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Abstract

The initial number of susceptible individuals in a population is usually assumed to
be known and statistical inference for some of the quantities of interest, such as the
basic reproductive number Ry, is straightforward. However, in any epidemic, there
may exist a number of individuals who may not be involved in the transmission
of the disease. In this note we show how maximum likelihood estimators can be
derived for the parameters of interest. The proposed methodology is then applied
to the Abakaliki smallpox data in Nigeria.

1 Introduction

Understanding the spread of an infectious disease is a crucial issue in order to
prevent major outbreaks of an epidemic. The analysis of outbreak data can
be more effective when it is based on a model for the actual process which
generates the data. Models could be used to provide a better understanding
of the transmission dynamics, the infection process, and the epidemiologically
quantities of interest. There exists a comprehensive literature on deterministic
and stochastic epidemic modelling; (see for example, Bailey, 1975, Becker,
1989, Daley and Gani, 1999, and the references therein). Many researchers
have focused on estimating key quantities of interest, such as the rate at
which an infected individual makes contacts with the rest individuals in the
population, and the basic reproduction number Ry (Becker, 1989, Becker and
Hasofer, 1997, Riley et al., 2003).
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Estimating the size of a population is a common problem in many scientific
fields, for example, in ecology (Huggins, 1989, Yip, 1989). Traditional inference
for stochastic epidemic models depends on the knowledge of the initial number
of susceptible individuals. Huggins et al. (2004) encountered the problem of
estimating the initial number of individuals that are susceptible to a disease.
Being able to estimate the number of initially uninfected individuals enable
us to determine if there are individuals in the population with either a natural
immunity to the disease or are for some reason not exposed to the disease (e.g.
isolated).

Huggins et al. (2004) provided an estimator of the number of initially suscep-
tible individuals as well as its approximate variance, by adopting a martingale
framework (see, for example, Becker, 1989). Here we show that if the epidemic
is fully observed, i.e. infection and removal times are available, a maximum
likelihood estimator (MLE) can be derived in a straightforward manner. A
simulation study is conducted to compare our MLE and its properties (i.e. its
standard error) with the martingale estimator (ME) by Huggins et al. (2004).
We then apply our methodology to the Abakaliki smallpox data in Nigeria
that has been previously considered by Huggins et al. (2004) too.

2 Notation

We adopt a very similar notation as Huggins et al. (2004). A closed population
(i.e. no births/ deaths/ immigration) of size N + a is considered; we assume
that at time ¢ = 0 there are « initially infective individuals. Denote by S(t),
I(t) and R(t) the number of susceptible, infective and removed individuals
respectively at present time t. The infectious periods of different individuals
are independent and identically distributed according to some random variable
D, which can have any arbitrary but specified distribution. In addition, we
assume that the epidemic is observed up to a certain time, say 7. Denote by
n; < N and ng < N, the number of individuals who became infected and
removed by time T respectively. In general, ngp < n; < N. Note that when an
individual becomes infected, we also assume that he/she becomes infective at
the same time (i.e. able to spread the disease).

The epidemic process (S(t), I(t)) is Markov if and only if the infectious period
has the lack-of-memory property. This is the special (Markovian) case where
the infectious periods follow an Exponential distribution. Such a model is
known as the general stochastic epidemic (GSE). Then, the process (S(t), I(t))
can be fully described in terms of continuous time Markov chains with the
following transition rates:



(S(t) =i, I(t) = j) — (S(t+0t) =i—1,I(t+6t) = j+1):
(S(t) =i, I(t) = j) — ((S(t+6t) =i, [(t+6t) = j —1):

while the transition probabilities turn out to be:

P[S(t+6t) — S(t) = —1, I(t+dt) — I(t) =1 | H¢] = %S(i)[(t)ét + o(dt)
P[S(t+ 6t) — S(t) =0, I(t+6t) — I(t) = —1 | He] =~7I(t)t + o(6t)
P[S(t+6t) — S(t) =0, I(t+6t) —I(t) =0 | Hi] =1 — %S(t)[(t)ét
—~1(t)ot + o(dt)

where H, is the sigma-algebra generated by the history of the process up
to time ¢, i.e. Hy = o{(S(f),1(f)) : 0 < f < t}, with Hy = o{S5(0) =
N,I(0) = a)} specifying the initial conditions. Therefore, the probability of
an infection or a removal at the time interval [t,t + dt) are 3S(t)I(t) 4+ o(dt)
and v (t)+o(dt) respectively. The correction term o(dt) becomes negligible for
small 9, i.e. O((sit) — 0 as 6t — 0. Note that by assuming a closed population,
we only need to keep track only (instead of the three) processes, since it holds

I(t) + S(t) + R(t) = N for any t.

The form of the transition probabilities show that the probability of infection
at time ¢ is proportional to the total number of infectives and susceptibles
at time ¢. The constant of proportionality, 3, is referred to as the infection
rate. The transition probability of a removal shows that the length of the
infectious periods are independent, identically distributed exponential random
variables with mean 1/, and therefore  is referred as the removal rate for each
individual. The epidemic continues until there are no more infective individuals
left circulating in the population.

We assume that we observe the times at which individuals become infected
are known i.e. I(¢),0 < ¢ < 7 is fully observed. However, we don’t observe the
initial number of susceptible individuals in the population, N, and therefore
the process S(t),0 < ¢ < T is unobserved.

3 Maximum Likelihood Estimation

We are interested in drawing inference for the unknown number of initially
susceptible individuals in the population (NNV), given that we have the infection
process I(t) and also know that the epidemic has ceased. In this section we
show that a maximum likelihood estimator N can be obtained.



First, we consider the likelihood of the data given the parameters of interest,
B,~v and N, using counting process theory (see for instance, Andersson and
Britton, 2000). Letting 7 = (71,72, ..., Ty, ), to denote the (ordered) succes-
sive removal times observed during [0, T]. In other words, 7; refers to the ith
removal time. Denote by ¢; the initial infection time and ¢ = (¢2, ..., ¢n,)
the remain successive infection times during (¢1,7'); n; denotes the number
of total number of individuals (including the initial one) who contracted the
disease.

L(T7¢|ﬁ777 O( Hﬁ/] H 7)
X exp —/ <%S(t}[(t) +7[(t)> dt (1)
(3]

where the notation ¢; denotes the left hand limit, so for example I(¢; ) de-
notes the limyg, (1(s ))7 or in other words the time immediately prior to ¢;.
Note that although I(¢) only depends on the infection and removal times,
S(t) depends on N too.

We are interested in maximising the log-likelihood of the observed data given
the parameters. Therefore, taking the logarithm of (1) gives:

log L(7,¢|3,7, N) = (n; — 1)(log 3 — log N) + log (ﬁ S(¢j)f(¢j))

Jj=2

3 T
_N/ dt—'y/] dt +nylog~y

b1
+log 1":[ )
(2)

The removal rate v is easily derived by differentiating (2) with respect to v
and set the derivative equal to zero. Then we are left with:

d,log L(2|N, )

=0.

(0B)(ON)
Although there is not available a closed expression for B and N , We can max-
imise (2) with respect to 3 and N numerically (see details in Section 4). The
inverse of the matrix of the second-order (partial) derivatives (also called the



Hessian matrix) would then give us the variance-covariance matrix of the es-
timators which in turn will lead to the computation of their (approximate)
standard errors.

4 Simulation Study

In this section we conduct a very similar simulation study to the one described
in Huggins et al. (2004) to compare the efficiency of the proposed MLE to the
ME as derived there.

We also consider populations of N = 100, N = 250, N = 1000 and N = 5000
susceptibles with o = 1 initially infective. We chose two different values for the
infection rates, § = 1.3 and # = 1.5 and one value for the removal rate, v = 1.
We follow Huggins et al. (2004) and we only considered simulated epidemics
where more than 20% of the individual were infected; for 3 = 1.3 we also
considered epidemics were more than 40% of the individuals were infected.
For each combination of the parameters, 1000 epidemics were simulated; we
then used the statistical language R and the function optim to maximise
numerically the log-likelihood with respect to g and N.

The simulation results presented in Table 1 suggest that, overall, the unknown
number of initially susceptible individuals in the population is estimated well.
Although this is the case for the ME too (Huggins et al., 2004), the maximum
likelihood approach offers higher precision. For each different scenario, i) we
compute the standard deviation of the maximum likelihood estimates of N

(sd(N)), ii) the average standard error of each of the estimates (av(se(N))),
iii) the coverage and the average final size of the simulated epidemics.

The standard deviation of the 1,000 estimates of N simulations is significantly
lower than the corresponding error of the ME. Furthermore, the average stan-
dard errors of the MLE are much smaller especially for small values of N.
Another advantage of the MLE as compared to the martingale approach is
that there were no cases (out of the 1,000 simulations) where an estimate
could not be derived. Nevertheless, it seems that for small values of IV and for
minor outbreaks the martingale estimator performs better as it offers better
coverage. One possible reason why the maximum likelihood approach provides
low coverage in such circumstances could be due to the fact that, for small
values of N and minor outbreaks, the likelihood function is flat. This fact
combined with the way the standard errors are calculated (see also Section 3)
could reflect an underestimation of the standard errors. In addition, it seems
that the MLE exhibits negative bias for small population sizes (so as the ME).
However, it seems that when the disease is reasonably infective (for instance,
8 = 1.3 - major outbreak) then this bias is decreasing.



Table 1
Simulation Study

N av(N) sd(N) av(se(N)) Coverage av(l;)
B=15

100 88.09 22.05 15.04 77.8 58.10

250 233.17 38.44 28.73 84.3 144.03
1000 979.65 72.76 63.48 91.4 580.17
5000 4961.20 124.68  144.17 95.6 2908.46
8=13

100 81.49 25.52 19.69 69.7 47.36

250 218.35 52.89 42.62 76.7 112.64
1000 934.89 130.63  112.62 86.2 427.32
5000 4877.42 252.93  285.57 93.7 2108.32

8 = 1.3 (Major outbreak)

100 96.22 18.16 19.90 90.2 57.64

250 247.86 36.12 41.97 94.7 131.76
1000 997.27 75.87 105.38 97.8 473.56
5000 4974.06 161.15 269.90 98.6 2207.41

5 Application

We illustrate the above methodology on the Abakaliki smallpox data in Nige-
ria. A total of 30 cases was observed and Becker (1989, pg. 111) provides us
with the 29 time intervals between the detected cases. From these we can
obtain the corresponding infection time of each individual having assumed a
certain value for the infectious period. In this sequel we have assumed the
infectious period to be fixed and the same for every individual equal to 14
days (Mack, 1972). It is then relatively straightforward to maximise the log-
likelihood (2) with respect to the parameters of interest N and /3. The function
optim was used in R to obtain the parameter estimates and their the corre-
sponding standard errors of them (see Table 2).

We obtained N, vLe = 35.27 which is relatively close to the value which is

—~

reported in Huggins et al. (2004), N = 42.1. Our estimator though has a



much smaller standard error (6.70) then the one obtained in Huggins et al.
(2004) (37.15). It is reported in Bailey (1975) that there were 120 individuals
who had close contacts regularly. Obviously, our estimate is much smaller than
120; a possible explanation could be the fact a significant proportion of these
individuals were immune to the disease at the start of the epidemic.

Figures 1 illustrates the shape of the log-likelihood and Figure 2 the profile
likelihood of 3 (right-hand plot) for N = 120 which is the value of N which has
been assumed in other attempts of modelling this dataset (see for example,
O’Neill and Roberts, 1999).

Table 2
Parameter estimates for the Abakaliki smallpox data

Parameter Estimate Standard Error 95% CI
N 35.27 6.70 (22.12, 48.41)
Jo] 0.14 0.038 (0.065, 0.214)

Fig. 1. Profile log-likelihood of 8 assuming N = 120 for the smallpox data
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Fig. 2. Profile log-likelihood of g assuming N = 120 for the smallpox data

6 Discussion

We are often interested in estimating the number of initially susceptible indi-
viduals in a population. In this short note we showed that by assuming the
infection and removal times of the individuals are known, maximum likelihood
estimates can be derived for both N and the infection rate (/) in a straightfor-
ward manner. Overall, the estimator performs well and especially where the is
large outbreak. There is simulation-based evidence that in a number of cases
these estimators perform better than the ones obtained by using martingale
methods as presented in Huggins et al. (2004).

Although the simulation and the application presented in this note refer to
homogenously mixing model, maximum likelihood approaches can be easily
used for more complex settings given that the infection times (as well as the
removal times) are known. Unfortunately, it is very rare in practice that these
will be available. Usually, only the removal times are know while it is often
the case that someone may only have the final size of the epidemic. Never-
theless, in this case, it has already been illustrated that data augmentation
techniques (Tanner and Wong, 1987) seem to be a natural framework for par-
tially observed epidemics (O’Neill and Roberts, 1999, Gibson and Renshaw,
1998, Kypraios, 2007). A natural extension of the current maximum likelihood
approach is to employ Markov Chain Monte Carlo (MCMC) algorithms draw



inference the parameters 3, and N within a Bayesian framework.
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