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Subterahertz hypersound attenuation in silica glass studied via picosecond acoustics
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We report picosecond acoustic measurements in silica-glass films grown by wet thermal oxidation on a (111)
silicon substrate. The longitudinal acoustic phonons are observed over the range from 150 to 300 GHz using an
infrared pump and a second harmonic blue probe. The transducer is an aluminum thin film deposited on top.
Multiple interference effects are analyzed and fully taken into account. They lead to a signal presenting rapid
oscillations as a function of the sample thicknesses. The latter are determined by separate interferometry. Our
remarkably precise acoustic attenuation results are found to follow rather well a model combining thermally
activated relaxations and anharmonicity. New values for the optical absorption of silicon in the 400-to-500-nm

region of the spectrum are obtained as a by-product.
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I. INTRODUCTION

Sound attenuation in glasses exhibits a rich variety of phe-
nomena depending on the frequencies and temperatures where
it is observed. Results are available from ~20 mK to well over
1000 K. At very low temperatures, the acoustic attenuation
is dominated by the coupling of strain to tunneling within
two-level systems.'™ At intermediate temperatures, typically
above 10 K, the thermally activated relaxation (TAR) of defects
which can be modeled by two-well potentials becomes the
major source of attenuation.* At still higher temperatures,
the anharmonic interaction of acoustic waves with the thermal
phonon bath becomes important.” This initially varies with
the square of the frequency, making it the dominant source of
attenuation at high frequencies, typically above 10 GHz. The
evolution of hypersound attenuation at still higher frequencies
remains currently debated. Around 1 THz, an attenuation
proportional to the fourth power of the frequency was observed
in several glasses.”'?> It can be explained by resonance
with the low-frequency wing of additional vibrational modes
forming the boson peak.!> An alternate model is that pure
elastic disorder becomes relevant at the short length scale
corresponding to the acoustic wavelength.'*!> To clarify such
issues, investigations at frequencies between ~100 GHz and
~1 THz would be very valuable. This unfortunately falls into
a gap where scattering techniques cannot be used for the
investigation of acoustic propagation and attenuation.

Spectroscopic techniques for the study of sound now cover
a broad range of frequencies, from sub-Hz to tens of GHz.
The higher frequencies are generally observed with Brillouin
light scattering (BLS). The upper range can be increased using
the backscattering geometry together with UV excitation.'®!”
There is, however, a limit set by the optical absorption edge of
the sample.'® It corresponds to acoustic waves around 100 GHz
in the case of vitreous silica. The samples remain then opaque
to electromagnetic (EM) radiation up to soft x-rays. Using near
forward x-ray scattering with radiation around 20 keV allows
observing acousticlike excitation at frequencies down to about
1 THz.! It is this inelastic x-ray scattering (IXS) technique
that was used in Refs. 9—12. It is thus optical absorption which

is responsible for the scattering-measurement gap between
~ 100 GHz and ~1 THz.

Picosecond optical techniques (POT) now offer a possible
approach to access acoustic properties in the region of that
gap. The general idea is to generate a hypersound pulse by
the absorption of a femtosecond optical pulse, the pump,
and to follow its evolution by a second optical pulse, the
probe, delayed in time.?>23 One approach consists in probing
the time of flight of an acoustic pulse bouncing back and
forth in a thin film. This produces echoes whose separation
depends on the acoustic velocity. An analysis of the echo
shape allows extracting information on the acoustic attenuation
as a function of frequency.?>’* Another approach is to use
the oscillations produced by the interference of the probe
partly reflected at the sample surface with its reflection
by the moving acoustic pulse. The latter can be viewed
as a superposition of space-time Fourier components. For
momentum conservation reasons the light interacts with one
of these, and thus this approach is limited to the same
frequency region accessible to Brillouin scattering.>> However,
for a transparent dielectric film deposited on a substrate with
significantly higher refractive index and acoustic velocity,
the oscillations originating from the substrate correspond
to appreciably higher frequency acoustic waves than these
seen in the dielectric. It was recently shown that a study of
these substrate oscillations as a function of the dielectric-film
thickness L allows determining hypersound attenuation in the
dielectric at frequencies beyond these accessible to BLS.2%?’
For silica films on a silicon substrate, the success of such
experiments depends on using a probe pulse in the blue region
of the spectrum, enhancing the acousto-optic coupling to the
substrate.”®

The present paper is entirely devoted to measurements of
the acoustic absorption with the latter approach. Section II
explains in simple terms the principle of the experiment.
It exposes the method without technical details, reserved
for subsequent sections. It also describes the samples used.
Section III presents an analysis of the hypersound pulse and
of its optical reflection coefficient. Section IV explains the
multiple interferences and it shows how their effect can be



checked by performing a study as a function of the probe carrier
wavelength. Section V discusses the precise determination of
the film thicknesses L and of the required indices. Section VI
is devoted to the new sound-attenuation measurements on
vitreous silica, with full account for interferences. It also
discusses former results obtained on differently prepared silica
films. While the accuracy of the latter results is lower, the
comparison indicates that silica films of different preparation
and acoustic velocities can have rather similar acoustic
absorption around 200 GHz. Section VII concludes the paper,
including an outlook toward further possible developments.
An appendix lists ancillary formulas for the calculation of
interferences.

II. PRINCIPLE OF THE METHOD, SAMPLES, AND
TREATMENT OF THE RAW DATA

The typical experimental arrangement is illustrated in
Fig. 1. A femtosecond laser source generates the pump pulse,
of duration #,,, and a time delayed, frequency-doubled probe
pulse of duration f,,;. The pump and probe are incident from
the air {0} on a sample formed of a thin metallic film {1}
of thickness d’ = z; deposited on a transparent dielectric {2}
of thickness L = z, — z;, all supported by a substrate {3}.
Both pump and probe are nearly normal to the films so that
the cosine of their inclination is practically equal to one. This
inclination, in reality much smaller than sketched in Fig. 1,
will be neglected in what follows. Also, the lateral extent of
the optical beams is very large compared to L so that only the
dependence on z, the coordinate perpendicular to the films,
will be consequent. In our implementation, the pump is a
transform-limited pulse whose carrier is tunable in the near
infrared with #,, ~ 120 fs, and #,;  f,,,. In these experiments,
{1} is aluminum, with d’ >~ 8 nm for our main sample series,
{2} is silica glass, and {3} is a single crystal of silicon. Two
series of samples have been used. For each series, different L
values up to L &~ 1 um are available for experiments.

The pump produces at time t = 0 a rapid increase in the
metallic film temperature and thereby a compressive stress.
This transforms into an acoustic wave that bounces within the
thin metallic film. At the interface {1-2}, this immediately
launches a strain pulse in the dielectric. Its typical duration
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FIG. 1. (Color online) The experimental arrangement together
with the coordinates and labels used for the various layers. A typical
signal, whose details are analyzed in Fig. 2, is shown for illustration.

is of the order of the acoustic round trip in the metallic layer
{1}, 2t = 2d’/v,, where v, is the acoustic velocity in the
metal. The spatial extent 2d of the strain pulse in {2} is
of the order of 2tv,, where v, is the acoustic velocity in
the dielectric. In our implementation, 2t >~ 3 ps, and since
vy > vy, the spatial extent in {2} is 2d ~ 15 nm. At time 7,
this strain is located at depth Z(¢) = z; + v,t. An experimental
run consists in observing, as a function of the delay time ¢, the
reflection of the probe on the traveling strain pulse interfering
with all other reflections from the layered sample. It should be
noted that #,, is so short that the traveling strain pulse is nearly
stationary for that duration, as it only moves by #;,;v; >~ 0.7 nm,
which is small compared to 2d. On the other hand, 7, is
sufficiently long to cover a great many times the thickness L of
the dielectric since fp,c/ny 2 25 pum, where c is the velocity
of light in vacuum and #n, the refractive index in medium {2}.

The raw data obtained in a typical run are illustrated in
Fig. 1. The initial wiggles up to ¢+ & 10 ps are produced by
the acoustic wave bouncing in the metallic film. They are
superposed to an oscillatory signal of longer period 7, and
amplitude A, produced by the strain in {2}. It results from the
interference of the reflection of the probe on the moving strain
pulse with all other reflections from the sample. The oscillation
period corresponds to an increase of Z by AZ such that the
round-trip phase shift 2k, Z is augmented by 2. Here k; is the
wave vector of the probe light in {2}, k, = 27ny/A¢, where
Ao is the probe carrier wavelength in vacuum. Therefore,
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This is equivalent to the Bragg condition. It corresponds to
the backscattering of the EM-wave on the Fourier component
at frequency v3° in the acoustic wave packet. In other
words, the strength of the signal A, is proportional to that
Fourier amplitude. Strictly speaking, the frequency of the
back-scattered EM wave is downshifted by the Brillouin shift
vi¢. In the present case, that shift is not significant compared
to the relatively enormous frequency spread of the incoming
EM pulse.

At sufficiently long delays, for ¢ > t, = L/v,, the strain
wave has reached the interface {2-3}, where it is partly
reflected and partly transmitted. The reflected part produces a
component to the signal of the same period 75 and of reduced
amplitude A),. Here, A}, ~ 0.25A,. This is superposed to the
interferences produced by the transmitted strain pulse prop-
agating in {3}. For similar phase-shift reasons as mentioned
earlier, these lead to a signal of period 73 given by

o 2]13 U3
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Here 13 and v; correspond to medium {3}. For asilica film on a
silicon substrate, vi° typically equals 5-6 times v5° depending
on the dispersion of n, and n3 with Ao and on the orientation of
the silicon crystal that determines vs. The strength of the signal
of period T3 is proportional to the amplitude of the Fourier
component at frequency v® contained in the acoustic pulse in
medium {3}. One observes in Fig. I that this oscillatory signal
is damped. This decay is not due to the acoustic attenuation in
{3}, as the latter is very small in silicon,? but to the absorption
of the probe light by the semiconductor. It multiplies the



oscillations of period 73 by a decaying exponential of time
constant

Ao
Aicsvy

73 3
where k3 is the imaginary part of the complex index 7i3 =
n3 + ix3. However, the acoustic absorption at frequency vi°
in the dielectric of thickness L affects the initial amplitude
Az of the signal originating from the substrate at z,. The
acoustic attenuation is given by exp[—o,c (Vi) L], where oy is
the frequency-dependent amplitude absorption coefficient in
medium {2}. An investigation of A3 as a function of L thus
provides a means of studying hypersound attenuation in the
film at the much higher frequency vi° >> 13, not accessible
to ordinary Brillouin scattering. It is convenient to normalize
A3 by the amplitude A, as this eliminates such effects as
fluctuations in the laser intensity. In the present case the
attenuation over the length L at frequency vi° is negligible,
so that this provides a very convenient normalization. The
observed ratio A3/ A, strongly depends on multiple reflections
within the structure. The effect of the latter can be condensed
into a multiplicative coefficient f3/f> that will be called
the sensitivity ratio. A measurement of the amplitude ratio
A3/ A, as a function of L, with due account for the sensitivity
ratio, thus provides information on the acoustic attenuation at
frequency vi°. This is the principle of the present measurement.

Our main series of five samples, designated here by
wetox, was prepared by wet thermal oxidation of silicon.
The substrates are cut from a (111) silicon wafer. This
orientation gives the highest velocity v3 >~ 9360 m/s and thus
the highest achievable frequency vi° according to Eq. (2).
The oxidation was performed at a substrate temperature of
1050°C in a mixed gas of O, and H, flowing at the rate
of 1.5 and 2.5 standard L/min, respectively. The nominal
oxide thicknesses range from 300 to 1000 nm. Using in
Eq. (1) the average period 7, obtained from a very large
number of measurements, the product nv, is determined.
Assuming the bulk value for n;, we find then v, = 5995 +
10 m/s. This value of the longitudinal sound velocity agrees
with that of good quality bulk silica, v, = 5980 m/s. The five
samples were aluminized simultaneously with a nominally
10-nm film. It was prepared by electron-beam evaporation at
the rate of 0.1 nm/s under a base pressure below 10~7 Torr.
The effective Al thickness was determined optically and found
to be 8 nm, as explained in Sec. V. In a second series
of four samples, designated as LPCVD, the oxide layers
were prepared by low-pressure chemical vapor deposition at
the ST Microelectronics facility in Crolles, France. These
four samples had also been aluminized in our laboratory.
Experiments on that series have already been reported in
Ref. 27. For that series the substrate has a (100) orientation
and the four samples have nominal thicknesses from 300 to
1200 nm in 300-nm steps. The silica was deposited from a
silane-oxygen mixture on the substrate maintained at ~700 °C.
With the same assumption concerning n,, we find from
T, measurements that v, = 5912 + 10 m/s for the LPCVD
samples, a value which is a little small compared to bulk
silica. In this regard it can be mentioned that we also found
vy >~ 5660 m/s for samples obtained by plasma-enhanced
CVD on substrates maintained at 350 °C. That value of v,
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FIG. 2. (Color online) (a) Structure of the signal observed on the
wetox sample of 503 nm thickness as a function of the probe delay.
The first echo is produced by the acoustic pulse returning to the
metallic layer; (b) the initial ringing; (c) the adjustment at t >, to
a decaying oscillation with the definition of the initial amplitude A3
extrapolated to time 7,.

is really very small. Results will not be presented here on
that third series of samples as we have no indication for the
appropriate value of the refractive index n, in such a case.

To complete this discussion, Fig. 2 illustrates how the useful
information is extracted from the raw data obtained in a single
run. As seen in Fig. 1, the oscillatory signals are superposed to
a decaying background. The latter is produced by the slow
decrease of the metallic film temperature after the sudden
heating by the pump. This slow decay depends on the thermal
resistance of the silica layer as the heat diffuses toward the
substrate.’® QOur first step in data treatment is to adjust this
background with a spline and to subtract it, which leads to
the useful data shown in Fig. 2(a). The signal at short time
delays is shown enlarged in Fig. 2(b). It is a superposition of
the Brillouin signal from silica, of period 75, with the local
ringing of the Al film. The period of the latter is 2z; /v;, about
3 ps in the present example. From this an estimate of the
Al-film thickness can be extracted, in fair agreement with
independent evidence discussed in Sec. V. The onset of the
ringing corresponds to the temporal coincidence of probe and
pump which is taken as the origin of time delays in Fig. 2(a).

The oscillations of period 7, and amplitude A, are then
extracted by a fit to an expression of the type

Cyr + Ay cosrt/ T, — 2¢7). (@Y)

The result is shown in red in Fig. 2(a). At times ¢ > #, the
acoustic pulse has reached the silicon substrate. It produces
then the total signal shown by the black line, which is adjusted
to the sum of two components rather similar to (4). The
reflected acoustic pulse gives a signal of same period 7, and
reduced amplitude A), also shown in red in Fig. 2(a). The
transmitted part produces a decaying oscillation of shorter
period T3 and initial amplitude As as illustrated separately
in Fig. 2(c). It decays owing to the optical absorption of the
probe in the substrate, following (3). The amplitude Aj is
extrapolated to the time #, where the acoustic pulse reaches
the interface {2-3}, as shown in Fig. 2(c).



III. THE ACOUSTIC PERTURBATION AND ITS
REFLECTION COEFFICIENT

To obtain a correct expression for the sensitivity ratio,
one must know how the acoustic perturbation in media
{2} and {3} reflects the probe light. This depends on the
perturbation shape, as will now be described. The acoustic
pulse is produced by the initial heating of the metallic film
by the pump pulse which to this effect can be viewed as a
6 function at time ¢ = 0. From each slice dz of the metal
film, elementary compressive stress waves are launched in
both the positive and negative z directions. As a stress wave
in the positive direction reaches the dielectric film {2},
it is partly transmitted, launching a compressive (negative)
strain wave in the film, pictured in Fig. 3(a). The stress
wave in the metal that propagates initially in the negative
z direction reaches the free surface {0-1}, where it is totally
reflected with a change of sign to become a tensile (positive)
stress wave. The latter reaches the interface {1-2} after the
flight time t = z;/v;. This produces a zigzag strain pulse
in the dielectric, of spatial extent 2d = 2v,t. Provided the
stress reflection at {0-1} is perfect, this first zigzag is strictly
antisymmetric.?>>! Its profile is affected by the evolution with
depth of the pump intensity owing to its absorption by the metal
film. However, the rapid diffusion of hot electrons homoge-
nizes to a great extent the heating of the metallic film.??> This
was taken into account in the drawing of the realistic profiles in
Fig. 3(a). There are also further zigzags in the train of pulses,
as shown in Fig. 3(a). These originate from the successive
reflections of the stress waves in the metal at the interface
{1-2}. They reach the dielectric after one to several round
trips in the metallic film, that is, at times that are multiples of
2t. Each reflection attenuates the amplitude by a factor r,., the
acoustic amplitude-reflection coefficient at the metal-dielectric
interface {1-2}. In the case of Al on silica, r,. should be
small, r,c ~ 0.1 to 0.2, so that the amplitude of the successive
zigzags rapidly decreases. Via the strain-optic effect, the strain
produces in {2} a refractive index modulation dn(z,t).

The strain pulse in {2} is a wave-packet of phonons with a
rich spectral content, as illustrated in Fig. 3(b). This spectral
content is sensitive to the structure of the Al film and to the
nature of the Al-air and the Al-silica interfaces.?* The presen-
tation of Fig. 3(b) emphasizes that the spectral content is, for
example, strongly dependent on the Al-film thickness. It also
depends on various other factors, such as the homogenization
in the heating of the metal by hot electrons or the strength of
the tail produced by multiple acoustic reflections within the
Al film. Each frequency component propagates with nearly
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FIG. 3. (Color online) (a) Typical strain pulses in {2} and
(b) their Fourier analysis.

the same phase velocity v, an approximation which is valid
within the frequency range of interest in these experiments.
However, the higher frequencies experience a significantly
higher acoustic attenuation. As a result, the propagating
acoustic pulse maintains its antisymmetric property, but its
time dependence changes with depth. This has already been
used for measuring hypersound attenuation based on the
observation of modifications in the echo profile.?* It allowed
accessing frequencies well above the Brillouin frequency. As
explained in the previous section, the modification of spectral
content of the acoustic pulse reaching the substrate is also the
basis for the attenuation measurements in the present case.

An expression is now developed that describes the reflection
of the probe on the index perturbation én(z,¢). One should
remark that the probe is reflected by the interface {2-3}
and thus that in {2} light propagates both in the positive
and negative z direction. On the other hand, in the substrate
{3} the probe is so strongly absorbed that it only propagates
toward the positive z direction. The backreflection coefficient
for an incoming EM pulse incident on an acoustic perturbation
propagating along z in an otherwise homogeneous dielectric
medium can be written?

8r = ik / 8ii(z,1) X2k 7. )

In this expression, ér is the amplitude-reflection coefficient,
the amplitude and phase of the reflected optical wave are
referred to the plane z =0, ky and k=k+ia are the
values of the carrier wave vectors in vacuum and in the
unperturbed medium, respectively, and 67 is the change of
complex refractive index owing to the acoustic perturbation.
The upper sign applies to an EM wave incoming from the
left, ocexp(—iwt + ikz), the lower sign to one coming from
the right. The integral extends over the perturbed region. The
expression is only correct to first order in §7i.

First consider a nonabsorbing medium such as {2} for
which & is real, k = k. We assume a perturbation of the form

8t = én = —g(x) = —sgn(x)g(|x|), (6)

where x =z — Z(¢). This is an antisymmetric oscillation
centered on the plane z = Z. This form is that of the main
perturbation illustrated in Fig. 3(a). The choice of sign reflects
the fact that the acoustic perturbation starts with acompression,
that is, a negative strain component 7 perpendicular to the
film. The shape function g includes as important factor the
appropriate projection of the strain-optic coupling tensor p.”
Introducing (6) in (5), one obtains

d
§r = £2k eT2ikZ / sin 2kxg(x)dx, (7
0

where the upper limit of integration d is the extension of the
perturbation in the region z > Z. Again, the upper signs are
for a wave incident from the left, the lower ones for a wave
from the right. In the special case where g(x) is a constant g
for 0 < x < d, and with kd < 1, (7) gives

8r = £2kok ¥ gd?. (8)

The phase factor just results from the translation from x = 0 to
z = 0. It is remarkable that at Z = 0 the amplitude-reflection
coefficient is real and that it changes sign with the direction



of the incoming EM-probe pulse. This sign change directly
follows from the asymmetry in (6).

Consider now a train of successive acoustic pulses, each
of the form (6), and of decreasing amplitudes proportional to
l,rac,rfc, ..., where r,. is the acoustic reflection coefficient
at the metal-dielectric interface {1-2}. The centers of these
successive pulses are located at Z, Z — 2d, Z — 4d, etc. Such a
train is illustrated in Fig. 3(a). Adding the reflections produced
by each of these pulses, keeping the proper phases, one obtains
for an EM-wave incident from the left

Sr Zk() eZikZ[l + race_4ikd 4 rfce_Xikd 4. ]
d
X / sin2kxg(x)dx. ©)]
0

Defining ¢* = (1 — reee™*9)~1, the factor within square
brackets is simply ¢*. The final result, for both propagation
directions, can be written in the compact form

Sr = :i:eizjkzli, (10

with
d
It = 2k0gi/ sin 2kx g(x) dx, (1)
0

where the upper signs apply to an EM-wave incident from
the left and the lower ones to a wave from the right.
Again, one should remember that I* includes the strain-optic
coupling coefficient. While the single pulse result (7) is
simply antisymmetric with respect to the direction of the
EM-wave propagation, this is not true for the multiple-pulse
case owing to the factors ¢*. However, with r, real, besides
a multiplicative constant amplitude, these factors simply
introduce phase shifts of opposite signs for the two propagation
directions.

Now consider the case where £ is real but the medium partly
absorbs the acoustic waves. This is relevant here. The index
perturbation can be written as a superposition of propagating
acoustic waves of frequency w,. and wave vector faes

1 +oo ) -
sn(z,t) = > N (kye) et Tk g (12)

—00

Here ke = kqe + ictae, where the attenuation coefficient oy
depends on ke, with aac K ke This is introduced in (5). One
uses vt = Z, which leads to w, .t = kycZ, and o,z is replaced
with a, Z owing to the smallness of «,.. The integration in dz
then leads to a § function, §(k,. &= 2k). The integration in kpe
gives

81 = ikoN (F2k) eF2kZ o= PRZ (13)

This is identical to (10) and (11) except for the attenuation
factor exp[—aac(2k)Z]. In the actual experiment, the relevant
value of k changes upon passing from {2} to {3}. While the
damping o, (2k,) is negligible, the factor exp[—a,.(2k3) L] can
be measured by changing the thickness L of medium {2}.

Finally, the effect of a complex &3 is simply to attenuate the
signal by the decaying exponential contained in exp[2ik3(Z —
22)], that is by exp[—4mwk3(Z — z2)/ o]. This leads to the
attenuation time constant 73 given in Eq. (3).

IV. ACCOUNTING FOR MULTIPLE INTERFERENCES

In explaining the measurement principle, Sec. II did not
dwell on difficulties related to multiple interference effects.
The latter are fairly complex and very important. Both the
probe and the light reflected by the moving strain pulse
are multiply reflected by all sample interfaces. This is a
technical point for which a general solution in terms of Green
functions is available.’* However, our particular geometry
being sufficiently simple, it is of advantage to obtain closed-
form expressions. This is developed in Sec. IV A. In Sec. IV B,
the results of that analysis are tested by checking the effects
of the probe-carrier wavelength on the observed ratio As/A».
This turns out to be a telling exercise.

A. The sensitivity ratio

Multiple interferences lead to amplitude transmission and
reflection coefficients that are simply calculated from Fresnel’s
equations. We designate by k ; the complex carrier wave-vector
in medium {j}, k; =17ijko. The complex refractive index
is written 7i; =n; +ix; and we use for the electric-field
wave propagating in the positive z direction the notation
ET exp[—i(wt — kz)]. The relevant reflection and transmission
coefficients, r;; and #;; respectively, are listed for convenience
in Sec. A of the Appendix. That list includes the reflection
coefficient ro3 which relates at z = 0~ the incident probe-field
amplitude, E(;r , to the reflected amplitude, &; = rg3&, + owing
to the entire layer structure from {1} to {3}. The field
amplitude &7 is, of course, the one that interferes with the
probe reflections on the traveling strain pulse, producing the
signals pictured in Fig. 2.

To calculate the EM-reflection from the strain pulse, it
is necessary to know the probe amplitudes in media {2}
and {3}. In {2}, the probe generates two traveling waves,
one to the right €2+ exp[—i(wt — kyz)] and one to the left
& expl—i(wt + k22)]. In {3}, there is only a wave to the
right, S3+ exp[—i(wt — k32)]. It is a standard exercise to obtain
the amplitudes &, &, and & using Maxwell’s equations and
the boundary conditions. The results are found in Sec. B of the
Appendix. These fields are the ones that are reflected from the
strain according to (10). The situation is sketched in Fig. 4. In
the first time span, ¢ < f,, the acoustic wave moves to the right
in {2} as shown in Fig. 4(a). The wave of amplitude &, is
reflected from the back (B) of the strain pulse, its tail side. The
wave of amplitude & is reflected from the front (F) side of the
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FIG. 4. Sketch of the various EM reflections from the acoustic
pulse.



pulse. The amplitude at z = zT of these reflections is written
&g and &, respectively. According to (10), & is associated
with +717 while &r with —1~. In the second time span, t > 1,
but below two transit times, the situation is that sketched in
Fig. 4(b). For the reflected EM waves, the picture is similar
to Fig. 4(a), except that the roles of B and F are reversed. In
the notation &£, and &, the subscript 2 refers to the second
time span. However, the reflected acoustic pulse travels now
with its tail at z > Z. This reverses the roles of /1 and I~ in
Eq. (10). Thus, &g, is associated with —I* and £, with +17.
The detailed expressions for £, £¢, £,, and &, are given in
Egs. (A12)—(A15), respectively. Finally, in medium {3}, there
isonly & which leads at z = z; to the amplitude noted £, in
Fig. 4(b) and Eq. (A16). That amplitude is now proportional to
I, which differs strongly from /™ since it refers to medium
{3}. From z =z}, the five amplitudes are multiply reflected
within the structure and finally appear at z = 07, where they
interfere with &£ . This multiplies all amplitudes by a common
coefficient M that only depends on Fresnel-like coefficients
and on the phase delay in {2},

o) = 27[[4"2/)\.0. (14)

The value of M is given in Eq. (A17).

We now calculate the coefficients A,, A/, and Asz. During
the first time span, 0 < ¢ < L/v,, the delay can be expressed
in terms of ¢ = k»(Z — z;). The reflected probe intensity can
be written

Frlp) o f (65 + E5 + Ex12dt = Cs + Az cos 20 — o),
(15)

where the fields are all at z = 07, the integral is over the
probe-pulse length, and A,, C,, and ¢, are constants that
are determined experimentally. The right-hand side of (15)
assumes that & is large compared to the other amplitudes
so that C, > A,, which is verified experimentally. For the
relevant amplitude A, one finds

Ay o fol I, (16)
with the definition of a sensitivity function
= IMryy — M*ros(ry;)*e 4. 17

It is because ¢~ is the complex conjugate of ¢* that |/7]
factors out in (16) and that f, is written in this simple form.

During the second time span, L/v, <t < 2L /vy, the slow
oscillations, which arise from the sound pulse traveling back
in the dielectric, are given by

FH(@) oc/lcfo_ + &gy + EnPdt = Ch + Ay cos 2(¢ — ¢b).
(18)

The rapid oscillations decaying in time result from the
faster dependence of the complex phase ¢su = k3(Z — 22).
Separating this phase into @[, + i@, they can be written

Fs(p) / &5 + Eqp?dt = C3 4 A3 08 2(@l, — ¢3) € 245w,
(19)

Like for (15), the constants on the right-hand side of (18) and
(19) are determined experimentally.

The functions F depend on the incident field amplitude &;' .
The latter can be renormalized out by considering the ratios
A} /A and A3/ A;. The former is rather trivial. Using (16) and
a similar calculation for A, one finds

Ay Ay = |ry®

ac

; (20)

where r$*® is the amplitude reflection coefficient of the acoustic
pulse at the interface {2-3}. The ratio A3/ A, plays the central
role in the measurement. The value of A3 is taken at Z = z,.

One finds then

Az o f3| I 5ub | ekl (1)
where £3'° is the acoustic amplitude transmission coefficient
at {2-3}. The second sensitivity function is

f3 = [Mrgtsts], (22)

The proportionality factor in (21) is the same as in (16). It
follows that

A3/ Ay = (fs/ fh /T | 150 e, (23)

The ratio
M ro3 sign]
B = st [1 — ———(r3;) e ™% (24)
Mr03

gives the effect of the multiple reflections on the observed ratio
A3/ A,. It is thus called the sensitivity ratio.

Figure 5 illustrates the variation with the film thickness L
of the sensitivity functions f>, f3 and of their ratio f3/f>, as
defined in Eqgs. (17), (22), and (24). While f3 only depends on
the round-trip phase 2®; as defined in Eq. (14), f, contains the
difference of two terms that depend on twice this round-trip
phase, 4®,. This produces the double peaks on f, and the
nontrivial shape for the sensitivity ratio f3/f, illustrated
in Fig. 5. This ratio modulates Aj3/A,, from which the
absolute attenuation exp[—or,c (Vi) L] is extracted. It is already
quite obvious from Fig. 5, and it will become evident in the
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FIG. 5. (Color online) The sensitivity functions f, and f3 vs the
silica-film thickness L. (Bottom) The sensitivity ratio f3/f> which is
proportional to the observed signal As/A,. The curves are calculated
for an 8-nm-thick Al film whose refractive index is that of bulk
aluminum.
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FIG. 6. The measured signals (dots) A3/ A, obtained on the wetox
sample of 1024 nm silica thickness as functions of the carrier
wavelength A, compared to the shape of the sensitivity ratio.

following sections, that a good knowledge of the time ¢, and the
thicknesses L, in addition to all indexes, are strict prerequisites
to extract precise attenuation values.

B. Variation with the probe carrier frequency

To verify the preceding approach, a study of the signal
A3/A, as a function of the carrier wavelength A, was
performed. The signal is proportional to f3/f, according to
(23). The variation of f3/f> with Ag is faster for silica films
of greater thickness, and thus the experiment in Fig. 6 uses
the thickest werox sample. The shape of the sensitivity ratio
illustrated by the line in Fig. 6 is reversed from that in Fig. 5
as the phase @, is proportional to L but inversely proportional
to Ag. The solid line is calculated for the film thicknesses
actually derived from the reflection measurements explained
in the following section, L = 1024 nm and 4’ = 8.0 nm,
and with the refractive index of bulk Al.>*> The experimental
values, A3/Aj,, nearly follow the shape of this sensitivity ratio
which is obtained without adjustable parameter except for the
overall vertical scale. It should be emphasized that the narrow
peak in A3/A> at A9 >~ 440 nm is remarkably reproduced in
J3/f2. This provides a strong confirmation for the validity of
the analysis. In particular, it supports the antisymmetric form
of the main acoustic perturbation shown in Fig. 3(a) as the
latter leads to the & sign in (10) and thereby to the opposite
signs of the fields £z (z]) and &z (z)). It is the latter that add
up to finally give the amplitude A, in (15) and thus the minus
sign in the expression for f; in (17). A symmetric acoustic
perturbation, or a symmetric component as in Ref. 33, would
lead to another expression for f5, and thus for the sensitivity
ratio, in particular for the term in 4@, that leads to the narrow
peak in f3/f,>. Hence, the importance of the check provided
in Fig. 6.

However, one should note that a quantitative comparison
of the entire dispersion in the signal A3/A, to that in the
ratio f3/f, requires taking into account several additional
effects. First, the acoustic waves observed in Si are appreciably
attenuated in their transit through the silica layer, as explained
in Sec. VI. This attenuation strongly increases for decreasing
Ao, strongly reducing Az. Second, the amplitude Aj directly
depends on the appropriate projection of the strain-optic
tensor p defined by de¢ = pn, where §e¢ is the change in the

dielectric constant tensor of silica produced by the acoustic
strain 5. The projection p of p enters /)7, in (21) following
0 = §€ /2 = pn/2i. Although p is not directly available,
the related stress-optic tensor P defined by §¢ = Pa, where o
is the stress tensor, has been reported for silicon.® The
appropriate projection p is easily determined in terms of P and
the stiffness tensor C.’ Its magnitude appreciably increases
as o approaches 390 nm, owing to the direct gap of Si at
~3.2 eV. This compensates in part for the decrease in Aj;
owing to the acoustic absorption. Third, in dividing A3 by
A, one normalizes the signal produced in the substrate at v§°
by that from the film at vi°. That normalization is fine to
eliminate the effect of laser-intensity fluctuations in order to
compare measurements at fixed A¢ and various film thicknesses
as presented in Sec. VI. However, this normalization depends
on the dispersion in the acoustic amplitude ratio at two separate
frequencies, obvious from Fig. 3(b). In particular, owing to
the rapid increase of n3 as Ay approaches the direct gap of
Si, the frequency v5° increases then much faster than v3°, and
consequently the acoustic amplitude ratio varies more rapidly
with Ag. This third dispersive effect is the most difficult one to
estimate quantitatively as it depends on the frequency content
of the initial acoustic pulse and thus on the exact properties of
the Al thin film. Fortunately, provided the Al films are the same
on all samples of a given series, it is not necessary to know the
exact frequency content to extract the sound attenuation in the
silica films.

V. REFRACTIVE INDEXES AND SAMPLE THICKNESSES

This section will show how the optical thicknesses 7, L are
determined by separate interference measurements. It should
first be noted that the measurement of the period 7, gives
the product n,v; according to (1). On the other hand, the
transit time t, = L /v, is well determined by observing the
first reflection echo that returns to the front surface at time
2(ty + z1/v1). Finally, the measurement of n,(A¢)L provides a
third independent information from which the three quantities
vy, Ny, and L are separately extracted. We observed on the
wetox series that vy and n, are fully consistent with their
known values for bulk silica.’®

We also remark that the observation of the decaying oscilla-
tions in {3}, together with Egs. (2) and (3), makes it possible to
determine the dispersion of the complex index 7i3 provided v3
is known, which is the case for silicon. The results are shown
in Fig. 7. While the real part 3 is in excellent agreement with
other determinations, we systematically obtain for k3 a value
which is lower than found in the literature.>* We believe that
literature values—mostly obtained with measurements based
on surface reflection—might be affected by the condition of
the surface, whereas our values are more representative of the
bulk.

To determine the optical thickness n, L, the sample reflec-
tions as functions of the probe wavelength A in absence of
pump were measured. The results are illustrated in Fig. 8
for the wetox series. The periodicity of the curves directly
reflects the thicknesses. The maximum values depend on
the attenuation in the metallic film which is determined
by the product zjx;. The intensity-reflection coefficient
Ry3 is the square modulus of the amplitude-reflection
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FIG. 7. Dispersion in the refractive index of silicon observed in
our measurements. Each data point results from fitting a series of
measurements on samples of different silica thicknesses. The points
for the (100) and (111) substrate orientations are obtained with silica
layers of different origins described in Sec. II. The error bars are
smaller for (100) than for (111), owing to the stronger signals in the
former case (illustrated in Fig. 9). The solid line is the literature value
from Ref. 39.

coefficient given in Eq. (A6), Ros = |ro3|>. We take the
index of silica n, from Ref. 38 and the complex index
of silicon 7i3 from the preceding. An indication for the
Al-film thickness z; is obtained from the ringing period
of the film, 7| = 2z,/v;. Using the bulk velocity value
v1 =~ 6400 m/s and the observed ringing period 77 = 3.0 ps,
one finds z; >~ 9.6 nm, which is close to the nominal value of
10 nm. However, applying this together with the bulk value of
71; taken from Ref. 35, leads to theoretical values of Ry3 that
are too small, pointing to an overestimate of the Al absorption.
This suggests that the aluminum might be in part oxidized or
also that the film might be somewhat porous. A simultaneous
adjustment of all the data in Fig. 8 is then tested using the bulk
value of /1; and allowing for six adjustable parameters, the five
thicknesses L to Ls and an effective Al thickness z;. This
leads then to extremely good adjustments and to the value
71 = 8.1 £ 0.1 nm. More elaborate effective media models
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FIG. 8. (Color online) Reflectivity measurements on the five
wetox samples as functions of the probe wavelength A. The adjust-
ments explained in the text give L, = 307.8 + 0.8, L, = 502.6 +
04,L;=691.0 &+ 0.6, L, = 874.8 &+ 0.6,and z; = 8.0 £ 0.1, all
in nm, with L5 fixed at 1023.9 nm.

were also tested, taking an effective velocity v, and dielectric
constant €; both depending on a porosity index which itself
is taken as the adjustable parameter instead of z;. This gives
results that are essentially indistinguishable from the preceding
ones in terms of L values, but which by construction take into
account the observed 7). The best value of Ls was then used
to calculate the sensitivity ratio in Fig. 6. This revealed that Ls
needed to be modified by 2 nm (only 0.2%) in order to achieve
a perfect match between the measured and calculated peak
positions. The simultaneous adjustment of all the data in Fig. 8
was then repeated, however, with only five free parameters, Ls
being fixed to its best value according to Fig. 6. These are the
final fits shown in Fig. 8.

A similar approach was tested on the LPCVD samples. In
that case the period 7] is about 4 ps, also in fair agreement with
the nominal Al thickness of 12 nm. Reflectivity measurements
similar to these in Fig. 8 were also performed on these samples.
However, a fit with an adjustable z; leads then to the very
small value z; = 4.7 nm, almost three times smaller than the
nominal thickness. These fits are also poorer, suggesting that
the dispersion in the imaginary part «; is not well represented
by the bulk index of aluminum. We also had at our disposal
the equivalent of Fig. 6 for the LPCVD sample of nominal
thickness 1200 nm. It shows a narrow peak similar to that in
Fig. 6. However, the thickness derived from the reflectivity
curve did not allow matching the peak in A3/A, with that in
f3/f>. We concluded that the bulk value of 7i; must be grossly
inappropriate when there is such a large difference between the
nominal film thickness and the effective one. Given the various
results reported in Ref. 40, this is not terribly surprising. At
this stage we resorted to adjustments of A3/A; not using the
sensitivity ratio for the LPCVD films, as explained in the
following section.

VI. ACOUSTIC ATTENUATION RESULTS

Figure 9 shows two series of room-temperature measure-
ments obtained at a fixed carrier wavelength Ay = 430 nm
as functions of the silica thickness L. On the left are the
wetox films, on the right the LPCVD ones. The data in
Fig. 9 are already corrected for the thermal background, as
in Fig. 2. A mere inspection shows that for the same values
of the oscillation amplitude A,, the amplitudes A3 decrease
with increasing thicknesses L. A comparison of both panels
also reveals that for the same amplitude A, and at similar
thicknesses, for example at L ~ 300 nm—the top traces on
both sides—the signal As is remarkably more intense in the
LPCVD films than in the wetox ones. This cannot be ascribed
to the different values of the coupling constants p as their
estimate following Refs. 36 and 37 shows that p should in fact
be appreciably larger for the (111) substrate orientation than
for the (100) one. One also notices that the initial ringing of
the Al film is stronger for the werox films. The difference is
also not due to a different acoustic attenuation in the silica
films, as these will be found to be quite similar for both
types of silica. Owing to the lower velocity vz in the [100]
direction, the frequency v§® is slightly smaller in that case,
but this is also not sufficient to account for the different Aj
signals. We believe that these differences most probably arise
from different transducer properties of the Al films. On the
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FIG. 9. Two series of measurements at the carrier wavelengths
Ao =430 nm on the wetox samples (left) and on the LPCVD
samples (right). From top to bottom, the data are for increasing silica
thicknesses, with nominal values of 300, 500, 700, 900, and 1000 nm
on the left, and nominal values starting at 300 nm and increasing in
steps of 300 nm on the right.

wetox silica it seems that the metal film rings more strongly
but it is less effective in launching the acoustic energy in
the silica layer. We also found in the previous section that
the optical properties of the Al film on the wetox samples are
remarkably close to these of bulk aluminum, whereas for the Al
film on the LPCVD samples they appear to depart appreciably
from bulk values. We are not at this stage in the position to
explain the origin of these differences. However, the Al films
having been deposited simultaneously on all samples of a given
series, and to the extent that these transducers are identical, the
preceding aspects should not affect the actual measurement
of the variation of A3/A, as a function of L on a given
series.

Figure 10 illustrates for the wetox samples typical measured
ratios Az/A; as functions of the measured silica thickness L.
The two panels correspond to two different values of the carrier
wavelength Ay. The continuous curves are the sensitivity ratios
f3/f>» multiplied by a decreasing exponential and scaled by
a constant, b(f3/f>)exp(—aL), where b and « are the two
free parameters obtained by adjustment of the curves to the
five data points. To the extent that there is no apprecia-
ble acoustic absorption at the frequency vi° given by (2),
the parameters « extracted in this manner are just the amplitude
absorption coefficients o,.(2k3) of (21). The corresponding
acoustic frequencies are derived from the periods 73 observed
in the measurement, v® being given by (2). The energy mean
free path ¢ relates to o by ¢~! = 2w, and the full linewidth
that would be obtained in a scattering experiment is then
given by I'/27 = v,/2n{ = avy /7 in Hz, where v,(V5°) is
the acoustic velocity at the frequency vi®, a velocity not
measured in this experiment. It is this linewidth value that
will be used in the following. It is obvious from the two
examples shown in Fig. 10 that it is absolutely necessary
to have a very good knowledge of both the sensitivity ratio
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FIG. 10. (Color online) Typical determination of the sound atten-
uation in the wetox series at two carrier wavelengths 1. The dots are
the measured values of A3/ A, and the lines are fits to f3/f, multiplied
by a decaying exponential. The data points do not follow a simple
exponential decay owing to the effect of the sensitivity ratio. The
linewidths extracted from these fits are I'/27r = 5.38 £ 0.11 GHz
(left) and 3.43 £ 0.08 GHz (right). The dotted lines illustrate direct
fits of A3/A, to decaying exponentials, with no account for the
sensitivity ratio. These rather poor fits give then I'/27r = 6.2 £ 2.1
and 2.5 + 0.8 GHz, respectively.

f3/f> and the thicknesses L to obtain precise and accurate
values for the attenuation constant «. Fitting a series of ratios
A3z/A, simply to decaying exponentials rather than to the
correct expression produces random systematic errors, as also
illustrated in Fig. 10. The real errors are then unrelated to the
error bars of these individual fits.

Varying A, the frequency vi° = /27 can be changed
from ~150 to slightly above 300 GHz. A series of 13 such
determinations on the wertox samples is shown in Fig. 11. The
values I'/2x are derived from the corresponding o with a
constant v, = 5995 m/s. All points remarkably align within
their small statistical error bars. The same figure shows BLS
values obtained in the visible region of the spectrum at
three scattering angles.*! UV-BLS results are also included,
measured at two angles'” or at two wavelengths.'® The various
lines show the theoretical expectations based on Ref. 8.
Up to ~300 GHz, there are two main contributions. One
is the thermal activation of defects, leading to the dashed
curve marked I'rar in Fig. 11. The second, which becomes
dominant at higher frequencies, is the anharmonic interaction
of hypersound with the thermal bath. This leads to [y, o< Q2.
This square law applies up to ~250 GHz, with a progressive
saturation at higher frequencies, as shown by the dash-dotted
line.*> The sum I'tar + Fan agrees remarkably well with
the various independent experiments, including the POT
determination. One data point at ~1 THz falls well above
that sum. It is the lowest frequency point available from IXS
at room temperature.*> The current understanding is that a
third damping mechanism becomes rapidly effective at very
high frequencies 2. It can be attributed to the interaction of
hypersound with quasilocal vibrations (QLV) that are also
responsible for the emergence of the boson peak (BP). This
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FIG. 11. (Color online) Acoustic linewidths I'/27 of the wetox
samples (this work) compared to visible BLS results (Ref. 41) and
UV-BLS ones (Refs. 16 and 17). The point above the loffe-Regel
frequency Qir /27 is from Ref. 43. The various lines are explained in
the text. The inset shows on an expanded scale the same wezox results
together with re-evaluated LPCVD ones; the dashed line is a guide to
the eye.

leads to a contribution gy = BQ*.!"> Such a law has been
well observed in cases where the BP falls at sufficiently high
frequencies for the region below the BP to be accessible
to IXS.>12 So far, this was not feasible for silica at room
temperature. Therefore, there is no experimental point in
Fig. 11 above our POT data and up to ~1000 GHz. The
line marked [qry just shows the expected position of the Q*
contribution. The solid line is the sum I'tar + lann + Tory. It
agrees rather well with all the data points shown in Fig. 11, as
seen enlarged in the inset. The anomalous linewidth increase
observed in the inelastic UV scattering (IUVS) experiments'®
is not included in this graph. That TUVS linewidth matches
the solid line up to ~100 GHz. Above that value it exhibits a
rapid increase that was interpreted as evidence for an acoustic
crossover associated with elastic-constant disorder.'® If that
interpretation were correct, it would be hard explaining why
our POT data follow the solid line at higher frequencies.
It should be noted that the rapid onset in the TUVS data'®
exactly corresponds to the onset of strong absorption of the
UV excitation by silica at the energy of ~8 eV. It can be
suspected that this strong absorption somehow plays a role
in the reported linewidth anomaly, although the trivial expla-
nation that the effect is simply due to the uncertainty in the
scattering vector owing to absorption*! can be ruled out in this
case.!'8

The inset of Fig. 11 shows on an expanded scale the wetox
measurements with the same solid line together the LPCVD
results.** As explained in Sec. V, we were unable to obtain
precise values for either f3/f, or the thicknesses L of the
LPCVD samples. In this case, the only fits making sense in
the equivalent of Fig. 10 for the LPCVD samples are those
using simply a decaying exponential. The random systematic
errors that are thereby made dominate the accuracy analysis.
These errors can be well estimated by applying a similar
analysis to the wetox samples for which the correct values

are known. In doing this, we adjusted the data points for only
four thicknesses to the decaying exponential, as only four
thicknesses are available in the LPCVD case. We find then a
root-mean-square error on I' which is one-tenth of a decimal
order. These are the error bars drawn on the open squares in the
inset. The dashed line is a guide to the eye traced through the
points and parallel to the solid line. It suggests that the acoustic
attenuation of the LPCVD silica is quite similar albeit slightly
lower than that of the werox one.

VII. SUMMARY, DISCUSSION, AND OUTLOOK

A main point of this work is that POT is able to provide
precise values for the acoustic attenuation at sound frequencies
that are well above those reachable with either UV-BLS or
TUVS. The second important point is that the values found
for the wetox samples of vitreous silica in Fig. 11 are in very
satisfactory agreement with expectations. However, a slight
difference in curvature between the data points and the solid
line can be noticed. The increase of v,(1V5%) with v was not
included in the calculation of the experimental values of T,
but that effect which is at most ~1 %—as seen from*—
would be much too small to modify the appearance of the
data. One can think of several explanations. First, the model for
the anharmonic width I,y in Ref. 8 is the simplest possible
one, as it only uses a single phonon-relaxation time 7. A more
elaborate model is likely to produce a more extended frequency
region over which Iy, saturates and thus a flatter curve. A
second possibility is that the wetox process, which exposes the
material to a relatively large amount of water, could generate a
larger-than-usual quantity of defects, and thereby a higher TAR
contribution. That could easily raise the attenuation at 150 GHz
slightly above the solid line in Fig. 11, followed by a less rapid
increase at higher frequencies as normal for TAR processes,
thereby leading to the observed behavior. It is interesting that
these new POT results are so precise that they now allow raising
such issues.

The success of the experiment clearly depends on the
accurate determination of the sample thicknesses and on the
availability of all indexes. That also applies to the front Al
film, the very important metallic transducer. On our weftox
samples, we observed that this Al layer has a refractive index
dispersion which is close to that of bulk aluminum. This
is a rather lucky circumstance, as many different behaviors
have been reported for Al films.*’ In general, one may
envision that such very thin films might not be optically
isotropic, with a dielectric constant in plane that could be
different from that normal to the plane. The former is the
one of importance to the POT analysis, whereas the latter
would also intervene in ellipsometric determinations of the
index. Further, the Al-SiO, interface is likely to play an
important role in the POT experiment, in particular for what
the strength of the initial ringing and the frequency content of
the acoustic pulse launched into the dielectric are concerned.
We believe that such effects could explain to a great extent
the different signal amplitudes illustrated on both sides of
Fig. 9. We do not yet know how this can be successfully
controlled. The silicon substrate is also an important element
to the success of the experiment. On the one hand, the large



strength of the signal Ajz directly results from the extremely
large stress-optic coefficients of Si in the blue region of the
spectrum,’® typically 100 times larger than that of silica.?® On
the other hand, the sizable optical absorption of Si effectively
prevents any optical interference with reflections that would
return from surfaces beyond the interface {2-3}, thereby
keeping the analysis of Sec. IV and the form of the sensitivity
ratio within reasonable complexity. The hope of producing
similar results on other substrates, for example in achieving
higher products n3v; and thereby higher acoustic frequen-
cies, should take good note of these remarkable advantages
of silicon.

The most immediate outlook for future work is to perform
the same experiment at lower temperatures. On cooling, the
TAR contribution I'tar is expected to first increase, and this
should be rather easily observable. More difficult will be
to go into the region where I'gry will become dominant.
This would require sub-liquid-nitrogen temperatures and
experiments with thicker dielectric layers. The thermal heating
associated with the POT technique itself might then become
a real experimental challenge, but if so it could presumably
lead to an enhanced understanding of phonon-thermalization
processes. Such experiments might provide the opportunity
of directly observing the onset of the Q* power law as a
function of frequency and temperature, while so far only one
tunnel-junction investigation near 1 K has reported a high
power dependence but no onset.*
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APPENDIX: CALCULATING THE INTERFERENCES

A. Front surface reflection of the probe pulse

At the interface {i-j} between media {i} and {j}, the
standard Fresnel formulas apply. The complex transmission
amplitude from {i} to {/j}, #;, and the complex reflection
amplitude on {j} of a wave impinging from {i}, r;;, are

2it; fi; — i
= Tij= po (AD
n;+n; n+n;
It is easy to determine the combined reflection and transmis-
sion coefficients between media {0} and {2} of Fig. 1, the
phase being referred to the front surface of the metal film at
z = 07. We designate the one-way complex phase delay in
{1} by ®; = k;z;. One finds

tij =

2id,
ror +rize
rp = (A2)
1 — riarpe®
2id,
1+ ripe
rp = ———————5=, (A3)
1 — ripripe®®:
i®
forf12e"™"
lp=+——"—"5=+, (A4)
1 — riprjpe®®
i®
hitpe'™!
hy= —""“——/#— (AS)

1 — ripripe®®

Using these, one easily writes the total reflection of the probe
pulse on the front surface of the sample, ro3 = &, /&, where
&S and &; are the incident and reflected amplitudes, both at
z = 07. With k; real, we define the phase delay in {2} by @,
according to (14) and obtain

2i®
loptyorze™ ™2

—_— A6
1 = ra3rye?® (Ao

ro3 = ro2
where the phase is referred to z = 0. In terms of the single-
interface reflection coefficients, one finds then

& = lroi +rie™® +rorirse®® + e @1 E8/D,
(A7)

with the denominator

D=1+ r01r1262i¢‘ + r12r23e2i¢2 + 7'01r23€2i(¢l+¢2). (A8)

B. Amplitude of the probe field within the structure

Owing to its multiple interferences with the various inter-
faces, the incident probe field E&” exp(—iwt + ikoz) produces
in the dielectric layer {2} a wave traveling toward the positive
z direction whose amplitude coefficient is

itz ; .
& = —°‘D‘2e1<®l—kz<v'>5g. (A9)

Similarly, the multiple interferences produce within {2} a
wave traveling toward the negative z direction, of amplitude

_ (D fort1nr2s ,

52 — r23€21(<1>_+k211)5;- — 0 3 el(®]+2¢“+k2m)5g—. (AlO)
Finally, in the substrate {3}, there is a wave propagating in the
positive z direction of amplitude

53+ — t23ei(®2+k221—/€322)82+ — tm[lDle ei(<l>1+<l>2—/€312)€(;L.
(A11)

The z dependences of the waves associated with these
amplitudes are & e'*?, €5 e~%7, and &; ', respectively.

C. Scattering of the probe field by the acoustic perturbation

At times ¢ such that 0 <t < L/v,, the acoustic pulse is
traveling from z; to z» in the dielectric film. The EM wave
coming from the left is reflected according to (10) and (11)
in which the upper sign applies. The reflection travels back to
position z = z; at which point its amplitude is

Eg(@)) = ITe¥0Ef e, (A12)

where ¢ = k>(Z — z1). The subscript B alludes to “back,” as
the signal is produced by a reflection occurring on the back
side of the traveling acoustic pulse as illustrated in Fig. 4(a).
Similarly, the wave from the right, of amplitude &, , is reflected
on the acoustic perturbation according to (10) and (11), where
now the lower sign applies. This reflection travels toward the
interface {2-3}; it is reflected there with r»3, and it returns to
z] where its value is

P  ip42ids—ikez o
Er(2)) = =1 rpge” Mo mien gy

= —1 rje g dhu . (Al13)



The subscript F refers to “front” as the signal is produced by a
reflection occurring on the front side of the traveling pulse as
sketched in Fig. 4(a).

At times greater than L /v, but below 2L /v,, the acoustic
pulse has reached the substrate. It is partly reflected at the {2-3 }
interface and partly transmitted, with amplitude coefficients
defined as 73" and £5%°, respectively. The reflected acoustic
signal also reflects the probe components £ and & just as
previously, except that the roles of I+ and I~ are interchanged.
This situation is sketched in Fig. 4(b). This leads to fields at
z{ that can be written

— oty 7= sub 2igp ot ikez
Ep(@) =T re™ ey ™,

— 4y gHosub 2 —2igHdid, ot ikazy
Ep(@) = —1"rrye & e,

(A14)
(A15)

The subscripts B2 and F2 indicate that these fields are observed
in the second time span.

The simultaneous signal from the substrate {3} is produced
by the probe component whose amplitude is given by (A11).

Its reflection on the acoustic perturbation travels to z = z3, it
is transmitted through the {3-2} interface, and travels to z; at
which point it equals

- +\ _ 7+ 4sub 2ipaun+2i P2 o+ Jikoz
Esuh(zl ) - Isuhtac Ixslze P 252 e 741’

(A16)

where g, = k3(Z — z5) is the one-way complex delay in the
substrate. The subscript “sub” on I emphasizes that this is now
the quantity appropriate to the substrate. I;;b differs from I+
by different values of d and k = k3, as well as by a different
acousto-optic coefficient hidden in the function g of Eq. (6).

The fields (A12) to (A15) are multiply reflected within
{2-3} and transmitted to z = 0~ with the coefficient #,y given
in (A5). As a result, the common multiplicative factor 52+ ekt
in (A12)—(A16) is replaced with ME,

02120

M= —F——.
(1 — rogrye?®2)?

(A17)

The field components at z = 0~ interfere with £, = ro3ET,
leading to the observed interference oscillations.
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