71 respectively. As it was expected, the weight 

of the most accurate forecasted sequence, provided by the MRA-ANN methodology, is the highest 

weight. However, one can note that the influence (weight) of the sequence estimated by the "linear 

curve fitting" method, using the forecasted outdoor temperature, is regardless significant. Table 5 

(line 4) and Figure 21 present the results of the thermal power consumption forecasting, using 

the just-described hybrid approach. The MRE, the MAE and the FIT are about 5.85%, 639.1 kW 

and 46.9% respectively. Taking as a reference the performance of the MRA-ANN methodology, 

one can observe that the proposed hybrid approach allows reducing both the MRE and the MAE 

by 3.7%, from 6.07% to 5.85% and from 663.6 kW to 639.1 kW respectively. The curve fitting is 

also improved of about 5% (from 44.7% to 46.9%). Although these improvements do not appear to 

be significant, they validate the last proposed hybrid approach for estimating the thermal power 

consumption of the hot water distribution network (   ).  
 

6. Conclusion and perspectives 
 

As part of the OptiEnR project, the present paper, the first of a series of three dealing with the 

modeling and the optimization of a district boiler, situated at La Rochelle (west coast of France), 

focuses on forecasting both the outdoor temperature and the thermal power consumption of the 

hot water distribution network. This district boiler is composed of a wood boiler, a gas-fuel oil 

boiler, a breaking pressure bottle and a cogeneration plant. With the aim of optimizing the use of 

a hot water thermal storage unit and reducing the gas-fuel oil boiler coverage rate (i.e. the fossil 

energy consumption), a model predictive controller will be developed and implemented. It requires 

forecasting, over the next 4h30, the two above-mentioned parameters.  

The proposed MRA-ANN methodology deals with the concept of time series and uses a wavelet-

based multi-resolution analysis and artificial neural networks. Multi-layer Perceptrons were 

trained and validated, using the wavelet decomposition coefficients of past sequences, for estimating 

both the detail and approximation coefficients of the considered target sequences. Substituting 

the prediction task of an original time series of high variability by the estimation, using artificial 

(9) 



neural networks, of its wavelet coefficients on different levels of lower variability (according to 

different frequency domains), while preserving the temporal characteristics of the series, is the 

main idea of the present work. Then, the reconstruction of the target sequences is performed by 

simply summing up the estimated coefficients. One can note that the wavelet-based multi-resolution 

analysis allows isolating both the overall trend and the 24-hour pseudo period characterizing the 

considered time series (approximation coefficients) from the variability caused by climatic phenomena 

(detail coefficients). Because these coefficients are of lower variability than the original and to-be-

forecasted time series, the MRA-ANN methodology makes the estimation of future values easier. 

The number of considered past sequences ( ), the sampling time ( ), the wavelet decomposition 

level ( ) and the wavelet order ( ) impact the forecast accuracy. The networks topology, basically 

the number of hidden neurons ( ), as well as training parameters, such as the number of iterations, 

the learning rate and the error goal, also impacts the networks generalization capability. That is 

why the present paper deals with the study and the quantification of all of these influences. It 

focuses also on the impact of the random initialization of all the networks synaptic weights on the 

performance of the models and on the suitability of developing specialized models ( ). As a result of 

the study about outdoor temperature forecasting, the optimal configuration, leading to the most 

accurate forecasts (the MRE, the MAE and the FIT are about 4.2%, 1.2°C and 60% respectively), 

is defined as follows:    ,     ,    ,    ,     and    . These results validate the 

proposed MRA-ANN methodology and highlight both the impact of working with wavelet decomposed 

sequences and the generalization capability of multi-layer neural networks. 

Next, two different ways of doing have been considered for forecasting the thermal power 

consumption of the hot water distribution network: first, using the previously forecasted outdoor 

temperature (both parameters are strongly correlated) and, secondly, applying the MRA-ANN 

methodology used to forecast outdoor temperature again (in this case, the optimal configuration 

highlighted during the first part of the work has been re-used to develop and validate the new 

model). Finally, a hybrid approach is proposed, combining time series forecasting and linear curve 

fitting. Whatever the considered approach, the results are satisfactory. The MRE, the MAE and 

the FIT are ranging between 5.85% and 6.97%, 639.1 kW and 761.9 kW and 37.6% and 46.9% 

respectively. The hybrid approach provides the best results. However, one can note that, comparing 

the two forecasted parameters, forecasts accuracy is not as good as that achieved when predicting 

outdoor temperature. It can be explained by hardly-quantifiable influences leading to amplitude 

variations. Some peaks of consumption may be due to an unusual functioning of big buildings 

heating systems (for example, an exhibition hall connected to the hot water distribution network). 

Some other peaks may be the consequence of the way the thermal power consumption is specified, 

using both the temperatures of the water entering the distribution network and coming back from 

this network. So, if the gas-fuel oil boiler starts working, the temperature of the water entering 

the network will increase quickly but no significant impact will be noticed on the temperature of 

the cold water coming back to the plant until a few minutes. However, this leads to variations of 

the thermal power consumption, induced by both the functioning of the district boiler and the 

thermal inertia of the hot water distribution network. One can suppose that adding to the plant a 

hot water thermal storage unit (one of the next steps listed in the OptiEnR research project) will 

limit the presence of hardly-predictable peaks of consumption.  

As just mentioned, future work will now focus on optimizing the performance of the district 

boiler of La Rochelle, adding to the plant a thermal storage unit which will be managed thanks to 

a model-based predictive controller. Using forecasted outdoor temperature and thermal power 

consumption sequences, such a controller calculates an optimal command sequence to be applied 

to the thermal storage feed pump. This allows adjusting the flow of the water passing through 

this unit. Let us remember that the main objective of the work deals with the minimization of the 

fossil energy consumption, stocking renewable energy during low-demand periods and using it 

during high-demand periods. Future papers will describe both the modeling and the way the 

district boiler functioning will be optimized. 
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