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Abstract

An important problem in logistic regression modeling is théstence of the maximum likelihood estimators.
Especially when the sample size is small, the maximum likeld estimator of the regression parameters does
not exist if the data are completely, or quasi—completefyasgted. Recognizing that this phenomenon has a
serious impact on the fitting of the density ratio model—hga semiparametric model whose profile empirical
log-likelihood has the logistic form because of the equnak between prospective and retrospective sampling—
we suggest a linear programming methodology for examinihgtiier the maximum likelihood estimators of the
finite dimensional parameter vector of the model exist. $hiswn that the methodology can be effectively utilized
in the analysis of case control gene expression data byifigiegtcases where the density ratio model cannot be
applied. It is demonstrated that naive application of thesitg ratio model yields to erroneous conclusions.
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1 Motivation

Consider two independent samples of observations such that

Xi1,..., X1, isarandomsample fromg;(z) = exp (o + B h(z)) go(z), @)
X1, ..., Xon, isarandom sample fromgs(x).
In the abovey;(z), i = 1,2 are unknown probability density functions,is an unknown scalar parametéris a
d-dimensional vector of parameters ain@) is ad-dimensional vector which consists of known functionskaf
Model (1) is called density ratio model because it specifias the log—ratio of two unknown probability density
functions is linear in some parameters, see Anderson (19JiR)and Zhang (1997). The model is motivated
by means of the standard logistic regression and the eguigalbetween prospective and retrospective sampling,
Prentice and Pyke (1979). It should be mentioned that thes cidistributions for which (1) holds is rather general
and it includes the exponential family of distributions. nde a vast collection of data types can be modeled by
means of model (1).

An important observation is that when model (1) holds, and i 0, then the two samples are identically
distributed. We conclude that model (1) is useful to the pamgmetric comparison of two samples in the sense
that the densitieg;(.), i = 1, 2 are left completely unspecified but the weight functiap (a + 57 h(z)) depends
on some finite dimensional parameter. Hence (1) providesuadsframework for addressing the problem of
comparing two independent samples. In addition, it pravaleompromise between the fully parametric and non—
parametric approaches to the problem of testing equalityofdistribution, see Qin et al. (2002), Kedem et al.
(2004) and Fokianos et al. (2005), among others, for apgitsof the density ratio model to real data problems.

Inference regarding both finite and infinite dimensionabpaeters of model (1) has been studied by various
authors assuming that the sample sizes tend to infinity initatde way. Following the empirical likelihood
methodology, as advocated by Owen (2001), a parametridided function for the finite dimensional parameters
is obtained after profiling out the infinite dimensional paeder of the model. However, there are applications
where the sample sizes are small and therefore direct agiplicof the aforementioned techniques might suffer
from non-existence or even non-convergence problems. ke tinés point clear, we follow Qin and Zhang (1997)
and Fokianos et al. (2001) who show that the empirical laghithood is given by

2 ng ni
() =Ua,8) = =D > log[l+prexpla+ s hizy))] + ) (a+ 5" h(x)) (2)
i=1 j=1 Jj=1
wherep; = ny/n,. Furthermore, il = (é, )’ denotes the maximum likelihood estimatorépfassuming that it
exists, then it can be shown that

bij = = Al 3 ' ©
n2 14 pyexp(& + ST h(xi5))




wherep;; = dG2(x;;), the size of the jump off2(-) at the observed datuki;; = x;;. A consistent estimator for
both of G (.) andG»(.) can be constructed provided that the total samplersizen; + n» tends to infinity such
thatn, /ne — p1—see Qin and Zhang (1997) and Fokianos et al. (2001) for more.

Note that (2), after reparametrization, is equivalent togtandard logistic regression likelihood—a direct con-
sequence of the equivalence between retrospective andgmtdge sampling as it was mentioned before. Hence,
the finite dimensional vector of parametérs- (o, 37)” can be estimated by any of the numerous statistical pro-
grams which include logistic regression modeling. A staddgproach for computing the maximum likelihood
estimate of) is to use the Fisher scoring method which, under some retyudeasumptions, yields a sequence of
approximations that converge to the maximum likelihoodhestors ofa and 3. Occasionally this sequence of
approximations does not converge to a finite value. Theeedpplication of the density ratio model is question-
able, see Fokianos (2008) who proposes penalization foeiwéution of this problem and Davidov and lliopoulos
(2009) who give necessary and sufficient conditions for tigtence of maximum likelihood estimators for both
the finite and infinite dimensional parameter. The non emctassue of the maximum likelihood estimators for
the logistic regression model, sometimes, referred to@sotone likelihoodr infinite parametersoccurs when a
condition among the sample points, knowrsaparation prevails.

More specifically, the concept of separation in the logistigression context was introduced by Albert and
Anderson (1984) who showed that the sample points can bsifedaksinto one of three mutually exclusive con-
figurations:complete separatigmuasicomplete separatiaor overlap To rephrase the concept of separation in
terms of the density ratio model, define the sample pointibyd + 1)-dimensional vectot,;; = (1, hT (z;;))"
forj=1,2,...,n; 1 =1,2. Then, there exists complete separation among the samiplis ffahere is a nonzero
vectory such that

’yTuij <0 when 7=1 and vTuZ-j >0 when 7=2.

In other words, there is complete separation when there exityperplanéf such that all the values of the first
sample lie strictly on one side @f and all the values of the second sample lie strictly on theradide ofH. If
complete separation is not present among the sample paittisdye exists a nonzero vectpsatisfying

7Tu; <0 when i=1 and 7"u; >0 when =2,

then there is quasicomplete separation among the sampitspBinally, if there is no nonzero vectgisatisfying

the last set of equations, then the sample points overldgerAdnd Anderson (1984) and Santner and Duffy (1986)
show that there is a finite and unique maximum likelihoodneate of the logistic regression model paraméter
provided that there exists overlap among the sample pdihestefore, the density ratio model (1) is applicable only
when there is overlap among the sample points accordingtalibve conventions. The aim of this contribution is
to suggest a test for checking whether there exists separathong sample points. By providing such a test, we
answer the question of the applicability of model (1).
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Figure 1: Six sample points completely separated by thermgreeH . The inner products;; = u;; -y are strictly
positive wheni = 2 and strictly negative wheh= 1.

2 Methodology

The previous discussion shows that before fitting the dgraito model, we need to test for separation among the
sample points. We outline a method based on linear programrin the case that separation is found among the
sample points we report that the density ratio model is nptiegble. Otherwise (i.e., in the case of an overlap
configuration), we fit the underlying logistic regressiom gmoceed with inference, as in Fokianos et al. (2001),
for instance.

The use of linear programming to check for separated cor#tgurs of the sample points was first suggested
in Albert and Anderson (1984) where the authors specifietdfoessary constraints but not an objective function.
Furthermore, Santner and Duffy (1986) described a mixezhit linear program capable of distinguishing be-
tween the three configurations while Silvapulle and Buri¢t986) and Clarkson and Jennrich (1991) used linear
programming to check for the existence of a finite maximuralilood estimate for the logistic regression model.
We test for separation based on recent work by Konis (2003guxse it is relatively simpler to apply. In addition,
the test is implemented by means of 8&f eBi nar yRegr essi on R package and therefore it is easily acces-
sible to data analysts, Konis (2009). In what follows, weuass that the: x (d + 1) design matrixJ with rows
given byu;{; is of full rank so that the associated logistic regressiodehis well-defined.

Recalling the notation from the previous sectionsletbe the inner product af;; and avectoty = (y1, ..., ya+1)"
perpendicular taH, as shown in Figure 1. The linear program proposed in Kori®712 seeks to maximize the
sum of the absolute values of thg subject to the constraint thaf; < 0 andsg; > 0. In the notation of linear



programming (see Konis (2007)) this problem is stated bikiegehe vectory such that

maximize: ;Iil U5+ Y — Z?;l Uij v,
subjectto: ug; -y >0, j=1,2,...,n9, @)

Ulj"ygoa j:1727"-an17
yveER, I=1,...,d+1.

If there is overlap among the sample points then there is naero vectotry that satisfies the constraints imposed
by (4). In this casey = 0 is the only feasible point and the optimal value of the obyedunction is zero. On the
other hand, if there is either complete or quasicompletarsgiopn among the sample points then there s&ich
that at least one of the inner products is nonzero. Howelversatisfies the constraints of (4) then so dbedor
realk > 1. Hence, in the separated case, the linear program is unbdund

The saf eBi nar yRegr essi on package usesp_sol ve (Berkelaar et al., 2009) via thepSol veAPI
(Konis and Ipsolve, 2009) R package to solve (4). If the linear progranoisnaled and the optimal value of the
objective function is zero then there is overlap among timepda points and the density ratio model is appropri-
ate. However, if the linear program is unbounded then thaitieratio model cannot be applied to two sample
problems.

3 Examples

Consider data from the Affymetrix Spike-In study (Irizagtal., 2003). This experiment was used by Affymetrix
to develop the MAS 5.0 preprocessing algorithms. The dataaesists of measurements from 12626 human
genes. We focus on the two array groups among the 14 arrapgtbat contain 12 replicates each, leading to a
case-control design with a total of 24 Affymetrix HGU95 Wigies. For the data analysis, probe level summaries are
computed using the RMA method (Irizarry et al., 2003), yiiefrintensity levels on &g 2 scale. We test whether
the density ratio model can be employed for inference fasdhaata in the sense of comparing the distributions of
cases and controls. Table 1 shows the number of separatesifoashe whole data. It turns out that whiefd) is
chosen to be univariate we obtain 15 separated samples areddte the density ratio model is not applicable for
these particular genes. The results are consistent fohaites ofh.(-) since bothh(z) = logxz andh(z) = x
are monotone functions afwhenxz > 0. Note that the choices fdr(-) are motivated by considering the log ratio
of some standard distributions. For instance, chooking = x can be motivated by calculating the log ratio of
two normal densities with identical variances. The noniapbility of the density ratio model turns out to be a
more serious issue whéi(-) is chosen to be a two dimensional function. In this case timehbeu of separated
samples increases considerably. Figure 2 demonstratatydiee concept of separation for some selected genes
from the Affymetrix Spike-In study.

As a second example we considered the data set described lorehst cancer study by Hedenfalk et al.



h(z) | = | logz | vz | (z,Jogz)T | (x,2%)T
#] 15 15 15 556 1210

Table 1: The number of separated cases for Affymetrix Spiketudy for different choices di(-).
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Figure 2: lllustrating separation for seven genes in thg#trix Spike-In data. The filled triangles represent one
sample and the up-side-down open triangles representtilee ot

(2001). These data were produced using cDNA technologytamddescribe intensity ratios of 3226 genes across
22 breast cancer samples. One of the aims of the experimeducted by Hedenfalk et al. (2001) was to detect
differences in the genetic profiles between the BRCA1 and BR@utations. For these two conditions there are
7 and 8 arrays available, respectively. Notice that these warelog;( transformed and therefore they assume
both positive and negative values. We apply the densitg ratidel withh(z) = = (respectivelyh(x) = 22) and
we obtain 19 (10, respectively) separated cases. In additie choice:(z) = (z,22)7 yields 28 separated cases.

Some interesting observations follow next. Figure 3 shoata rom a specific gene from the breast cancer
study. For this particular case, it is worthwhile to notitattthe density ratio model (1) is applicable when
h(z) = x or h(x) = x*>—a projection of the data onto either ther they axis produces an overlapped configuration
among the sample points. However, the plot shows that vilieh = (x, 2%)7 then there is complete separation
among the sample points and therefore model (1) is not agpéavith this choice ok (-).

Furthermore, Figure 4 demonstrates the consequenceswaiynapplying the density ratio model without
testing for separation. It shows plots of the estimatedibigion functions of genes 1 and 521 from the breast
cancer study data by fitting the density ratio model ugifig) = 2 and without testing for separation. The cdf of



g2(.), sayGs(.), is estimated by using (3) and

2 i
Go(x) =D pil(Xi; < x),
i=1 j=1
while

ng

2
Gi(z) =Y pijexp(ar + B h(zi) (X < x),
i=1 j=1

wherel(-) denotes the indicator function. The associated logisgicagsion model in the upper plot (gene 1) has

an overlap among the sample points. The lower panel (geneapdEars to indicate that some of the data points
overlap. However, for this particular gene, the corresjrmndample points are completely separated. Therefore
model (1) is not even applicable. Hence, testing for sefmaraimong the sample points is essential prior to fitting

the density ratio model.
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ho(z) = 22
0.4
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Figure 3: The open circles correspond to gene 3094 of camdBRCAL and the filled circles correspond to
condition BRCAZ2 for the same gen#. is the separating hyperplane whefx) = (=, 22)7 in (1).
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Figure 4: Two comparisons of the estimated cumulativeitigtions. There is overlap among the sample points
in the upper plot and complete separation in the lower plawéler, there are no features in the second plot that
suggest anything is amiss.

4 Conclusions

We have outlined a methodology for testing for separatioaragrtihe sample points prior to fitting the density ratio
model. It has been shown, using real data examples, thatrtpoged methodology effectively identifies cases
where the model is not applicable. Some misleading resoftddif the technique is not applied properly.
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