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Trajectory tracking fault tolerant controller design for Takagi-Sugeno systems 

subject to actuator faults 
Tahar Bouarar, Benoît Marx, Didier Maquin, José Ragot 

 

 
Abstract—This paper investigates the problem of fault tolerant 

control (FTC) design for nonlinear Takagi-Sugeno (T-S) models 

with measurable premise variables. The idea is to synthesize a  

fault tolerant controller ensuring state trajectory tracking. Based 

on Lyapunov theory, new less conservative approaches are 

proposed in term of Linear Matrix Inequality (LMI). A PI 

observer is needed to estimate simultaneously the faults and the 

faulty system states in order to reconfigure the FTC law. A 

numerical example is considered to compare the conservatism of 

the proposed FTC approaches with the existing one and to 

illustrate the effectiveness of the FTC technique vs. the classical 

controller design methodology. 

Keywords- Takagi-Sugeno nonlinear  models, PI observer, state 

and fault estimation, LMI, Lyapunov theory,
2

L  norm. 

I.  INTRODUCTION  

The classical control law schemes have shown their interest 
in the system stabilization framework. Nevertheless, if faults 
affect the system, the classical controllers may not ensure the 
system stabilization. In this case, fault tolerant control is 
introduced to take into account the faults affecting the system 
components. In literature, two kinds of strategies dealing with 
the above problem have been proposed. The first one is called 
robust control or passive FTC. The main idea of this technique 
is to consider the faults as non structural bounded uncertainties 

which effect on the system will be minimized by using the 
2

L  

norm. The passive control strategy is designed only for norm 
bounded faults which constitutes a major drawback of this 
technique. The second kind is called active FTC strategy. This 
latter requires the knowledge of the faults to reconfigure the 
controller to ensure the stability of the faulty system.   

The FTC problem has already been studied in the literature. 
For instance, fault tolerant controller design methodology for 
linear systems is proposed by [1], [2], [3], [4] and [5]. 
Recently, this study has been extended to the nonlinear systems 
given in Takagi-Sugeno [6] representation by [8]. 
Nevertheless, the proposed approach may be conservative. 
Moreover, new approaches for trajectory tracking FTC design 
for T-S models with unmeasurable premise variables have been 
proposed by [7] and [9].  

This paper aims to reduce the conservatism of the results 
proposed in [8] and to show the effectiveness of the FTC law 
compared to a classical one when faults affect the system 
dynamics. Thus, this paper is organized as follows. In the next 
section, the problem of fault tolerant controller design is 
presented. In section 3, an active FTC approach is proposed. In 
the last section, a numerical example is considered to illustrate 
the efficiency of the proposed active FTC approach compared 
to a passive one (developed in the appendix). Moreover, the 

feasibility areas of the proposed active FTC approach and the 
one given in [8] are compared. 

The following notations are considered to improve the paper 
readability. The single or double sums can be rewritten as: 

( )( )
1

r

i i

i

tµφ µ ξ φ
=

=  and ( )( ) ( )( )
1 1

r r

i j ij

i j

t tµµφ µ ξ µ ξ φ
= =

= . 

The symbol ∗  denotes the transposed element in the symmetric 

positions of a matrix and ( )1
,....,

r
diag M M  is a block diagonal 

matrix which diagonal entries are defined by 
1
,...,

r
M M . The 

following lemma will be needed. 

Lemma 1 [10]: Consider two real matrices X  and Y  with 

appropriate dimensions, for any positive scalar δ  the 

following inequality holds: 

 

 1T T T T
X Y Y X X X Y Yδ δ

−
+ ≤ +  (1) 

II. PROBLEM FORMULATION 

Let us consider the following T-S model without faults 

corresponding to the reference model.  

 

 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

1

r

i i i

i

r

i i i

i

x t t A x t B u t

y t t C x t D u t

µ ξ

µ ξ

=

=


= +



 = +








 (2) 

 

where r  is the number of submodels, ( )tξ  is the measurable 

premise variable, ( )( )i tµ ξ  are the membership functions 

verifying the convex sum property ( )( )0 1i tµ ξ≤ ≤ and 

( )( )
1

1
r

i

i

tµ ξ
=

= , ( ) n
x t ∈ , ( ) p

y t ∈  and ( ) m
u t ∈  

represent respectively the state, the output and the input 

vectors, {
i

A , 
i

B , 
i

C , 
i

D } are the submodels matrices. 

Consider the faulty system given by  

 

( ) ( )( ) ( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( ) ( )( )( )

1

1

r

f i i f i f

i

r

f i i f i f

i

x t t A x t B u t f t

y t t C x t D u t f t

µ ξ

µ ξ

=

=


= + +



 = + +








 (3) 

 

where ( ) n

f
x t ∈ , ( ) p

f
y t ∈  and ( ) m

f
u t ∈ represent 

respectively the faulty state and faulty output vectors and the 

fault tolerant control signal, ( ) m
f t ∈  is the fault directly 
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affecting the input. The fault is supposed to be constant (i.e. 

( ) 0df t dt = ). 

The objective is to design a fault tolerant controller ensuring 

the convergence of the faulty state vector ( )f
x t  to the 

nominal one ( )x t . The methodology of controller conception 

is based on the scheme depicted in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Fault tolerant control strategy 

 

Let us consider the FTC law given by: 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )
1

ˆˆ
r

f i i f

i

u t t K x t x t u t f tµ ξ
=

= − + −  (4) 

where: m n

i
K ×∈  are the state feedback gain matrices to be 

synthesized. The FTC design simultaneously requires the 

knowledge of the faulty state vector and the faults affecting 

the system. In order to estimate ( )f
x t  and ( )f t , the 

following PI observer is considered: 

 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( ) ( )( )( )

1

1

2

1

1

ˆˆ ˆ ˆ

ˆ ˆ

ˆˆ ˆ

r

f i i f i f i f f

i

r

i i f f

i

r

f i i f i f

i

x t t A x t B u t f t H y t y t

f t t H y t y t

y t t C x t D u t f t

µ ξ

µ ξ

µ ξ

=

=

=


= + + + −




= −



= + +












 (5) 

where 1 n p

i
H ×∈  and 2 m p

i
H ×∈  are the observer’s gain 

matrices to be determined to estimate ( )f t  and ( )f
x t . A first 

solution to this problem was proposed in theorem 5.4 of  [8]. 

III. FAULT TOLERANT CONTROLLER DESIGN 

In this section we propose a less conservative approach for 
fault tolerant controller conception. Let us respectively define 
the state and fault estimation errors defined by: 

( ) ( ) ( )ˆ
s f f

e t x t x t= −  and ( ) ( ) ( )ˆ
d

e t f t f t= − . Let us also 

define the state tracking error ( ) ( ) ( )p f
e t x t x t= − and the 

output estimation error ( ) ( ) ( )ˆ
y f f

e t y t y t= − . By adding and 

substracting ( )f
K x tµ in  (4), one can obtain: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )ˆˆ
f f f fu t K x t x t K x t x t u t f tµ µ= − + − + − (6) 

The dynamics of ( )p
e t  and ( )s

e t  are given by: 

 ( ) ( ) ( ) ( ) ( )p p s de t A B K e t B K e t B e tµ µ µ µ µ µ= − − −  (7) 

 ( ) ( ) ( ) ( )1

s s d y
e t A e t B e t H e tµ µ µ= + −  (8)

 

According to (8), to avoid the crossing terms resulting from 

the observer’s gains 1

i
H  and system matrices (

i
C  and 

i
D ) 

multiplication, we introduce a “virtual dynamics” in the output 

error ( )y
e t  [11] [12]. This latter can be expressed as: 

 ( ) ( ) ( ) ( )0
y s d y

e t C e t D e t e tµ µ= + −  (9) 

where 0 p p×∈  is a zero matrix. 

Since the faults affecting the system are supposed to be 

constant (i.e. ( ) 0f t = ), the dynamics of the fault estimation 

error  is given by: 

  

 ( ) ( ) ( )2 2

d s d
e t H C e t H D e tµ µ µ µ= − −  (10) 

 

The combination of (7), (8), (9) and (10) allows the 

formulation of the dynamics of ( )y
e t , ( )p

e t , ( )s
e t and 

( )d
e t in a descriptor form: 

 ( ) ( )Ee t A e tµ=    (11) 

where ( )0
m

E diag I I I= ,  ( )T T T T T

p s d ye e e e e=      and 

1

2 2

0

0

0 0

0

A B K B K B

A B H
A

H C H D

C D I

µ µ µ µ µ µ

µ µ µ

µ
µ µ µ µ

µ µ

− − − 
 

− =
 − −
  − 

  (12) 

The main proposed result can now be established. 

 

Theorem 1: The tracking error ( )p
e t , the state ( )s

e t  and fault 

( )d
e t  estimation errors asymptotically converge to zero if 

there exists some matrices 0
T

X X= ≥ , 
6 6

0TP P= ≥ , 
11

P I= , 

13
P , 

14
P , 

15
P ,

16
P , 1

i
H , 

2

j
H  and 

j
K  such that the following 

LMI are satisfied for all , 1, 2,..,i j r= : 

 

( )

( ) ( )

1,1

2,1 2,2
0

ij

i

 ϒ ∗
< 

 ϒ ϒ 
 (13) 

where:

( )

( )

( ) ( )

( ) ( )

2,2

3,2 3,3
1,1

4,2 4,3

16 16

0

0 0

0 0

0 0 0

0 0 0 0

0 0 0 0

T

i i

T T

j i i

T

i ij ij
ij

T

i i

T T

j i

A X XA

K B

B

P P

K B I

X I

 + ∗ ∗ ∗ ∗
 

− Σ ∗ ∗ 
 

− Σ Σ ∗ ϒ =
 

Σ Σ − − 
 −
 

− 

, 

System 

 

( )f
u t

 

( )u t



Observer 

( )y t + 

+ 

Controller 

( )f̂ t  
- 

( )ˆ
f

x t  

Reference model  

+ 
( )x t  

( )f t  

+ + 



( )

13

2,1

13

13

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T

i

i T

i

T

X

P C

X

P D

X

P

 
 
 
 

ϒ =  
 
 
  
 

 

( ) ( )2,2
diag I I I I I Iϒ = − − − − − −

( )2,2

6 6 14 14

T T T

i i i i i
P A A P P C C PΣ = + + +  

( )3,2 2

15 6 14

T T T

ij i j i i i
P C H C B P D PΣ = − + +  

( ) ( )3,3 2 2

15

T
T T

ij i j i i jD P H D D HΣ = − −  

( )4,2 1

16 14

T

i i i
P C H PΣ = − −   

( )4,3

16 15

T

i i
P D PΣ = − . 

 
Proof: Let us consider the following candidate quadratic 
Lyapunov function: 

 ( )( ) ( ) ( )T
V e t e t EPe t=    (14) 

with: 

 0
T

EP P E= ≥  (15) 

A way to provide easily LMI conditions is to consider the 

matrix P structure as follows:  



1

6

11

13 14 15 16

0 0 0

0 0 0

0 0 0

P

P
P

P

P P P P

 
 
 =
 
 
 

 (16) 

 

According to (15), it follows that 
1 1

0TP P= ≥ , 
6 6

0TP P= ≥ , 

11 11
0TP P= ≥  and 

13
P , 

14
P , 

15
P , 

16
P  are free slack matrices.  

The tracking error ( )p
e t , the state ( )s

e t  and the fault ( )d
e t  

estimation errors converge asymptotically to zero if: 

 

 ( )( ) ( ) ( ) ( ) ( ) 0
T T

V e t e t EPe t e t EPe t= + <        (17) 

With (11) and  (14), the inequality (17) becomes: 

 ( )( ) ( ) 0T T Te t A P P A e tµ µ+ <    (18) 

The inequality (18) is fulfilled if: 

 

 0T TA P P Aµ µ+ <   (19) 

Indeed, with (12) and (16) the inequality (19) becomes: 

 



( )

( )

( ) ( )

( )

1,1

2,2

13 1

3,2 3,3

13 1

4,2

13 16 15 16 16

0

T T T

T T

T T

C P K B P

D P B P

P P D P P P

µµ

µ µ µ µ

µ µ µµ µµ

µ µ

 Ψ ∗ ∗ ∗
 
 − Ψ ∗ ∗

< 
− Ψ Ψ ∗ 

  − Ψ − − − 

(20) 

where:
( )1,1

1 1 1 1

T T TP A A P PB K K B Pµµ µ µ µ µ µ µΨ = + − −

( )2,2

14 14 6 6

T T TP C C P P A A Pµ µ µ µΨ = + + +

( )3,2 2

6 11 15 14

T T TB P P H C P C D Pµµ µ µ µ µ µΨ = − + +

( ) ( )3,3 2 2

15 15 11 11

T
T T T

P D D P P H D D H Pµµ µ µ µ µ µ µΨ = + − −

( ) ( )4,2 1

16 6 14

T
T

P C H P Pµ µ µΨ = − − . 

Multiplying (20) left and right by ( )diag X I I I  where 

1

1
X P−= , and considering 

11 11
0TP P I= = >  and the bijective 

variable changes ( )1 1

6

T

H P Hµ µ= , 
2 2

11
P H Hµ µ= , (20) yields: 



( )

( )

( ) ( )

( )

1,1

2,2

13

3,2 3,3

13

4,2

13 16 15 16 16

0

T T T

T T

T T

C P X K B

D P X B

P X P D P P P

µµ

µ µ µ µ

µ µ µµ µµ

µ µ

 Φ ∗ ∗ ∗
 
 − Ψ ∗ ∗

< 
− Φ Φ ∗ 

  − Φ − − − 

(21)

where: 

( )1,1 T T TA X XA B K X XK Bµµ µ µ µ µ µ µΦ = + − −   

( )3,2 2

6 15 14

T T TB P H C P C D Pµµ µ µ µ µ µΦ = − + +

( ) ( )3,3 2 2

15 15

T
T T T

P D D P H D D Hµµ µ µ µ µ µ µΦ = + − −  

( )4,2 1

16 14

TP C H Pµ µ µΦ = − − . 

Applying lemma 1 and considering 
1 2 3 4

Iδ δ δ δ= = = = , the 

inequality (21) is implied by: 



( )

( )

( )
( )

( )

1,1

2,2

3,3

3,2

4,41

16 14 16 15

0

0

0

T T

T

T T

K B

B

P C H P P D P

µµ

µ µ µµ

µ µµ

µ µ µ

 Φ ∗ ∗
 
 − Φ ∗ ∗

< 
− Φ Φ ∗ 

 
 − − − Φ 

(22)

where: 

( )
1

1 11,1

1 1 1

2 3 4

T T T
A X XA B K K B XX

XX XX XX

µ µ µ µ µ µ

µµ

δ δ

δ δ δ

−

− − −

 + + +
Φ =  

 + + + 
 

( )2,2

14 14 6 6 2 13 13

T T T T TP C C P P A A P C P P Cµµ µ µ µ µ µδΦ = + + + +  

( ) ( )3,3 2 2

15 3 13 13

T
T T T T

D P H D D H D P P Dµµ µ µ µ µ µ µ µδΦ = − − +  

( )4,4

4 13 13 16 16

T TP P P PδΦ = − − . 

Applying Schur complement [13] on the BMI terms 
( )1,1

µµΦ , 

( )2,2

µµΦ  and 
( )3,3

µµΦ , the sufficient LMI conditions proposed in the 

theorem 1 hold.  

Remark 1: New LMI conditions can be provided from the ones 
given in theorem 1 by considering only the diagonal matrices 



of (16) (i.e. 
1

P , 
6

P , 
11

P  and 
16

P ). This result is given in 

corollary 1. 

Corollary 1: The tracking error ( )p
e t , the state ( )s

e t  and the 

fault ( )d
e t  estimation errors convergence asymptotically to 

zero if there exists the matrices 0
T

X X= ≥ , 
6 6

0TP P= ≥ , 

11
P I= , 

16
P , 1

i
H , 

2

j
H  and Kµ  such that the following LMI 

are satisfied for all , 1, 2,..,i j r=  



( )

( )

( ) ( )

1,1

2,2

3,2 3,3

1

16 16 16 16

0

0 0

0 0
0

0 0 0

0 0 0 0

0 0 0 0

i

T T

j i i

T

i i ij

T T T

i i i

T T

j i

K B

B

P C H P D P P

K B I

X I

Θ ∗ ∗ ∗ ∗

− Θ ∗ ∗

− Θ Θ ∗
<

− − −

−

−

 
 
 
 
 
 
 
  
 

(23)

 

where:
( )1,1 T

i i i
A X XAΘ = + , 

( )2,2

6 6

T

i i i
P A A PΘ = + , 

( )3,2 2

6

T

i i j i
B P H CΘ = −  and 

( ) ( )3,3 2 2
T

T

ij j i i jH D D HΘ = − − .  

 
Remark 2: To ensure the stability of (3) even if faults occur, 

one has to check the existence of ( )2
diag X P I  in theorem 

5.4 of [8] or the matrix P  given by (16) in the proposed 
approach. Indeed, the proposed approach (theorem 1) 
introduces some additional free slack variables to relax the 
existing LMI conditions. This conservatism reduction can be 
shown mathematically by considering in theorem 1 that 

13
0P = , 

14
0P = , 

15
0P =  and 

16
0P = . Then, the inequality 

(22) can be rewritten as: 

 

( )

( )

( ) ( )

1,1

2,2

3,2 3,3

1

0

0
0

0 0 0

T T

T

K B

B

H

µµ

µ µ µ

µ µµ µµ

µ

 Φ ∗ ∗
 
 − Φ ∗ ∗

< 
− Φ Φ 

 − 

 (24) 

with 
( )1,1 1

1 1

T T TA X XA B K K B XXµµ µ µ µ µ µ µδ δ −Φ = + + + , 

( )2,2

6 6

TP A A Pµ µ µΦ = +  and 
( ) ( )3,3 2 2

T
T

H D D Hµµ µ µ µ µΦ = − − . 

Replacing ( )y
e t  by its expression given in (24), one obtains 

the LMI conditions of theorem 5.4 [8]. 

IV. SIMULATION RESULTS 

In order to show the effectiveness and the applicability of the 

proposed approaches, let us consider the system (2) with  

1

1 1

1 3 0

2 1 8

a

A

 
 

= − 
 − 

, 
2

3 2 2

0 3 0.2

0.5 2 5

A

− 
 

= − 
 − 

, 
1

0

1

0.25

B

 
 

=  
 
 

,  

2

1

1B

b

 
 

=  
 
 

, 
1

1

0.5

0

T

C

− 
 

=  
 
 

, 
2

1

0.5

0

T

C

− 
 

= − 
 
 

, 
1

0.8D = − , 

2
0.5D = − , ( )( )

( )( )
1

1 tanh 0.5

2

u t
u tµ

− −
= and 

( )( ) ( )( )2 11u t u tµ µ= − . a  and b  are two model parameters. 

Firstly, our aim is to compare the conservatism of the 

approach given in theorem 5.4 of [8] and the proposed 

theorem 1 and corollary 1.  

Let us consider [ ]2 0.6a∈ − −  and [ ]2 0b∈ − , using 

Matlab LMI Toolbox  the obtained feasibility fields are 

presented in Fig.2 and show that the proposed approaches are 

less conservative than in [8]. 

 
Fig.2. Feasibility fields ;   Theorem 1, ×  Corollary 1 and   

Theorem 5.4 of [8] 

Secondly, in order to illustrate the effectiveness of the fault 
tolerant controller compared to a classical one, a passive FTC 
controller is designed as described in appendix, in order to 
minimize the L2-gain from the fault to the tracking error. The 
obtained results are compared with those issued from the 
proposed active FTC controller. 

In the fault free case, it can be seen on Fig.3 that both passive 
and active FTC controllers ensure the system stabilization. The 

simulation is ran for 2a = − , 0.5b = − , a nominal input given 

by ( ) ( )( )sin cos 2 0.5u t t t=  and the LMI problem is solved 

with Matlab LMI Toolbox. 

In order to compare passive and active FTC control facing the 

occurrence of a fault, a piecewise constant fault ( )f t , 

occurring at 4t =  is considered. The simulation results are 

displayed on the Fig. 4, 5, 6, 7. The effectiveness of the 
proposed FTC design can be seen on Fig.4, whereas the passive 

FTC fails to ensure trajectory tracking when ( )f t  occurs. 

V. CONCLUSION 

In this paper, a trajectory tracking fault tolerant controller 

design approaches have been proposed for faulty T-S models 

with measurable premise variables. The objective is to ensure 

the tracking between the faulty system states and one of 

healthy reference model. The proposed LMI approaches are 

less conservative. This improvement is due to the considered 

“virtual dynamics” on the output error allows introducing 

slack variables in the Lyapunov function and decoupling the 

observer gains and the system matrices.  



The efficiency of the FTC law comparing with classical one is 

illustrated with a numerical T-S model whose input is 

corrected by a fault. 
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Fig.3. Comparison of the reference model states (no fault), the 

system states with FTC (theorem 1) and system states with 
classical control law (theorem 2). 

 

Fig.4. Comparison of the reference model state (no fault), the 
faulty system state with FTC (theorem 1) and the faulty system 

state with classical control law (theorem 2). 

 

Fig.5. Estimation errors 

 

Fig.6. Fault and its estimation  

 

Fig.7. Nominal control input and FTC input  



 

Fig.8. Membership function evolution  

VI. APPENDIX. CLASSICAL CONTROLLER DESIGN 

APPROACH 

The classical controller design methodology is based on the 

following scheme. 

 

 

 

 

 

 

 

 

Fig.9. Classical controller design scheme 

 

The system state representation is given by:  
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 (25) 

Let us define the state and output tracking errors between (2) 

and (25) by ( ) ( ) ( )n
e t x t x t= −  and ( ) ( ) ( )n

t y t y tε = −  

respectively. To ensure the tracking of the reference model, 

we consider the following control law ( ) ( )p p
u t K tε= . 

Introducing a “virtual dynamic” on ( )tε , one can obtain: 

 

 ( ) ( ) ( )Ee t e t f tµ µ= Γ −Λ  (26) 

where 
1 0

0 0
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 − + 
. 

The LMI conditions leading to synthesize the controller 
p

K  

under the
2

L  norm bound are given in the following theorem 2. 

Theorem 2: The tracking error ( )p
e t  asymptotically 

converges to zero if there exists some matrices 
1 1

0
T

P P= ≥ , 

3
P  and 

p
K and a positive scalar γ  such that the following 

LMI are satisfied for all 1,2,..,i r=  

 

2 2 2
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where 
1 1

T

i i i
P A A P IΘ = + + . 

 

Proof: Let us consider the following candidate quadratic 

Lyapunov function: 

 ( )( ) ( ) ( )T
V e t e t EPe t=  (28) 

 

with 0TEP P E= ≥  (29) 

 

we consider 
1

2

0

0

P
P

P

 
=  
 

. According to (29), one can find 

that 
1 1

0TP P= ≥ . It is well known that the L2-gain from ( )f t  

to ( )e t  is bounded by γ  if [13]: 

  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
0

T T T T
e t EPe t e t EPe t e t e t f t f tγ+ + − <  (30) 

 

Considering  (29) and substituting (26) in (30), one can obtain: 
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The mathematical development of (31) with (26) and (29)

leads to:  

( ) ( )
1 1

2 1 2 2

2

1 2
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T

T T T T T T

p p p

T T

P A A P
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 (32) 

 
Applying Lemma 1 then Schur complement on (32), the 
sufficient LMI conditions proposed in theorem 2 holds. 
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