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Approximate travelling wave solutions to the 2D

Euler equation on the torus

Nicolas Crouseilles∗ and Erwan Faou†

February 21, 2011

Abstract

We consider the two-dimensional Euler equation with periodic boundary con-
ditions. We construct approximate solutions of this equation made of localized
travelling profiles with compact support propagating over a stationary state de-
pending on only one variable. The direction or propagation is orthogonal to this
variable, and the support is concentrated around flat points of the stationary
state. Under regularity assumptions, we prove that the approximation error can
be made exponentially small with respect to the width of the support of the
travelling wave. We illustrate this result by numerical simulations.

1 Introduction

We consider the two-dimensional Euler equation written in terms of vorticity

∂tω + u · ∇ω = 0,

where ω(t, x, y) ∈ R, ∇ = (∂x, ∂y)
T with (x, y) ∈ T

2 the two-dimensional torus
(R/2πZ)2. The divergence free velocity field u is given by the formula

u = J∇ψ with ψ = (−∆)−1ω, where J =

(

0 −1
1 0

)

is the canonical symplectic matrix. Here (−∆)−1 is the inverse of the Laplace
operator on functions with average 0 on T

2. We can rewrite this equation as






∂tω + {ψ, ω} = 0,

−∆ψ = ω,
(1.1)
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with the 2D Poisson bracket for functions on T
2:

{f, g} = (∂xf)(∂yg) − (∂yf)(∂xg).

For two functionals H(ω) and G(ω), we set

{H,G}ω =

∫

T2

δH

δω

{

δG

δω
, ω

}

= −{G,H}ω.

The Euler equation (1.1) is a Hamiltonian PDE associated with this non canon-
ical Poisson structure, and with Hamiltonian

E(ω) =
1

(2π)2

∫

T2

1

2
‖u‖

2
=

1

2(2π)2

∫

T2

ω(−∆)−1ω = ‖ω‖
2

H−1
,

which is quadratic in ω. In other words, we can write (1.1) as

∂tω +

{

δE

δω
, ω

}

= 0,

and from the definition of the Poisson structure, we observe that E(ω(t)) =
E(ω(0)) for all time (preservation of the energy). Moreover, the flow is volume
preserving in the sense that for all smooth functions h : R 7→ R, we have

∀ t ≥ 0

∫

T2

h(ω(t, x, y))dxdy =

∫

T2

h(ω(0, x, y))dxdy, (1.2)

which expresses the preservation of the Casimirs of the Poisson structure.
The equation (1.1) possesses many stationary states. For all functions F :

R 7→ R and ψ0 : T
2 → R satisfying

∆ψ0 = F (ψ0),

then the couple of functions ω(t, x, y) = F (ψ0(x, y)) and ψ(t, x, y) = ψ0(x, y)
solve (1.1). Another class of stationary states are given by functions depending
only on one variable (shear flows): for any smooth V (y) periodic in y, the couple
ω(t, x, y) = V ′′(y) and ψ(t, x, y) = −V (y) is solution of the 2D Euler equation.

The goal of this paper is to construct approximate travelling solutions of
(1.1) based on such stationary states. More precisely, we will construct families
of functions of the form

ωε(t, x, y) = V ′′(y) + Ωε(x− x0 − ct, y − y0) (1.3)

for ε sufficiently small, where the functions Ωε(x, y) are profiles exponentially
decaying with respect to (|x| + |y|)/ε, and with compact support. Then, under
the assumption that V is smooth and that y0 is such that V is locally linear
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around y0 - so that V ′′ is locally zero - we can prove that (1.3) is solution of (1.1)
for all time up to an error of order εN for all N . If moreover V has a Gevrey
regularity, we can optimize the truncation error and obtain an exponentially
small error with respect to ε.

Strikingly, this construction holds when the velocity c is given by c = V ′(y0).
In other words, the speed of the profile depends on the local shape of the surface
defined by the stationary state V (y). Moreover, we can take ‖Ωε‖

L∞
≃ ε−α

where α is any real number.
Note that as ωε(t, x, y) is a travelling wave with constant velocity, it auto-

matically satisfies the preservation law (1.2), and we can easily prove that the
energy is preserved up to exponentially small terms for all times.

The method of proof is based of an asymptotic matching between the profiles
and the shear flow V (y) as in [10]. Such technic has already been used in the
context of Euler equations, see for instance [2, 3] and the references therein.

We conclude this introduction by remarking that the construction can be
easily extended to a finite number of travelling profiles if V ′′(y) possesses several
flat points, by just adding exponentially decreasing profile with non interacting
supports:

ωε(t, x, y) = V ′′(y) +
K

∑

k=0

Ωε
k(x− xk − ckt, y − yk) (1.4)

where the points yk are flat points of V ′′(y). Note that this can be done at
the same level y1 = y0 provided x1 6= x0 and ε small enough to ensure the non
interaction of the supports of the profiles.

Therefore, the function (1.4) is a quasi-periodic function satisfying (1.1) up to
exponentially small terms. The question of the existence of quasi-periodic exact
solutions for the 2D Euler equation, possibly close to the functions constructed
above, remains an open problem.

We conclude this paper by a numerical illustration of the previous results.

Acknowledgements: It is a great pleasure to thank Sergei Kuksin for many
helpful discussions and encouragement during the preparation of this work, and
Freddy Bouchet for useful comments.

2 Ansatz

Let (ω, ψ) a solution of (1.1), and V (y) a smooth periodic function. Let us set

ξ(t, x, y) = ω(t, x, y) − V ′′(y), and η(t, x, y) = ψ(t, x, y) + V (y).
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These functions satisfy






∂tξ + V ′∂xξ + V ′′′∂xη + {η, ξ} = 0,

−∆η = ξ.
(2.1)

Let ε > 0 and (x0, y0) ∈ T
2. We search a formal solution of the previous equation

under the form

ξε(t, x, y) = ε−αΩ

(

x− x0 − ct

ε
,
y − y0

ε

)

(2.2)

and

ηε(t, x, y) = ε2−αΨ

(

x− x0 − ct

ε
,
y − y0

ε

)

, (2.3)

where Ω and Ψ are profiles decreasing away from (0, 0). Note that α is here
arbitrary and can be positive or negative. We assume that y0 is such that

V ′′(y0) = · · · = V (n)(y0) = 0, ∀n ≥ 2. (2.4)

It means that V ′′ is flat in the variable y in the vicinity of y0. We perform the
scaling

X =
x− x0

ε
, Y =

y − y0

ε
, and T =

t

ε
, (2.5)

and plug the expressions (2.2) and (2.3) into (2.1). This yields






−c∂XΩ + V ′(y0 + εY )∂XΩ + ε2V ′′′(y0 + εY )∂XΨ + ε1−α{Ψ,Ω} = 0,

−∆X,Y Ψ = Ω,

(2.6)
where the Poisson bracket and the Laplace operator express in terms of X and
Y . Note that here we consider (X,Y ) ∈ R

2. This is a profile equation as for
boundary layers in singular perturbation theory, see for instance [10].

Now under the assumption (2.4), we have that for all N , V ′(y0 + εY ) =
V ′(y0)+O(εNY N ) and similarly V ′′′(y0 + εY ) = O(εNY N ). Hence at least from
the formal point of view, we can solve (2.6) up to high powers of ε if we take

c = V ′(y0),

and if Ω and Ψ are solutions of the equation

− ∆X,Y Ψ = Ω, and {Ψ,Ω} = 0 in R
2, (2.7)

where ∆X,Y = ∂2
X +∂2

Y is the Laplace operator in coordinates (X,Y ) ∈ R
2. This

equation means that (Ψ,Ω) is a stationary state of the Euler equation on R
2. To

match the asymptotic profile with the stationary state V (y), we naturally seek
for exponentially decreasing solutions.

We are lead to make the following assumption:
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Hypothesis 2.1 The functions Ω(X,Y ) and Ψ(X,Y ) satisfy (2.7) and are ex-
ponentially decreasing in the sense that there exists constants µ and β such that

∀ (X,Y ) ∈ R
2, ∀m = 0, 1, |∇mΩ(X,Y )| + |∇mΨ(X,Y )| ≤ µe−β(|Y |+|X|).

(2.8)

Example 2.2 Let g be a smooth function from R to itself. If (Ψ,Ω) are solutions
of the problem

− ∆X,Y Ψ = g(Ψ) =: Ω, (2.9)

then it is automatically a solution of (2.7). For example we can take the soliton
equation

∆Ψ + Ψ3 − Ψ in R
2,

and the associated ground state with radial symmetry, which yields exponentially
decaying solutions in the previous sense, see [9, 11]. We also refer to [1, 8, 4, 5]
and the references therein for other examples of stationary states of the two-
dimensional Euler equation on R

2.

3 Approximate solution

Let a, b two real numbers such that 0 < a < b < π/2, and let χ(x, y) be a smooth
cut-off function satisfying

χ(x, y) = 0 for |x| + |y| > b, and χ(x, y) = 1 for |x| + |y| < a. (3.1)

Theorem 3.1 Assume that V satisfies (2.4) for some y0 ∈ T
2, and let (Ψ,Ω) a

couple of functions satisfying Hypothesis 2.1. For x0 ∈ T
2, α ∈ R, and ε > 0, we

define

ωε(t, x, y) = V ′′(y) + ε−αΩ

(

x− x0 − ct

ε
,
y − y0

ε

)

χ(x− x0 − ct, y − y0) (3.2)

and

ψε(t, x, y) = −V (y) + ε2−αΨ

(

x− x0 − ct

ε
,
y − y0

ε

)

χ(x− x0 − ct, y− y0), (3.3)

where c = V ′(y0). Then for all N , there exists constants ε0 and CN such that
for all ε < ε0, the couple (ωε, ψε) satisfies

∀ t ∈ R, ‖∂tω
ε + {ψε, ωε}‖

L∞
+ ‖∆ψε + ωε‖

L∞
≤ CNε

N . (3.4)
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Proof. First, we note that as b < π/2, the functions ωε and ψε define smooth
periodic functions in (x, y) ∈ T

2. We calculate, omitting the argument (x−x0 −
ct, y − y0)/ε, that

∆x,yψ
ε = −V ′′(y) + ε−α+2

(

(∆x,yχ)Ψ + χ∆x,yΨ + 2∇x,yχ · ∇x,yΨ)
)

,

where here ∆x,y = ∂2
x + ∂2

y . Hence we get

∆x,yψ
ε + ωε = ε−αχ(ε2∆x,yΨ + Ω) +R(t, x, y, ε),

where
R(t, x, y, ε) = ε−α+2

(

(∆x,yχ)Ψ + 2∇x,yχ · ∇x,yΨ)
)

.

By construction and with the notation (2.5), we have

(ε2∆x,yΨ + Ω)

(

x− x0 − ct

ε
,
y − y0

ε

)

χ(x− x0 − ct, y − y0)

= (∆X,Y Ψ + Ω)(X − cT, Y )χ(ε(X − cT ), εY ) = 0,

using (2.9), and where this expression is well defined as χ is with compact sup-
port.
Now let us examine the terms in R(t, x, y, ε). We consider for example the term

ε−α+2∂xχ(x− x0 − ct, y − y0)∂xΩ

(

x− x0 − ct

ε
,
y − y0

ε

)

(3.5)

This expression vanishes unless (t, x, y) satisfies

a < |x− x0 − ct| + |y − y0| < b,

which corresponds to the interval where the gradient of χ is non zero (see (3.1)).
For such points, we have
∣

∣

∣

∣

∂xΩ

(

x− x0 − ct

ε
,
y − y0

ε

)∣

∣

∣

∣

=
1

ε

∣

∣

∣

∣

∂XΩ

(

x− x0 − ct

ε
,
y − y0

ε

)∣

∣

∣

∣

≤ ε−1µe−βa/ε,

(3.6)
owing to (2.8). As χ is smooth with bounded gradient, this shows that the term
(3.5) is smaller than cNε

N for a suitable constant N and a sufficiently small ε.
The other are treated similarly, and we finally get

‖R(x, y, t)‖
L∞

≤ CNε
N . (3.7)

This shows that for all time t, we have

‖∆ψε + ωε‖
L∞

≤ CNε
N .

Similarly, we can write

∂tω
ε + {ψε, ωε} = ∂tω

ε + (∂xψ
ε)(∂yω

ε) − (∂yψ
ε)(∂xω

ε)

= ∂tξ
ε + V ′∂xξ

ε + V ′′′∂xη
ε + {ηε, ξε}
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where we have set ξε = ωε − V ′′(y) and ηε = ψε + V (y). In this expression, by
similar arguments using the exponential decay of Ω and Ψ and the fact that χ is
constant near (0, 0), we have

{ηε, ξε} = ε−2αχ(∂XΨ∂Y Ω − ∂XΩ∂Y Ψ) + O(εN ) = O(εN ),

as the couple (Ψ,Ω) satisfies (2.7).
Hence it remains to consider

∂tξ
ε + V ′∂xξ

ε + V ′′′∂xη
ε

= ε−α(∂xχ)(−cΩ + V ′Ω + ε2V ′′′Ψ) + χε−α−1(−c∂XΩ + V ′∂XΩ + ε2V ′′′∂XΨ).

Using again the exponential decay of Ω and Ψ, the term in factor of ∂xχ is O(εN ).
Considering the second term in the right-hand side of the previous equation, we
have

ε−α−1χ(x− x0 − ct, y − y0)V
′′′(y)∂XΨ

(

x− x0 − ct

ε
,
y − y0

ε

)

= ε−α−1χ(ε(X − cT ), εY )V ′′′(y0 + εY )∂XΨ(X − cT, Y ),

using the notation (2.5). For |εY | > b, this expression vanishes as χ is identically
equal to zero.
Let us consider now the case |εY | < a. As V is smooth and satisfies (2.4), then
for all m there exists a constant Cm such that for all z such that |z| < a, we have
using a Taylor expansion, that

|V ′′′(y0 + z)| ≤ Cm|z|m. (3.8)

Hence for Y such that |εY | ≤ a and all X, we have with (2.8)

|V ′′′(y0 + εY )∂XΨ(X − cT, Y )| ≤ Cmµε
m|Y |me−β|Y | ≤ C̃mε

m (3.9)

for some constant C̃m. Applying this formula with m = N + α+ 1, we get

‖χε−α−1V ′′′∂XΨ‖
L∞

≤ CNε
N

for some constant CN and ε < ε0 sufficiently small. Similarly, as −c + V ′(y) =
V ′(y) − V ′(y0) satisfies an estimate similar to (3.8), we can prove that

χε−α−1(−c+ V ′)∂XΩ = O(εN ).

Gathering together the previous inequalities yields the result.

Remark 3.2 By construction, the function ωε is a travelling wave at constant
velocity. Hence the preservation property (1.2) holds for all functions h. In
particular all the Lp norms of ωε are preserved for all time. Similarly, using the
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estimate (3.4), the energy

E(t) =

∫

T2

ωε(t, x, y)(−∆)−1ωε(t, x, y)dxdy

=

∫

T2

ωε(t, x, y)ψε(t, x, y)dxdy + O(εN ) = E(0) + O(εN )

is almost preserved for all times.

Remark 3.3 The same result holds true for the function (1.4), under the hy-
pothesis that the supports of the functions Ωε

k do not interact. The proof is very
similar to the previous one and left to the reader.

4 Exponential estimates

We now make the supplementary assumption that V has Gevrey regularity
around y0:

Hypothesis 4.1 The function V satisfies (2.4), and moreover, there exist pos-
itive constants M , R and δ ≥ 1, such that

∀n ∈ N, ∀ y such that |y − y0| < 2a, |V (n)(y)| ≤MRnnδn. (4.1)

A typical example of Gevrey function around y0 is given by the function
e−1/(y−y0)2 if y > y0 and 0 if y ≤ y0.

Theorem 4.2 Assume that V satisfies Hypothesis 4.1 for some y0 ∈ T
2 and

δ ≥ 1, and let (Ψ,Ω) a couple of functions satisfying Hypothesis 2.1. For x0 ∈ T
2,

α ∈ R, and ε > 0, let ωε(t, x, y) and ψε(t, x, y) the functions defined in (3.2) and
(3.3). Then there exist constants ε0, γ and C such that for all ε < ε0, the couple
(ωε, ψε) satisfies

∀ t ∈ R, ‖∂tω
ε + {ψε, ωε}‖

L∞
+ ‖∆ψε + ωε‖

L∞
≤ Ce−γε−σ

, (4.2)

where σ = 1/(δ + 1).

Proof. The method of proof is the same as the proof of Theorem 3.1. First,
we note that all the estimates involving derivatives of the cut-off functions are
in fact exponentially decreasing with respect to ε, see (3.6), so that (3.7) can be
easily refined to

‖R(t, x, y)‖
L∞

≤ Ce−κ/ε

for some constants κ and C, and ε < ε0 sufficiently small.
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The second source in the error term comes from equation (3.8). Under the
assumption (4.1), (3.8) becomes for all |z| < a,

|V ′′′(y0 + z)| =
1

m!
|z|m sup

|t|≤a
|V (m+3)(y0 + t)| ≤

M

m!
|z|mRm+3(m+ 3)δ(m+3),

and hence for m > m0 sufficiently large, we get

∀ |z| < a, |V ′′′(y0 + z)| ≤ K|z|mmδm.

for some constant K independent on m. Hence the second estimate (3.9) yields
now an error of the form

Kmδmµεm|Y |me−β|Y | ≤ Kµ
(m(δ+1)ε

eβ

)m
,

for m > m0, owing to the estimate

∀x > 0, xme−βx ≤
(m

eβ

)m
.

Taking

m =

(

β

ε

)
1

δ+1

for ε < ε0 sufficiently small to ensure m > m0 then yields an error of the form

Ce−γε−σ

with σ = 1/(δ + 1), C = Kµ and γ = β
1

δ+1 . The other error terms are
similar.

5 Numerical illustration

In this last section, we would like to show the validity of the previous analysis by
a numerical experiment. In the example below, we consider an initial value made
of two localized Gaussians over a stationary state V containing large flat parts,
and we show the evolution of localized packets at the expected speed c = V ′(y0).
For practical reasons, the following numerical simulations below are made on the
equation

∂tω − {ψ, ω} = 0, and − ∆ψ = ω,

which can be obtained from (1.1) by a change t 7→ −t. Hence the localized
profiles are expected to travel at the speed −V ′(y0) which we will numerically
aproximate by ∂yψ(x, y0).
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We take the initial condition (x0 = π/2, x1 = 2π/3 and y0 = π/4, y1 = 7π/4)

ω(t = 0, x, y) = V ′′(y) + 5 exp

(

−
(x− π/2)2 + (y − π/4)2

ε2

)

−

5 exp

(

−
(x− 2π/3)2 + (y − 7π/4)2

ε2

)

,

where V ′′(y) is the function

V ′′(y) = exp
(

−10(y − 2π/3)2
)

− exp
(

−10(y − 4π/3)2
)

.

We choose ε = 0.1. Figure 1 shows the initial condition.

Figure 1: Initial condition ω(t = 0, x, y).

To simulate the solution, we use a semi-Lagrangian scheme (we refer to [6, 7]
for the details of the method). The numerical parameters are chosen as follows:
we take Nx = Ny = 512 grid points in each direction and the time step is
∆t = 0.05.

As expected, the localized profiles start to move in the x-direction, (see Fig-
ures 4-5), and remain localized at least for a time t ≤ 20 ≃ O(ε−1). After this
time, the structure is lost, which makes sense since the Gaussians are not stable
states of the 2D Euler equation on R

2.
We look at the velocity of the profile during this regime. It can be computed

numerically, and compared to the value c = −V ′(y0) = ∂yψ(t = 0, x = 0, y0).
This last value is observed on the y-profile of ψ, which is linear in a vicinity of
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x0 time displacement velocity

1.5707963267 0
0.589048622548 5 −0.981747704152 −0.1963495408304
5.91502991808 10 −0.95720400095 −0.19144080019
4.970097752749 15 −0.944932165331 −0.1889864330662
3.9638063558964 20 −1.0062913968526 −0.20125827937052
2.9329712664373 25 −1.0308350894591 −0.20616701789182

Table 1: Numerical values of the center of the profiles, the corresponding time, the
displacement with respect to the previous time and the corresponding velocity.

y0. Figure 2 confirms the linear behaviour around y0 = π/4 (we superimpose a
linear function of slope −0.19). This value of the velocity can be compared to
the velocity of the localized profiles. On Figure 3, x-profiles of ω are plotted for
y = π/4. We can observe the travel of the profile along the periodic x-direction.
Each consecutive plot is plotted every t = 5 so that the velocity is estimated to
−0.19, which is in very good agreement with the previous computed one. More
details are given in Table 1. We can observe that the numerical diffusion is quite
low since the maximum of the profiles decreases slowly as time advances.

Figure 2: y-profile of ψ at t = 0, and the linear function of slope −0.19.
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Figure 4: Time evolution of the solution: ω(= 5, x, y) (left) and ω(t = 10, x, y) (right).

Figure 3: Time evolution of the profile: ω(t, x, y = π/4) as a function of x for different
times: t = 0, t = 5, t = 10, t = 15, t = 20, t = 25.
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