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This paper investigates the problem of fault tolerant control (FTC) design for nonlinear Takagi-Sugeno (T-S) models with measurable premise variables. The idea is to synthesize a fault tolerant controller ensuring state trajectory tracking. Based on Lyapunov theory, new less conservative approaches a r e proposed in term of Linear Matrix Inequality (LMI). A P I observer is needed to estimate simultaneously the faults and the faulty system states in order to reconfigure the FTC la w. A numerical example is considered to compare the conservatism of the proposed FTC approaches with the existing one and to illustrate the effectiveness of the FTC technique vs. the classical controller design methodology.

INTRODUCTION

The classical control law schemes have shown their interest in the system stabilization framework. Nevertheless, if faults affect the system, the classical controllers may not ensure the system stabilization. In this case, fault tolerant control is introduced to take into account the faults affecting the system components. In literature, two kinds of strategies dealing with the above problem have been proposed. The first one is called robust control or passive FTC. The main idea of this technique is to consider the faults as non structural bounded uncertainties which effect on the system will be minimized by using the 2 L norm. The passive control strategy is designed only for norm bounded faults which constitutes a major drawback of this technique. The second kind is called active FTC strategy. This latter requires the knowledge of the faults to reconfigure the controller to ensure the stability of the faulty system.

The FTC problem has already been studied in the literature. For instance, fault tolerant controller design methodology for linear systems is proposed by [START_REF] Gao | Reconfigurable control system design via perfect model following[END_REF], [START_REF] Mufeed | Active fault tolerant control systems[END_REF], [START_REF] Noura | Fault-tolerant control in dynamic systems: Application to a winding machine[END_REF], [START_REF] Marx | Robust fault tolerant control for descriptor systems[END_REF] and [START_REF] Staroswiecki | Fault tolerant control: the pseudo-inverse method revised[END_REF]. Recently, this study has been extended to the nonlinear systems given in Takagi-Sugeno [START_REF] Takagi | Fuzzy identification of systems and its application to modeling and control[END_REF] representation by [START_REF]Estimation et diagnostic de systèmes non linéaires décrits par un multimodèle de Takagi-Sugeno[END_REF]. Nevertheless, the proposed approach may be conservative. Moreover, new approaches for trajectory tracking FTC design for T-S models with unmeasurable premise variables have been proposed by [START_REF] Ichalal | Observer based actuator dault tolerant control in nonlinear Takagi-Sugeno fuzzy systems: LMI approach[END_REF] and [START_REF] Ichalal | Fault tolerant control for Takagi-Sugeno systems with unmeasuable premise variables by trajectory tracking[END_REF]. This paper aims to reduce the conservatism of the results proposed in [START_REF]Estimation et diagnostic de systèmes non linéaires décrits par un multimodèle de Takagi-Sugeno[END_REF] and to show the effectiveness of the FTC law compared to a classical one when faults affect the system dynamics. Thus, this paper is organized as follows. In the next section, the problem of fault tolerant controller design is presented. In section 3, an active FTC approach is proposed. In the last section, a numerical example is considered to illustrate the efficiency of the proposed active FTC approach compared to a passive one (developed in the appendix). Moreover, the feasibility areas of the proposed active FTC approach and the one given in [START_REF]Estimation et diagnostic de systèmes non linéaires décrits par un multimodèle de Takagi-Sugeno[END_REF] are compared.

The following notations are considered to improve the paper readability. The single or double sums can be rewritten as:

() ( ) 1 r ii i t µ φµ ξ φ = =  and () ( ) () ( ) 11 
rr ij i j ij tt µµ φµ ξ µ ξ φ == =  .
The symbol * denotes the transposed element in the symmetric positions of a matrix and ( )

1 ,...., r diag M
M is a block diagonal matrix which diagonal entries are defined by 1 ,..., r MM . The following lemma will be needed.

Lemma 1 [START_REF] Zhou | Robust stabilization of linear systems with normbounded time-varying uncertainty[END_REF]: Consider two real matrices X and Y with appropriate dimensions, for any positive scalar δ the following inequality holds:

1 TT T T XY YX X X YY δδ - +≤ + ( 1 ) 

II. PROBLEM FORMULATION

Let us consider the following T-S model without faults corresponding to the reference model.

(

( )

1 1 r ii i i r ii i i xt t Axt B ut yt t Cxt D ut µξ µξ = =  =+     =+      ( 2 )
where r is the number of submodels, ( ) 

() () ( )() () () ( ) ( ) () () ( )() () () ( ) ( ) 1 1 r fi i f i f i r fi i f i f i xt t A xt But ft yt t C xt Dut f t µξ µξ = =  =+ +     =+ +      (3) 
where

( ) n f xt ∈  , ( ) p f yt ∈  and
( ) m f ut ∈  represent respectively the faulty state and faulty output vectors and the fault tolerant control signal, ( ) m ft∈  is the fault directly All the authors are with Centre de Recherche en Automatique de Nancy (CRAN). Nancy-Université CNRS, 2, avenue de la forêt de Haye, 54516 Vandoeuvre-lès-Nancy. {tahar.bouarar, benoit.marx, didier.maquin, jose.ragot}@ ensem.inpl-nancy.fr affecting the input. The fault is supposed to be constant (i.e.

( )

0 df t dt = ).
The objective is to design a fault tolerant controller ensuring the convergence of the faulty state vector 

() () ( ) () () ( ) () () 1 r fi i f i ut tKx t xt u t f t µξ = =- + -  ( 4 ) 
where:

mn i K × ∈ 
are the state feedback gain matrices to be synthesized. The FTC design simultaneously requires t h e knowledge of the faulty state vector and the faults affecting the system. In order to estimate ( )

f xt and
( ) ft , the following PI observer is considered:

() () ( )() () () ( ) () () ( ) ( ) () () ( ) () () ( ) ( ) () () ( )() () () ( ) 
( )

1 1 2 1 1 ˆr fi i f i f i f f i r ii f f i r fi i f i f i xt t A xt But ft Hyt yt ft t H y t y t yt t C xt Dut f t µξ µξ µξ = = =  =+ + + -    =-    =+ +        (5) where 1 np i H × ∈  and 2 mp i H × ∈ 
are the observer's gain matrices to be determined to estimate ( )

ft and ( ) f xt .
A first solution to this problem was proposed in theorem 5.4 of [START_REF]Estimation et diagnostic de systèmes non linéaires décrits par un multimodèle de Takagi-Sugeno[END_REF].

III. FAULT TOLERANT CONTROLLER DESIGN

In this section we propose a less conservative approach for fault tolerant controller conception. Let us respectively define the state and fault estimation errors defined by:

( ) ( ) ( ) ŝff et x t x t =- and 
( ) ( ) ( ) 

d et ft ft =- . Let
ff f f ut Kx t xt K xt xt u t f t µ µ =- + - + - ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
The dynamics of ( ) p et and ( ) s et are given by:

( ) ( ) ( ) ( ) ( ) pp s d et A B K et B K et B et µµ µ µ µ µ =- - -  ( 7 )  ( ) ( ) ( ) ( ) 1 ssd y et A et B et H et µ µ µ =+-   (8)
According to [START_REF]Estimation et diagnostic de systèmes non linéaires décrits par un multimodèle de Takagi-Sugeno[END_REF], to avoid the crossing terms resulting from the observer's gains 1 i H and system matrices ( i C and i D ) multiplication, we introduce a "virtual dynamics" in the output error ( ) y et [11] [12]. This latter can be expressed as:

( ) ( ) ( ) ( ) 0 ysd y et C et D et et µ µ =+ -  ( 9 ) 
where 0 pp × ∈  is a zero matrix. Since the faults affecting the system are supposed to be constant (i.e. ( )

0 ft= 
), the dynamics of the fault estimation error is given by: ( ) ( ) ( )

22 ds d et H C et H D et µµ µµ =- -  ( 1 0 ) 
The combination of ( 7), ( 8), ( 9) and ( 10) allows the formulation of the dynamics of ( ) ( )

Ee t A e t µ =   ( 1 1 ) 
where ( )

0 m Ed i a g I I I = , ( ) TT T T T ps d y
ee e e e =     and 1 22 0 0 00 0

AB K B K B AB H A HC HD CDI µµ µ µ µ µ µ µ µ µ µµ µµ µ µ -- -   -  =  --   -   ( 1 2 ) 
The main proposed result can now be established. 

() ( ) () 1,1 2,1 2,2 0 ij i  ϒ * <   ϒϒ  ( 1 3 )
where: 
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With ( 11) and ( 14), the inequality (17) becomes:

() ( ) () 0 TT T etA PP Ae t µ µ +<   ( 1 8 ) 
The inequality (18) is fulfilled if:

 0 TT AP PA µ µ +<   (19) 
Indeed, with ( 12) and ( 16) the inequality (19) becomes: 

 () ( ) ( ) ( ) ( )
  Ψ * * *     -Ψ * * <   -ΨΨ *       -Ψ - --   (20) 
where: ( )

1,1 11 1 1 

Φ= --.

Applying lemma 1 and considering 1234 I δδδδ ==== , the inequality ( 21) is implied by: 

 () ( ) ( ) ( ) ( ) 1 
  Φ * *     -Φ * * <   -Φ Φ *       -- - Φ    (22)
where:

() 

1
-Θ Θ * < --- - -                     (23)
where: ( )

1,1 T ii i AX XA Θ= + , ( ) 2,2 66 
T ii i PA A P Θ= + , ( ) 
3,2 2 6 T ii j i
BP HC Θ= and ( ) ( )

3,3 22 T T ij j i i j HD D H Θ= - - .
Remark 2: To ensure the stability of (3) even if faults occur, one has to check the existence of ( )

2
diag X P I in theorem 5.4 of [START_REF]Estimation et diagnostic de systèmes non linéaires décrits par un multimodèle de Takagi-Sugeno[END_REF] or the matrix P given by ( 16) in the proposed approach. Indeed, the proposed approach (theorem 1) introduces some additional free slack variables to relax the existing LMI conditions. This conservatism reduction can be shown mathematically by considering in theorem 1 that 13 0 P = , 14 0 P = , 15 0 P = and 16 0 P = . Then, the inequality (22) can be rewritten as: 

1,1 1 11 TT T AX X A BKK B X X µµ µ µ µ µ µ µ δ δ - Φ= + + + , ( ) 
2,2 66 
T PA A P µ µ µ Φ= + and ( ) ( ) 3,3 22 T T HD D H µµ µ µ µ µ Φ= - - .
Replacing ( ) y et by its expression given in (24), one obtains the LMI conditions of theorem 5.4 [START_REF]Estimation et diagnostic de systèmes non linéaires décrits par un multimodèle de Takagi-Sugeno[END_REF].

IV. SIMULATION RESULTS

In order to show the effectiveness and the applicability of the proposed approaches, let us consider the system (2) with 1 11 13 0 21 8 Matlab LMI Toolbox the obtained feasibility fields a r e presented in Fig. 2 and show that the proposed approaches are less conservative than in [START_REF]Estimation et diagnostic de systèmes non linéaires décrits par un multimodèle de Takagi-Sugeno[END_REF]. Secondly, in order to illustrate the effectiveness of the fault tolerant controller compared to a classical one, a passive FTC controller is designed as described in appendix, in order to minimize the L 2 -gain from the fault to the tracking error. The obtained results are compared with those issued from the proposed active FTC controller.

a A   =-  -  , 2 32 2 03 0 . 2 0.5 2 5 A -   =-  -  , 1 0 1 0.25 B   =    , 2 1 1 B b   =    , 1 1 0.5 0 T C -   =    , 2 1 0.5 0 T C -   =-   , 1 0.8 D =-, 2 0.5 D =- , () ( ) ( ) ( ) 1 1t 
In the fault free case, it can be seen on Fig. 3 

V. CONCLUSION

In this paper, a trajectory tracking fault tolerant controller design approaches have been proposed for faulty T-S models with measurable premise variables. The objective is to ensure the tracking between the faulty system states and one of healthy reference model. The proposed LMI approaches are less conservative. This improvement is due to the considered "virtual dynamics" on the output error allows introducing slack variables in the Lyapunov function and decoupling the observer gains and the system matrices. The classical controller design methodology is based on the following scheme.

Fig. 9. Classical controller design scheme

The system state representation is given by: Introducing a "virtual dynamic" on ( ) t ε , one can obtain: 
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 1 Fig.1. Fault tolerant control strategyLet us consider the FTC law given by:

Corollary 1 :H

 1 The tracking error ( ) p et , the state ( ) and K µ such that the following LMI are satisfied for all ,1 , 2 , . . ,

.

  a and b are two model parameters.Firstly, our aim is to compare the conservatism of the approach given in theorem 5.4 of[START_REF]Estimation et diagnostic de systèmes non linéaires décrits par un multimodèle de Takagi-Sugeno[END_REF] and the proposed theorem 1

Fig. 2 .

 2 Fig.2. Feasibility fields ;  Theorem 1, × Corollary 1 and  Theorem 5.4 of [8]

  that both passive and active FTC controllers ensure the system stabilization. The simulation is problem is solved with Matlab LMI Toolbox.In order to compare passive and active FTC control facing the occurrence of a fault, a piecewise constant fault ( ) ft , occurring at 4 t = is considered. The simulation results are displayed on the Fig.4, 5, 6, 7. The effectiveness of t h e proposed FTC design can be seen on Fig.4, whereas the passive FTC fails to ensure trajectory tracking when ( ) ft occurs.

  The efficiency of the FTC law comparing with classical one is illustrated with a numerical T-S model whose input is corrected by a fault. ACKNOWLEDGMENT This work was supported by the GIS 3SGS.

Fig. 3 .

 3 Fig.3. Comparison of the reference model states (no fault), the system states with FTC (theorem 1) and system states with classical control law (theorem 2).

Fig. 4 .

 4 Fig.4. Comparison of the reference model state (no fault), the faulty system state with FTC (theorem 1) and the faulty system state with classical control law (theorem 2).
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 5678 Fig.5. Estimation errors
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 5 Let us define the state and output tracking errors between[START_REF] Mufeed | Active fault tolerant control systems[END_REF] and (25) by ( ) ( ) ( ) ensure the tracking of the reference model, we consider the following control law

Theorem 2 : 3 PTPP

 23 leading to synthesize the controller p K under the 2 L norm bound are given in the following theorem 2. The tracking error and p K and a positive scalar γ such that the following LMI are satisfied for all 1e t u s c o n s i d e r t h e f o l l o w i n g c a n d i d a t e q u a d r a t i c Lyapunov function: =≥ . It is well known that the L 2 -gain from ( ) ft to ( ) et is bounded by γ if [13]: and substituting (26) in (30), one can obtain:

where:

( )