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Abstract

An important problem in logistic regression modeling is theexistence of the maximum likelihood estimators.

Especially when the sample size is small, the maximum likelihood estimator of the regression parameters does

not exist if the data are completely, or quasi–completely separated. Recognizing that this phenomenon has a

serious impact on the fitting of the density ratio model–which is a semiparametric model whose profile empirical

log-likelihood has the logistic form because of the equivalence between prospective and retrospective sampling–

we suggest a linear programming methodology for examining whether the maximum likelihood estimators of the

finite dimensional parameter vector of the model exist. It isshown that the methodology can be effectively utilized

in the analysis of case control gene expression data by identifying cases where the density ratio model cannot be

applied. It is demonstrated that naive application of the density ratio model yields to erroneous conclusions.

Keywords: biased sampling, differential expression, empirical likelihood, linear programming, separation
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1 Motivation

Consider two independent samples of observations such that

X11, . . . , X1n1 is a random sample from g1(x) = exp
(
α + βT h(x)

)
g2(x),

X21, . . . , X2n2 is a random sample fromg2(x).
(1)

In the abovegi(x), i = 1, 2 are unknown probability density functions,α is an unknown scalar parameter,β is a

d-dimensional vector of parameters andh(x) is ad-dimensional vector which consists of known functions ofX .

Model (1) is called density ratio model because it specifies that the log–ratio of two unknown probability density

functions is linear in some parameters, see Anderson (1972), Qin and Zhang (1997). The model is motivated

by means of the standard logistic regression and the equivalence between prospective and retrospective sampling,

Prentice and Pyke (1979). It should be mentioned that the class of distributions for which (1) holds is rather general

and it includes the exponential family of distributions. Hence a vast collection of data types can be modeled by

means of model (1).

An important observation is that when model (1) holds, and ifβ = 0, then the two samples are identically

distributed. We conclude that model (1) is useful to the semiparametric comparison of two samples in the sense

that the densitiesgi(.), i = 1, 2 are left completely unspecified but the weight functionexp
(
α + βT h(x)

)
depends

on some finite dimensional parameter. Hence (1) provides a sound framework for addressing the problem of

comparing two independent samples. In addition, it provides a compromise between the fully parametric and non–

parametric approaches to the problem of testing equality oftwo distribution, see Qin et al. (2002), Kedem et al.

(2004) and Fokianos et al. (2005), among others, for applications of the density ratio model to real data problems.

Inference regarding both finite and infinite dimensional parameters of model (1) has been studied by various

authors assuming that the sample sizes tend to infinity in a suitable way. Following the empirical likelihood

methodology, as advocated by Owen (2001), a parametric likelihood function for the finite dimensional parameters

is obtained after profiling out the infinite dimensional parameter of the model. However, there are applications

where the sample sizes are small and therefore direct application of the aforementioned techniques might suffer

from non-existence or even non-convergence problems. To make this point clear, we follow Qin and Zhang (1997)

and Fokianos et al. (2001) who show that the empirical log-likelihood is given by

l(θ) ≡ l(α, β) = −
2∑

i=1

ni∑

j=1

log
[
1 + ρ1 exp(α + βT h(xij))

]
+

n1∑

j=1

(
α + βT h(x1j)

)
(2)

whereρ1 = n1/n2. Furthermore, if̂θ = (α̂, β̂)′ denotes the maximum likelihood estimator ofθ, assuming that it

exists, then it can be shown that

p̂ij =
1
n2

1

1 + ρ1 exp(α̂ + β̂T h(xij))
. (3)
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wherepij = dG2(xij), the size of the jump ofG2(·) at the observed datumXij = xij . A consistent estimator for

both ofG1(.) andG2(.) can be constructed provided that the total sample sizen = n1 + n2 tends to infinity such

thatn1/n2 → ρ1–see Qin and Zhang (1997) and Fokianos et al. (2001) for more.

Note that (2), after reparametrization, is equivalent to the standard logistic regression likelihood–a direct con-

sequence of the equivalence between retrospective and prospective sampling as it was mentioned before. Hence,

the finite dimensional vector of parametersθ = (α, βT )T can be estimated by any of the numerous statistical pro-

grams which include logistic regression modeling. A standard approach for computing the maximum likelihood

estimate ofθ is to use the Fisher scoring method which, under some regularity assumptions, yields a sequence of

approximations that converge to the maximum likelihood estimators ofα andβ. Occasionally this sequence of

approximations does not converge to a finite value. Therefore application of the density ratio model is question-

able, see Fokianos (2008) who proposes penalization for theresolution of this problem and Davidov and Iliopoulos

(2009) who give necessary and sufficient conditions for the existence of maximum likelihood estimators for both

the finite and infinite dimensional parameter. The non existence issue of the maximum likelihood estimators for

the logistic regression model, sometimes, referred to asmonotone likelihoodor infinite parameters, occurs when a

condition among the sample points, known asseparation, prevails.

More specifically, the concept of separation in the logisticregression context was introduced by Albert and

Anderson (1984) who showed that the sample points can be classified into one of three mutually exclusive con-

figurations:complete separation, quasicomplete separationor overlap. To rephrase the concept of separation in

terms of the density ratio model, define the sample points by the(d + 1)-dimensional vectoruij = (1, hT (xij))T

for j = 1, 2, . . . , ni, i = 1, 2. Then, there exists complete separation among the sample points if there is a nonzero

vectorγ such that

γT uij < 0 when i = 1 and γT uij > 0 when i = 2.

In other words, there is complete separation when there exits a hyperplaneH such that all the values of the first

sample lie strictly on one side ofH and all the values of the second sample lie strictly on the other side ofH . If

complete separation is not present among the sample points but there exists a nonzero vectorγ satisfying

γT uij ≤ 0 when i = 1 and γT uij ≥ 0 when i = 2,

then there is quasicomplete separation among the sample points. Finally, if there is no nonzero vectorγ satisfying

the last set of equations, then the sample points overlap. Albert and Anderson (1984) and Santner and Duffy (1986)

show that there is a finite and unique maximum likelihood estimate of the logistic regression model parameterθ

provided that there exists overlap among the sample points.Therefore, the density ratio model (1) is applicable only

when there is overlap among the sample points according to the above conventions. The aim of this contribution is

to suggest a test for checking whether there exists separation among sample points. By providing such a test, we

answer the question of the applicability of model (1).
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Figure 1: Six sample points completely separated by the hyperplaneH . The inner productssij = uij · γ are strictly

positive wheni = 2 and strictly negative wheni = 1.

2 Methodology

The previous discussion shows that before fitting the density ratio model, we need to test for separation among the

sample points. We outline a method based on linear programming. In the case that separation is found among the

sample points we report that the density ratio model is not applicable. Otherwise (i.e., in the case of an overlap

configuration), we fit the underlying logistic regression and proceed with inference, as in Fokianos et al. (2001),

for instance.

The use of linear programming to check for separated configurations of the sample points was first suggested

in Albert and Anderson (1984) where the authors specified thenecessary constraints but not an objective function.

Furthermore, Santner and Duffy (1986) described a mixed integer linear program capable of distinguishing be-

tween the three configurations while Silvapulle and Burridge (1986) and Clarkson and Jennrich (1991) used linear

programming to check for the existence of a finite maximum likelihood estimate for the logistic regression model.

We test for separation based on recent work by Konis (2007) because it is relatively simpler to apply. In addition,

the test is implemented by means of thesafeBinaryRegression R package and therefore it is easily acces-

sible to data analysts, Konis (2009). In what follows, we assume that then × (d + 1) design matrixU with rows

given byuT
ij is of full rank so that the associated logistic regression model is well-defined.

Recalling the notation from the previous section, letsij be the inner product ofuij and a vectorγ = (γ1, . . . , γd+1)T

perpendicular toH , as shown in Figure 1. The linear program proposed in Konis (2007) seeks to maximize the

sum of the absolute values of thesij subject to the constraint thats1j ≤ 0 ands2j ≥ 0. In the notation of linear
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programming (see Konis (2007)) this problem is stated by seeking the vectorγ such that

maximize:
∑n2

j=1 u2j · γ − ∑n1
j=1 u1j · γ,

subject to: u2j · γ ≥ 0, j = 1, 2, . . . , n2,

u1j · γ ≤ 0, j = 1, 2, . . . , n1,

γl ∈ R, l = 1, . . . , d + 1.

(4)

If there is overlap among the sample points then there is no nonzero vectorγ that satisfies the constraints imposed

by (4). In this caseγ ≡ 0 is the only feasible point and the optimal value of the objective function is zero. On the

other hand, if there is either complete or quasicomplete separation among the sample points then there isγ such

that at least one of the inner products is nonzero. However, if γ satisfies the constraints of (4) then so doeskγ for

realk > 1. Hence, in the separated case, the linear program is unbounded.

The safeBinaryRegression package useslp solve (Berkelaar et al., 2009) via thelpSolveAPI

(Konis and lpsolve, 2009) R package to solve (4). If the linear program is bounded and the optimal value of the

objective function is zero then there is overlap among the sample points and the density ratio model is appropri-

ate. However, if the linear program is unbounded then the density ratio model cannot be applied to two sample

problems.

3 Examples

Consider data from the Affymetrix Spike-In study (Irizarryet al., 2003). This experiment was used by Affymetrix

to develop the MAS 5.0 preprocessing algorithms. The data set consists of measurements from 12626 human

genes. We focus on the two array groups among the 14 array groups that contain 12 replicates each, leading to a

case-control design with a total of 24 Affymetrix HGU95 biochips. For the data analysis, probe level summaries are

computed using the RMA method (Irizarry et al., 2003), yielding intensity levels on alog 2 scale. We test whether

the density ratio model can be employed for inference for these data in the sense of comparing the distributions of

cases and controls. Table 1 shows the number of separated cases for the whole data. It turns out that whenh(·) is

chosen to be univariate we obtain 15 separated samples and therefore the density ratio model is not applicable for

these particular genes. The results are consistent for all choices ofh(·) since bothh(x) = log x andh(x) =
√

x

are monotone functions ofx whenx > 0. Note that the choices forh(·) are motivated by considering the log ratio

of some standard distributions. For instance, choosingh(x) = x can be motivated by calculating the log ratio of

two normal densities with identical variances. The non–applicability of the density ratio model turns out to be a

more serious issue whenh(·) is chosen to be a two dimensional function. In this case the number of separated

samples increases considerably. Figure 2 demonstrates clearly the concept of separation for some selected genes

from the Affymetrix Spike-In study.

As a second example we considered the data set described in the breast cancer study by Hedenfalk et al.
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h(x) x log x
√

x (x, log x)T (x, x2)T

# 15 15 15 556 1210

Table 1: The number of separated cases for Affymetrix Spike-In study for different choices ofh(·).
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Figure 2: Illustrating separation for seven genes in the Affymetrix Spike-In data. The filled triangles represent one

sample and the up-side-down open triangles represent the other.

(2001). These data were produced using cDNA technology and they describe intensity ratios of 3226 genes across

22 breast cancer samples. One of the aims of the experiment conducted by Hedenfalk et al. (2001) was to detect

differences in the genetic profiles between the BRCA1 and BRCA2 mutations. For these two conditions there are

7 and 8 arrays available, respectively. Notice that these data werelog10 transformed and therefore they assume

both positive and negative values. We apply the density ratio model withh(x) = x (respectively,h(x) = x2) and

we obtain 19 (10, respectively) separated cases. In addition, the choiceh(x) = (x, x2)T yields 28 separated cases.

Some interesting observations follow next. Figure 3 shows data from a specific gene from the breast cancer

study. For this particular case, it is worthwhile to notice that the density ratio model (1) is applicable when

h(x) = x orh(x) = x2–a projection of the data onto either thex or they axis produces an overlapped configuration

among the sample points. However, the plot shows that whenh(x) = (x, x2)T then there is complete separation

among the sample points and therefore model (1) is not applicable with this choice ofh(·).
Furthermore, Figure 4 demonstrates the consequences of naively applying the density ratio model without

testing for separation. It shows plots of the estimated distribution functions of genes 1 and 521 from the breast

cancer study data by fitting the density ratio model usingh(x) = x2 and without testing for separation. The cdf of

6



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

g2(.), sayG2(.), is estimated by using (3) and

Ĝ2(x) =
2∑

i=1

ni∑

j=1

p̂ijI(Xij ≤ x),

while

Ĝ1(x) =
2∑

i=1

ni∑

j=1

p̂ij exp(α̂1 + β̂T h(xij))I(Xij ≤ x),

whereI(·) denotes the indicator function. The associated logistic regression model in the upper plot (gene 1) has

an overlap among the sample points. The lower panel (gene 521) appears to indicate that some of the data points

overlap. However, for this particular gene, the corresponding sample points are completely separated. Therefore

model (1) is not even applicable. Hence, testing for separation among the sample points is essential prior to fitting

the density ratio model.
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Figure 3: The open circles correspond to gene 3094 of condition BRCA1 and the filled circles correspond to

condition BRCA2 for the same gene.H is the separating hyperplane whenh(x) = (x, x2)T in (1).
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Figure 4: Two comparisons of the estimated cumulative distributions. There is overlap among the sample points

in the upper plot and complete separation in the lower plot. However, there are no features in the second plot that

suggest anything is amiss.

4 Conclusions

We have outlined a methodology for testing for separation among the sample points prior to fitting the density ratio

model. It has been shown, using real data examples, that the proposed methodology effectively identifies cases

where the model is not applicable. Some misleading results unfold if the technique is not applied properly.
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