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An active vibration control system using an inertial actuator for suppression of multiple unknown and/or time-varying vibrations will be presented. The objective is to minimize the residual force by applying an appropriate control effort through the inertial actuator. The system does not use any additional transducer for getting in real time information upon the disturbances.

A direct feedback adaptive regulation scheme for the suppression of multiple unknown and/or time-varying vibrations will be used and evaluated in real time. It uses the internal model principle and the Youla-Kucera parametrization.

I. INTRODUCTION

One of the basic problems in active vibration control is the attenuation of multiple vibrations of unknown and time varying frequencies using only the measurement of the residual force (or acceleration).

Vibrations correspond to disturbances with energy concentrated in a narrow band around unknown and/or time-varying frequencies. From a "signal and system" perspective it is possible to view these disturbances as a white noise or a Dirac impulse passed through a "model of the disturbance". While in general one can assume a certain structure for such "model of disturbance", its parameters are unknown and may be time varying. From a control point of view the objective is the attenuation (rejection) of unknown disturbances without measuring them. Since the model of the disturbances is unknown and time varying, this will require to use an adaptive approach. We have to solve an adaptive regulation problem since the objective is the attenuation of unknown disturbances without measuring them. While the disturbances are narrow band disturbances of unknown and time varying frequency (within a certain frequency region), the dynamic characteristics of the active vibration system itself for a given physical realization are practically constant. The corresponding "control plant model" to be used for control design (and tuning) can be identified from input/output data.

To achieve the rejection of the disturbance (at least asymptotically) without measuring it, an adaptive feedback solution can be considered which does not require the use of an additional measurement (( [START_REF] Ben Amara | Adaptive sinusoidal disturbance rejection in linear discrete-time systems -Part I: Theory[END_REF], [START_REF] Ben Amara | Adaptive sinusoidal disturbance rejection in linear discrete-time systems -Part II: Experiments[END_REF], [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF], [START_REF] Constantinescu | Commande robuste et adaptative d'une suspension active[END_REF]). In the present I.D. Landau, M. Alma, J.J. Martinez and G. Buche are with control system department of Gipsa-lab, St martin d'héres, 38402 FRANCE ([ioan-dore.landau, marouane.alma, john-jairo.martinez-molina, Gabriel.Buche]@gipsa-lab.grenoble-inp.fr)
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Adaptation Algorithm Ĉontroller Fig. 1. Direct adaptive regulation scheme for rejection of unknown disturbances paper we are in the context of an adaptive regulation problem with a known plant model and an unknown disturbance model. This type of problem has been considered in ([5], [START_REF] Ben Amara | Adaptive sinusoidal disturbance rejection in linear discrete-time systems -Part I: Theory[END_REF], [START_REF] Ben Amara | Adaptive sinusoidal disturbance rejection in linear discrete-time systems -Part II: Experiments[END_REF], [START_REF] Valentinotti | Adaptive Rejection of Unstable Disturbances: Application to a Fed-Batch Fermentation[END_REF], [START_REF] Marino | Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency[END_REF], [START_REF] Ding | Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model[END_REF], [START_REF] Gouraud | Design of robust and frequency adaptive controllers for harmonic disturbance rejection in a single-phase power network[END_REF], [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF]) among other references.

In order to reject the disturbances in a feedback configuration one has to use the internal model principle. The controller should incorporate the model of the disturbance ( [START_REF] Francis | The internal model principle of control theory[END_REF], [START_REF] Johnson | Theory of disturbance-accomodating controllers[END_REF], [START_REF] Bengtsson | Output regulation and internal models -a frequency domain approach[END_REF], [START_REF] Tsypkin | Stochastic discrete systems with internal models[END_REF]). Therefore the rejection of unknown disturbances raises the problem of adapting the internal model of the controller and its re-design in real-time.

One way for solving this problem is to try to estimate in real time the model of the disturbance and re-compute the controller, which will incorporate the estimated model of the disturbance (as a pre-specified element of the controller). This will lead to an indirect adaptive regulation scheme. The time consuming part of this approach is the redesign of the controller at each sampling time. This approach has been investigated in [START_REF] Bodson | Adaptive algorithms for the rejection of sinusosidal disturbances with unknown frequency[END_REF], [START_REF] Gouraud | Design of robust and frequency adaptive controllers for harmonic disturbance rejection in a single-phase power network[END_REF], [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF].

However, by considering the Youla-Kucera parametrization of the controller (known also as the Q-parametrization), it is possible to insert and adjust the internal model in the controller by adjusting the parameters of the Q polynomial (see figure 1), without recomputing the controller (polynomials R 0 and S 0 in figure 1 remain unchanged). The number of the controller parameters to be directly adapted is roughly equal to the number of parameters of the denominator of the disturbance model.

The novelty of this paper is the presentation of a direct adaptive regulation scheme for building an active vibration control systems using inertial actuators and its application to rejection of multiple unknown vibrations (to the authors' knowledge all the references available deals only with one eventually two vibrations).

The paper is organized as follows. In Section II, the active vibration control system using an inertial actuator on which we shall test the algorithms is presented. Section III is dedicated to a brief review of the plant, disturbance and controller representation, Internal Model Principle and Qparametrization. Some robustness issues are addressed in section IV. The direct adaptive control schemes for disturbance rejection is presented in section V. Section VI presents the results obtained in real time on the active vibration control system. Some concluding remarks are given in section VII.

II. AN ACTIVE VIBRATION CONTROL SYSTEM USING AN INERTIAL ACTUATOR

The structure of the system used in this paper is presented in figure 2. A general view of the whole system including the testing equipment is shown figure 3. It consists on a passive damper, an inertial actuator, a load, a transducer for the residual force, a controller, a power amplifier and a shaker. The mechanical construction of the load is such that the vibration produced by the shaker, fixed to the ground, are transmitted to the upper side, on top of the passive damper. The inertial actuator will create vibrational forces which can counteract the effect of vibrational disturbances. The controller through the power amplifier will generate current in the mobile coil which will produce a movement in order to reduce the residual force. The equivalent control scheme is shown in figure 4. The system input, u(t) is the position of the mobile part (magnet) (see figures 2, 4), the output y(t) is the residual force measured by a force sensor. The transfer function (q -d1 C D ), between the disturbance force, u p , and the residual force y(t) is called primary path. In our case (for testing purposes), the primary force is generated by a shaker driven by a signal delivered by the computer. The plant transfer function (q -d B A ) between the input of the inertial actuator, u(t), and the residual force is called secondary path. The input of the system being a position and the output a force, the secondary path transfer function has a double differentiator behavior.

The control objective is to attenuate the vibrations transmitted from the machine to the chassis. The system has to be considered as a "black box" and the corresponding models for control design should be identified.The sampling frequency is 800Hz. 

G(z -1 ) = z -d B(z -1 ) A(z -1 ) = z -d-1 B * (z -1 ) A(z -1 ) (1) 
with: d = the plant pure time delay in number of sampling periods

A = 1 + a 1 z -1 + • • • + a n A z -n A ; B = b 1 z -1 + • • • + b n B z -n B = q -1 B * ;
where A(z -1 ), B(z -1 ), B * (z -1 ) are polynomials in the complex variable z -1 and n A , n B and n B -1 represent their orders 1 . The model of the plant may be obtained by system identification. Details on system identification of the models considered in this paper can be found in [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF], [START_REF] Constantinescu | Commande robuste et adaptative d'une suspension active[END_REF], [START_REF] Landau | Direct controller order reduction by identification in closed loop[END_REF], [START_REF] Landau | A methodology for the design of feedback active vibration control systems[END_REF], [START_REF] Constantinescu | Direct controller order reduction by identification in closed loop applied to a benchmark problem[END_REF].

Since in this paper we are focused on regulation, the controller to be designed is a RS-type polynomial controller ( [START_REF] Landau | Adaptive control[END_REF], [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF]) -see also figure 4.

The output of the plant y(t) and the input u(t) may be written as:

y(t) = q -d B(q -1 ) A(q -1 ) u(t) + p(t) (2) 
S(q -1 )u(t) = -R(q -1 )y(t) (3) 
where q -1 is the delay (shift) operator (x(t) = q -1 x(t + 1)) and p(t) is the resulting additive disturbance on the output of the system. R(z -1 ) and S(z -1 ) are polynomials in z -1 having the orders n R and n S , respectively, with the following expressions:

R(z -1 ) = r 0 + r 1 z -1 + . . . + r n R z -n R = R ′ (z -1 )H R (z -1 ) (4) S(z -1 ) = 1 + s 1 z -1 + . . . + s n S z -n S = S ′ (z -1 )H S (z -1 ) (5)
where H R and H S are pre-specified parts of the controller (used for example to incorporate the internal model of a disturbance or to open the loop at certain frequencies).

We define the following sensitivity functions:

• Output sensitivity function (the transfer function between the disturbance p(t) and the output of the system y(t)):

S yp (z -1 ) = A(z -1 )S(z -1 ) P(z -1 ) (6) 
• Input sensitivity function (the transfer function between the disturbance p(t) and the input of the system u(t)):

S up (z -1 ) = - A(z -1 )R(z -1 ) P(z -1 ) (7) 
where

P(z -1 ) = A(z -1 )S(z -1 ) + z -d B(z -1 )R(z -1 ) = A(z -1 )S ′ (z -1 )H S (z -1 ) + z -d B(z -1 )R ′ (z -1 )H R (z -1 ) (8)
defines the poles of the closed loop ( roots of P(z -1 )).

In pole placement design, the polynomial P(z -1 ) specifies the desired closed loop poles and the controller polynomials R(z -1 ) and S(z -1 ) are minimal degree solutions of [START_REF] Ding | Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model[END_REF] where the degrees of P, R and S are given by:

n P ≤ n A + n B + d -1, n S = n B + d -1 and n R = n A -1.
Using the equations ( 2) and ( 3), one can write the output of the system as:

y(t) = A(q -1 )S(q -1 ) P(q -1 ) p(t) = S yp (q -1 )p(t) (9) 
Suppose that p(t) is a deterministic disturbance, so it can be written as

p(t) = N p (q -1 ) D p (q -1 ) δ (t) (10) 
where δ (t) is a Dirac impulse and N p (z -1 ), D p (z -1 ) are coprime polynomials in z -1 , of degrees n N p and n D p , respectively. In the case of stationary disturbances the roots of D p (z -1 ) are on the unit circle. The energy of the disturbance is essentially represented by D p . The contribution of the terms of N p is weak compared to the effect of D p , so one can neglect the effect of N p .

Internal Model Principle: The effect of the disturbance given in [START_REF] Gouraud | Design of robust and frequency adaptive controllers for harmonic disturbance rejection in a single-phase power network[END_REF] upon the output:

y(t) =
A(q -1 )S(q -1 ) P(q -1 )

• N p (q -1 ) D p (q -1 ) δ (t) , (11) 
where D p (z -1 ) is a polynomial with roots on the unit circle and P(z -1 ) is an asymptotically stable polynomial, converges asymptotically towards zero if and only if the polynomial S(z -1 ) in the RS controller has the form:

S(z -1 ) = D p (z -1 )S ′ (z -1 ) . (12) 
In other terms, the pre-specified part of S(z -1 ) should be chosen as H S (z -1 ) = D p (z -1 ) and the controller is computed using [START_REF] Ding | Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model[END_REF], where P, D p , A, B, H R and d are given 2 . Using the Youla-Kucera parametrization (Qparametrization) of all stable controllers ([3], [START_REF] Tsypkin | Stochastic discrete systems with internal models[END_REF]), the controller polynomials R(z -1 ) and S(z -1 ) get the form:

R(z -1 ) = R 0 (z -1 ) + A(z -1 )Q(z -1 ) ; (13) 
S(z -1 ) = S 0 (z -1 ) -z -d B(z -1 )Q(z -1 ) . (14) 
The (central) controller (R 0 , S 0 ) can be computed by poles placement (but any other design technique can be used).

Given the plant model (A, B, d) and the desired closed-loop poles specified by the roots of P one has to solve:

P(z -1 ) = A(z -1 )S 0 (z -1 ) + z -d B(z -1 )R 0 (z -1 ) . (15) 
Equations ( 13) and ( 14) characterize the set of all stabilizable controllers assigning the closed loop poles as defined by P(z -1 ). For the purpose of this paper Q(z -1 ) is considered to be a polynomial of the form:

Q(z -1 ) = q 0 + q 1 z -1 + . . . + q n Q z -n Q . ( 16 
)
To compute Q(z -1 ) in order that the polynomial S(z -1 ) given by ( 14) incorporates the internal model of the disturbance (12) one has to solve the diophantine equation:

S ′ (z -1 )D p (z -1 ) + z -d B(z -1 )Q(z -1 ) = S 0 (z -1 ) , (17) 
where D p (z -1 ), d, B(z -1 ) and S 0 (z -1 ) are known and S ′ (z -1 ) and Q(z -1 ) are unknown. Equation ( 17) has a unique solution for S ′ (z -1 ) and Q(z -1 ) with:

n S 0 ≤ n D p + n B + d -1, n S ′ = n B + d -1, n Q = n D p -1 .
One sees that the order n Q of the polynomial Q depends upon the structure of the disturbance model.

IV. ROBUSTNESS CONSIDERATIONS

As it is well known, the introduction of the internal model for the perfect rejection of the disturbance (asymptotically) may have as effect to raise the maximum value of the modulus of the output sensitivity function S yp . This may lead to unacceptable values for the modulus margin (|S yp (e -jω |) -1 max ) and the delay margins if the controller design is not appropriately done (see [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF]). As a consequence, a robust control design should be considered assuming that the model of the disturbance and its domain of variations in the frequency domain are known. The objective is that for all situations an acceptable modulus margin and delay margin are obtained.

Furthermore, at the frequencies where perfect rejection of the disturbance is achieved one has S yp (e -jω ) = 0 and S up (e -jω ) =

A(e -jω ) B(e -jω ) .

Equation ( 18) corresponds to the inverse of the gain of the system to be controlled. The implication of equation ( 18) is that cancellation (or in general an important attenuation) of disturbances on the output should be done only in frequency regions where the system gain is large enough. If the gain of the controlled system is too low, |S up | will be large at these frequencies. Therefore, the robustness vs additive plant model uncertainties will be reduced and the stress on the actuator will become important [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF].

V. DIRECT ADAPTIVE CONTROL FOR DISTURBANCE

ATTENUATION

The objective is to find an estimation algorithm which will directly estimate the parameters of the internal model in the controller in the presence of an unknown disturbance (but of known structure) without modifying the closed loop poles. Clearly, the Q-parametrization is a potential option since modifications of the Q polynomial will not affect the closed loop poles. In order to build an estimation algorithm it is necessary to define an error equation which will reflect the difference between the optimal Q polynomial and its current value.

This idea has been used in [START_REF] Tsypkin | Stochastic discrete systems with internal models[END_REF], [START_REF] Valentinotti | Adaptive Rejection of Unstable Disturbances: Application to a Fed-Batch Fermentation[END_REF], [START_REF] Ben Amara | Adaptive sinusoidal disturbance rejection in linear discrete-time systems -Part I: Theory[END_REF], [START_REF] Ben Amara | Adaptive sinusoidal disturbance rejection in linear discrete-time systems -Part II: Experiments[END_REF], [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF]. Using the Q-parametrization, the output of the system in the presence of a disturbance can be expressed as:

y(t) =
A(q -1 )[S 0 (q -1 )q -d B(q -1 )Q(q -1 )] P(q -1 )

• N p (q -1 ) D p (q -1 ) δ (t) = S 0 (q -1 )q -d B(q -1 )Q(q -1 ) P(q -1 ) w(t) [START_REF] Valentinotti | Adaptive Rejection of Unstable Disturbances: Application to a Fed-Batch Fermentation[END_REF] where w(t) is given by (see also figure 1):

w(t) = A(q -1 )N p (q -1 ) D p (q -1 ) δ (t) = A(q -1 )y(t) -q -d B(q -1 )u(t) (20) 
In the time domain, the internal model principle can be interpreted as finding Q such that asymptotically y(t) becomes zero. Assume that one has an estimation of Q(q -1 ) at instant t, denoted Q(t, q -1 ). Define ε 0 (t + 1) as the value of y(t + 1) obtained with Q(t, q -1 ).

Using [START_REF] Valentinotti | Adaptive Rejection of Unstable Disturbances: Application to a Fed-Batch Fermentation[END_REF] one gets:

ε 0 (t + 1) = S 0 (q -1 ) P(q -1 ) w(t + 1) - q -d B * (q -1 ) P(q -1 ) Q(t, q -1 )w(t) (21)
One can define now the a posteriori error (using Q(t + 1, q -1 )) as:

ε(t + 1) = S 0 (q -1 ) P(q -1 ) w(t + 1) - q -d B * (q -1 ) P(q -1 ) Q(t + 1, q -1 )w(t) (22) 
Replacing S 0 (q -1 ) from the last equation by ( 17) one obtains:

ε(t + 1) = [Q(q -1 ) -Q(t + 1, q -1 )] q -d B * (q -1 ) P(q -1 ) w(t) + v(t + 1) , ( 23 
)
where v(t) = S ′ (q -1 )D p (q -1 ) P(q -1 ) w(t) = S ′ (q -1 )A(q -1 )N p (q -1 ) P(q -1 ) δ (t) is a signal which tends asymptotically towards zero. Define the estimated polynomial Q(t, q -1 ) as: Q(t, q -1 ) = q0 (t) + q1 (t)q -1 + . . . + qn Q (t)q -n Q and the associated estimated parameter vector : θ (t) = [ q0 (t) q1 (t) . . . qn Q (t)] T . Define the fixed parameter vector corresponding to the optimal value of the polynomial Q as: θ = [q 0 q 1 . . . q n Q ] T . Denote:

w 2 (t) = q -d B * (q -1 ) P(q -1 ) w(t) (24) 
and define the following observation vector:

φ T (t) = [w 2 (t) w 2 (t -1) . . . w 2 (t -n Q )] . (25) 
Equation ( 23) becomes

ε(t + 1) = [θ T -θ T (t + 1)]φ (t) + v(t + 1) . (26) 
One can remark that ε(t + 1) corresponds to an adaptation error ( [START_REF] Landau | Adaptive control[END_REF]).

From equation ( 21) one obtains the a priori adaptation error:

ε 0 (t + 1) = w 1 (t + 1) -θ T (t)φ (t) , with w 1 (t + 1) = S 0 (q -1 ) P(q -1 ) w(t + 1) ; (27) 
w 2 (t) = q -d B * (q -1 ) P(q -1 ) w(t) ; (28) 
w(t + 1) = A(q -1 )y(t + 1) -q -d B * (q -1 )u(t) , (29) 
where B(q -1 )u(t + 1) = B * (q -1 )u(t).

The a posteriori adaptation error is obtained from (22):

ε(t + 1) = w 1 (t + 1) -θ T (t + 1)φ (t) .
For the estimation of the parameters of Q(t, q -1 ) the following parameter adaptation algorithm is used ( [START_REF] Landau | Adaptive control[END_REF]):

θ (t + 1) = θ (t) + F(t)φ (t)ε(t + 1) ; (30) 
ε(t + 1) = ε 0 (t + 1) 1 + φ T (t)F(t)φ (t) ; (31) 
ε 0 (t + 1) = w 1 (t + 1) -θ T (t)φ (t) ; (32) 
F(t + 1) = 1 λ 1 (t)   F(t) - F(t)φ (t)φ T (t)F(t) λ 1 (t) λ 2 (t) + φ T (t)F(t)φ (t)   . ( 33 
) 1 ≥ λ 1 (t) > 0; 0 ≤ λ 2 (t) < 2 (34) 
where λ 1 (t), λ 2 (t) allow to obtain various profiles for the evolution of the adaption gain F(t) (for details see [START_REF] Landau | Adaptive control[END_REF], [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF]).

In the adaptive operation (the adaptation is performed continuously and the controller is updated at each sampling) one uses in general an adaptation gain updating with variable forgetting factor λ 1 (t) (the forgetting factor tends towards 1), combined with a constant trace adaption gain. For details see [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF], [START_REF] Landau | Adaptive control[END_REF].

For a stability analysis of this scheme see [START_REF] Landau | Adaptive narrow band disturbance rejection applied to an active suspension -an internal model principle approach[END_REF].

VI. ADAPTIVE REJECTION OF MULTIPLE NARROW BAND DISTURBANCES ON AN ACTIVE VIBRATION CONTROL SYSTEM USING AN INERTIAL ACTUATOR

A. Plant identification and central controller design

The primary path (between the shaker excitation and the residual force) has been identified in open loop operation. The excitation signal was a PRBS generated with a shift register with N = 10 and a frequency divider of p = 4 [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF]. The estimated orders of the model are: n C = 10, n D = 8, d 1 = 0. The frequency characteristic of the primary path is shown in figure 5 (dashed). The central controller (without internal model) has been designed using pole placement with sensitivity shaping [START_REF] Landau | Digital Control Systems -Design, Identification and Implementation[END_REF]. The closed loop poles are the complex poles of the open loop model but with a higher damping plus auxiliary high frequency aperiodic poles introduced for robustness reasons. A prespecified part H R = 1 + q -1 has been introduced in order to open the loop at 0.5 f s .

The frequency domain in which vibrations will be attenuated is between 45 and 105Hz.

B. The case of two simultaneous narrow band disturbances

Two simultaneous time varying frequency sinusoids will be considered as disturbances. In this case one should take n D p = 4 and n Q = n D p -1 = 3. Time domain results obtained with direct adaptation scheme in "adaptive" operation regime are shown in Figure 6. The disturbances are applied at 1s (the loop has already been closed) and step changes of their frequencies occur every 3s. The convergence of the output requires less than 0.7s in the worst case.

Figure 7 shows the corresponding evolution of the parameters of the polynomial Q.

Figure 8 shows the spectral densities of the residual force obtained in open loop and in closed loop using the direct adaptation scheme (after the adaptation algorithm has converged). The results are given for the simultaneous applications of two sinusoidal disturbances (65Hz and 95Hz). One can remark a strong attenuation of the disturbances (larger than 45dB). There is a permanent measurement noise at 50Hz (the power network), which is however not amplified in closed loop. The variance of the residual force in open loop is: var(y ol ) = 1.087510 -1 . In closed loop (after the adaptation algorithm has converged), the variance is: var(y cl ) = 5.6428.10 -5 . This corresponds to a global attenuation of 66dB.

C. The case of three simultaneous narrow band disturbances

Time domain results in "adaptive" operation regime are presented in figure 9. The same protocol for disturbances application, as in the previous case, has been considered (disturbances are applied at 1s and step changes of their frequencies occur every 3s). The convergence of the output requires 0.8s in the worst case.

Figure 10 shows the spectral densities of the residual force obtained in open loop and in closed loop using the direct adaptation scheme (after the adaptation algorithm has converged). The results are given for the simultane- VII. CONCLUSIONS The results obtained in real time on an active vibration control system (using an inertial actuator) illustrate the potential of the adaptive approach proposed for rejection of unknown time varying narrow band disturbances. 
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The complex variable z -1 will be used for characterizing the system's behavior in the frequency domain and the delay operator q -1 will be used for describing the system's behavior in the time domain.

Of course it is assumed that D p and B do not have common factors.