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Abstract

This paper presents a new method for robust online variability extraction

in time series. The proposed estimator is simultaneously highly robust and

efficient. We derive its breakdown point, influence function, and asymptotic

variance and study the finite sample properties in a simulation study.
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1. Introduction

In the recent literature, new procedures have been proposed for robust

scale estimation in a time series context, see for example Nunkesser et al.

(2009) and Gelper et al. (2009). These procedures are designed to monitor

the variability of noisy and trended time series. A drawback of the existing

methods is that they lose efficiency with respect to the standard non-robust

estimator. This paper proposes a new approach which combines the quantile

based estimator of Gelper et al. (2009) and the efficient τ -scale estimator of
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Yohai and Zamar (1988). As a result, we obtain a new estimator which is

highly robust and at the same time attains high efficiency.

In several application fields data are automatically collected at a high

frequency and need to be monitored instantaneously. Assume that we collect

observations over time

yt = µt + σtεt for t = 1, . . . , T (1)

where εt is an i.i.d. sequence coming from a symmetric distribution F0 with

mean zero and variance 1. We estimate σt using a moving window approach.

At each time t, a scale estimator σ̂t is computed from a window of width

n < T , containing the observations yt−n+1, ..., yt. The variability is allowed

to change slowly over time. More precisely, the variability is only assumed

to be constant in a local window which can be fairly short, for example of

only 20 observations.

For the ease of notation, we drop the time index t and the observations

within a fixed window are denoted by y1, . . . , yn. We consider vertical heights

of the triangles formed by triplets of successive data points. For three suc-

cessive observations yi, yi+1 and yi+2, the height of the triangle formed by

these observations is given by

hi = |yi+1 − yi + yi+2

2
|

for i = 1, ..., n − 2. Rousseeuw and Hubert (1996) propose robust scale es-

timators based on these heights in the context of nonparametric regression,

and Gelper et al. (2009) adapted them to the time series context. These

estimators are invariant if a trend line a + bt is added to the data. More-

over, they do not require to model and estimate the signal µt, and were
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shown to be applicable for signals containing jumps, trends, trend changes

and non-linearities.

The estimator Gelper et al. (2009) advocate is the α−quantile of the

heights of adjacent triangles

Qα
adj(y1, ..., yn) = cqh(bα(n−2))c, (2)

which is the bα(n−2)c-th value in the sequence of ordered heights, and where

cq is a consistency factor. For α = 0.25 the highest value for the breakdown

point is attained, and we denote Qadj ≡ Q0.25
adj . While this estimator has good

properties, it has a Gaussian efficiency of only 25%. Gelper et al. (2009)

proposed to increase the value of α to get a better efficiency, at the price

of a lower breakdown point. The procedure proposed in this paper, the τ -

adjacent estimator, maintains the high breakdown point of the Qadj, but can

attain an arbitrarily high efficiency.

This robust scale estimator τadj is defined as

τadj(y1, . . . , yn) = cτ

[
S2

0

1

n − 2

n−2∑

i=1

ρ(
hi

S0

)

]1/2

(3)

with initial scale estimator S0 = Qadj(y1, . . . , yn). The loss function ρ should

be bounded, symmetric, ρ(0) = 0, and non-decreasing on the positive num-

bers. Its derivative ψ = ρ′ should exist and be positive at zero. In this paper

we take Tukey’s bisquare ρ function defined as

ρ(x) =





x2

2
(1 − x2

k2 + x4

3k4 ), if |x| ≤ k

k2

6
if |x| > k.

The value of the tuning constant k depends on the desired level of efficiency.

As will be seen in Section 2, k = 5.48 yields a 95% asymptotic relative

efficiency at the Gaussian model.
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The performance of the adjacent τ -estimator is compared with the square

root of the mean of squared adjacent heights,

MSadj(y1, . . . , yn) = cs

√√√√ 1

bn − 2c

bn−2c∑

i=1

h2
i (4)

with cs again a consistency factor. The MSadj is not robust, but it is a stan-

dard proposal for scale estimation in nonparametric regression (see Gasser

et al. (1986)). It is not difficult to check that MSadj equals the τadj for

k → ∞.

Section 2 discusses statistical properties of the τadj estimator. We show

that the estimator has a breakdown point of 25%, a bounded influence func-

tion, and we compute its asymptotic variance. The good behavior of the

estimator is confirmed in Section 3 by a simulation study. Section 4 summa-

rizes the results.

2. Statistical Properties

In the section, we first derive the expression for the consistency factor cτ

for the newly proposed estimator. Expressions for the constants cq in (2) and

cs in (4) are given in Gelper et al. (2009). We then derive the breakdown

point and the influence function of the τadj estimator. The breakdown point

measures the robustness under larger amounts of outliers, while the influ-

ence function measures the sensitivity of the estimator with respect to small

amounts of contamination. The last subsection computes the asymptotic

variance of the estimator.
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2.1. Fisher Consistency

For all theoretical derivations, we assume local linearity and a constant

scale within the considered time window. Hence

yi = a + bi + σεi (5)

for i = 1, . . . , n where εi ∼ F0. For an appropriately chosen window width

Let F be the distribution of the data and denote HF the distribution of

the corresponding triangle heights. The functional form of the τadj −scale

estimator (3) corresponds to

τadj(F ) = cτ

[
S2

0(F )EHF
ρ(

h

S0(F )
)

]1/2

(6)

where S0(F ) ≡ Qadj(F ) = cqH
−1
F (0.25). The proposed scale estimator is

location invariant, invariant when a trend is added to the data, and scale

equivariant. Assume that the model (5) holds, and take a = b = 0 without

loss of generality. Since the constant cq is such that Qadj is Fisher consistent,

we have S0(F ) = σ. In order to achieve Fisher consistency, that is τadj(F ) =

σ, we need to take

cτ =
1√

EHF0
ρ( h

S0(F0)
)

=
1√

EHF0
ρ(h)

. (7)

For F0 a standard normal N(0, 1) distribution, it is not difficult to verify

that EHF0
ρ(h) = EF0ρ(Z

√
3/2), allowing for immediate calculation of (7).

As such, we obtain for k = 5.48 that cτ = 1.24. To make the estimator prac-

tically unbiased at finite samples, we propose to replace cτ by a finite sample

version cn
τ . By Monte Carlo simulation, following the approach outlined in

Gelper et al. (2009), and for k = 5.48, we obtain

cn
τ ≈ cτ

n

n − 1.34
.
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2.2. Breakdown point

The breakdown point of a scale estimator is the minimal amount of con-

tamination such that the estimated scale becomes either infinite (explosion)

or zero (implosion). Let yn = {y1, . . . , yn} be a sample of size n. Let S be

a scale estimator. Further, let ym
n be a sample obtained from yn but with a

proportion of m/n observations altered to arbitrary values (m ∈ {1, . . . , n}).

The finite sample breakdown point of S at the sample yn is defined as

ε∗(S,yn) = min
1

n

{
m ∈ {1, 2, . . . , n} : sup

ym
n

| log(
S(ym

n )

S(yn)
)| = ∞

}
,

Suppose that yn is in general position, meaning that no three observations

(i, yi) lie on the same line for 1 ≤ i ≤ n. Gelper et al. (2009) have shown

that, for the initial estimator S0 = Qadj,

ε∗(S0,yn) =
1

n
min

{⌈
n − 1 − bα(n − 2)c

3

⌉
, bα(n − 2)c

}
. (8)

The highest possible value for the breakdown point is attained for

α =
n + 1

4(n − 2)
≈ 0.25. (9)

The finite sample breakdown point tends to the asymptotic breakdown point

of 25%. In the following proposition we state that the breakdown point of

the τadj estimator is the same as that of the initial estimator S0.

Proposition 1. Let yn be a sample in general position. For the τadj estima-

tor with a bounded loss function ρ we have that

ε∗(τadj,yn) = ε∗(S0,yn).
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Proof: From definition (3) of the τadj estimator it is readily seen that the

estimator tends to infinity if and only if the initial scale estimator S0 does,

since ρ is bounded. Implosion of the τadj estimator occurs if either (i) S0

implodes to zero (ii) all heights hi are equal to zero (iii) S0 is so large that

ρ(hi/S0) is arbitrarily small for all 1 ≤ i ≤ n − 2. Since we assumed that the

sample is in general position, (ii) cannot occur. Furthermore, by definition

of S0, about 75% of the heights is larger than S0, and ρ(1) > 0, hence also

(iii) is excluded. We conclude that the τadj implodes if and only of the initial

scale estimator implodes.

2.3. Influence function

The influence function of the functional S at the distribution F measures

the effect on S of adding a small mass at the point w, standardized by

the mass of the contamination. If we denote the point mass at w by ∆w

and consider the contaminated distribution Fε = (1 − ε)F + ε∆w then the

influence function is given by

IF (w; S, F ) = lim
ε→0

[
S(Fε) − S(F )

ε

]
. (10)

In the Appendix we derive an explicit expression for the influence function

of τadj, assuming model (5) holds with F0 = N(0, 1). Figure 1 pictures this

influence function at this normal model with σ = 1. We see that the τadj has

the desirable property of a bounded IF, hence it is B-robust. Its influence

function is smooth and has a quadratic shape close to the center of the

distribution.

7



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

−20 −10 0 10 20

0
2

4
6

8
10

w

IF

Figure 1: Influence function of the τadj estimator at the normal model with σ = 1.

2.4. Asymptotic variance

The estimators are based on heights of triangles. While the observations

themselves are assumed to be independent, the heights will be autocorre-

lated up to order two. As in Genton (1998), the asymptotic variance of an

estimator S based on the heights hi is given by

ASV (S, F ) = E(IF 2(hi; S, HF )) + 2E(IF (hi; S, HF )IF (hi+1; S,HF ))

+ 2E(IF (hi; S, HF )IF (hi+2; S, HF )).

where IF (h; S,HF ) is the influence function of the estimator S at the dis-

tribution HF . At model (5) with F0 = N(0, 1), the influence function of

the heights can be obtained by straightforward calculus. Without loss of

generality we may further assume that σ = 1. Then,

IF (h; S, HN) = IF (h; S0, HN)

(
cτ

√
d − cτ

2
√

d
E[ψ(Z)Z]

)
+

σ0

2

(
cτ√
d
ρ(

h

σ0

) −
√

dcτ

)

8
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where σ0 =
√

3
2
, d = E[ρ(Z)], Z ∼ N(0, 1), ψ = ρ′, and N is an index

referring to the assumption of normality. The influence function of the initial

scale estimator Qadj is given by

IF (h; S0, HN) = cq[
0.25 − I(h < Qα

N)

2
√

2/3ϕ(
√

2/3Q0.25
N )

]

where Q0.25
N = H−1

N (0.25) is the first quartile of the distribution of the heights

at the standard normal distribution, and I is the indicator function, see

Gelper et al. (2009).

The exact value of the ASV for the non-trimmed mean-squared-heights

estimator MSadj is 35/36, at the normal model with σ = 1. For the τ −scale

estimator, the ASV is obtained by numerical integration. The asymptotic

relative efficiency of the τadj estimator w.r.t. MSadj is then defined as

Eff(S, F ) =
ASV (MSadj, F )

ASV (S, F )
.

Figure 2 present the asymptotic efficiency of the τadj as a function of k, at

the normal model. An efficiency of 0.95 is attained at k = 5.48. We also

simulated, over M = 10000 simulation runs, finite-sample efficiencies for a

window width of n = 20. One sees that the asymptotic results provide a good

approximation for the finite sample setting. Furthermore, for k converging

to zero, the efficiency of the Qadj and τadj estimators coincide.

3. Simulation

In this section, we simulate a time series generated from model (1) of

length T = 1000, with constant location and scale σt = 1. We consider

three types of outliers: (a) isolated additive outliers, (b) patches of outliers,

9
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Figure 2: Asymptotic efficiencies (left) and finite sample efficiencies for n = 20 (right) of

the τadj estimator (solid line) and the Qadj estimator (dashed line) as a function of the

tuning constant k at the normal model.

where a patch is a groups of 3 consecutive outliers having the same value,

and (c) innovation outliers. For schemes (a) and (b) we consider independent

error terms εt ∼ N(0, 1), and induce outliers by replacing a proportion ε of

the observations, for ε = 0, 0.01, 0.05, and 0.10, by values coming from a

N(0, 5). In simulation scheme (c) we consider a first order autoregressive

model εt = θεt−1 + vt, with vt ∼ N(0, 1), and θ = 0.5. Outliers are then

induced by replacing a proportion ε of the vt by values coming from a N(0, 5).

For every simulated series, we compute the root mean squared error (RMSE)

RMSE =

(
1

T − n + 1

T∑

t=n

(σ̂t − σt)
2

σ2
t

)1/2

.

Here n = 20 is the window width, T is the length of the time series, and σ̂t

is the estimated scale.

In Table 1 the average RMSE over the M = 10000 simulated time series

is reported. In absence of outliers, the robust τadj is almost as efficient as

10
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Table 1: Simulated RMSE for clean data, 1%, 5% and 10% outliers, for window width

n = 20, T = 1000, and averaged over M = 10000 simulation runs. Three types of outlier

configurations are considered.

Additive outliers Patches of outliers Innovation outliers

Qadj τadj MSadj Qadj τadj MSadj Qadj τadj MSadj

ε = 0.00 0.44 0.24 0.22 0.44 0.24 0.22 0.41 0.30 0.29

ε = 0.01 0.45 0.29 0.36 0.45 0.28 0.29 0.40 0.30 0.32

ε = 0.05 0.51 0.46 0.70 0.49 0.38 0.50 0.40 0.30 0.44

ε = 0.10 0.61 0.67 1.01 0.55 0.48 0.70 0.40 0.37 0.62

the MSadj estimator. This is as expected, since the tuning constant k was

selected to achieve a 95% relative efficiency. This in contrast with the Qadj

estimator, having a RMSE which is almost twice as large. In presence of even

only 1% of contamination, the MSadj is no longer the most precise, and the

τ -estimator behaves best. For larger amounts of contamination, i.e. 10%, the

Qadj estimator is slightly better than the τadj, at least for additive outliers.

For patches of outliers and innovation outliers, the τadj remains to have the

smallest RMSE. We conclude from the simulation study that in presence of

amounts of contamination up to 10%, the τadj estimator is to be preferred.

If we have a larger (but less than 25%) proportion of outliers, then the bias

of the τadj remains bounded, given its high breakdown point, but the Qadj

estimator tends to perform better. Since we expect that most univariate time

series contain few outliers and that it is in practice quite rare to have large

amounts of outliers, we recommend the τadj estimator.

11
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4. Conclusion

Robust scale estimators based on the heights of triangles formed by

triplets of successive observation are used for monitoring the scale of nonlin-

ear noisy time series, as is documented in Gelper et al (2009). In this paper

we propose to use τ −estimators. These estimators keep the high breakdown

point of the initial estimator, while they may have an arbitrarily high ef-

ficiency. The efficiency of the τadj estimator depends on a tuning constant

k. We computed the value of k yielding a 95% relative efficiency with re-

spect to the standard estimator. Monte Carlo simulations illustrate the good

performance of the proposed procedure.

A major question we did not addressed is the choice of the window width

n. It needs to be small enough for (5) to hold, but large enough to still

provide accurate estimates. Another topic for future research is to investigate

the properties of the τadj estimator for dependent data. The scale estimator

can then still be applied, and will maintain the high breakdown point. The

asymptotic variance, however, will depend on the dependency structure in

the data.

Appendix

Derivation of the influence function of the τadj estimator at the normal model:

Assume that model (5) holds, with F0 = N(0, 1). Without loss of generality,

assume a = b = 0, and σ = 1, such that F = N(0, 1). From (6) it follows

12
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that

IF (w; τadj, F ) =
∂

∂ε
τadj(Fε)|ε=0

= cτ
∂

∂ε
[S2

0(Fε)EHFε
ρ(

h

S0(Fε)
)]1/2)|ε=0

=
cτ

2
EHF

ρ(h)−1/2 ∂

∂ε
[S2

0(Fε)EHFε
ρ(

h

S0(Fε)
)]|ε=0

=
cτ

2
EHF

ρ(h)−1/2


2IF (w; S0, F )EHF

ρ(h) +
∂

∂ε
EHFε

ρ(
h

S0(Fε)
)|ε=0

︸ ︷︷ ︸
A




where we used that S(F0) = 1. In the above expression, with ψ = ρ′,

A =
∂

∂ε

∫ ∞

0

ρ(
h

S0(Fε)
)dHFε(h)|ε=0

= −IF (w; S0, F )

∫ ∞

0

ψ(h)hdHF (h) +

∫ ∞

0

ρ(h)d
∂

∂ε
HFε(h)

︸ ︷︷ ︸
B

|ε=0.

One has HF (u) = Φ(
√

2/3u) − Φ(−
√

2/3u), giving us for B:

∂HFε(u)

∂ε
|ε=0 = −3(2Φ(

√
2/3h) − 1) + Φ(

√
2(h + w)) − Φ(

√
2(w − h))

+ 2(Φ
√

4/5(w/2 + h)) − Φ
√

4/5(w/2 − h)

:= G(h,w).

So we can write A

A = −IF (w; S0, F )

∫ ∞

0

ψ(h)hdHF (h) +

∫ ∞

0

ρ(h)dG(h,w).

We conclude that, with c2
τ = 1/EHF0

ρ(h),

IF (w; τadj, F ) = IF (w; S0, F )

[
1 − c2

τ

∫ ∞

0

ψ(h)hdHF (h)

]
+

c2
τ

2

∫ ∞

0

ρ(h)dG(h,w).

(11)

The above integrals can be computed either analytically or numerically. An

expression for IF (w; Qadj, F ) is given in Gelper et al. (2009).
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