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This paper presents a new method for robust online variability extraction in time series. The proposed estimator is simultaneously highly robust and efficient. We derive its breakdown point, influence function, and asymptotic variance and study the finite sample properties in a simulation study.

Introduction

In the recent literature, new procedures have been proposed for robust scale estimation in a time series context, see for example [START_REF] Nunkesser | Online analysis of time series by the q n estimator[END_REF] and [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF]. These procedures are designed to monitor the variability of noisy and trended time series. A drawback of the existing methods is that they lose efficiency with respect to the standard non-robust estimator. This paper proposes a new approach which combines the quantile based estimator of [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF] and the efficient τ -scale estimator of
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ACCEPTED MANUSCRIPT [START_REF] Yohai | High breakdown-point estimates of regression by means of the minimization of an efficient scale[END_REF]. As a result, we obtain a new estimator which is highly robust and at the same time attains high efficiency.

In several application fields data are automatically collected at a high frequency and need to be monitored instantaneously. Assume that we collect observations over time

y t = µ t + σ t t for t = 1, . . . , T (1) 
where t is an i.i.d. sequence coming from a symmetric distribution F 0 with mean zero and variance 1. We estimate σ t using a moving window approach.

At each time t, a scale estimator σt is computed from a window of width n < T , containing the observations y t-n+1 , ..., y t . The variability is allowed to change slowly over time. More precisely, the variability is only assumed to be constant in a local window which can be fairly short, for example of only 20 observations.

For the ease of notation, we drop the time index t and the observations within a fixed window are denoted by y 1 , . . . , y n . We consider vertical heights of the triangles formed by triplets of successive data points. For three successive observations y i , y i+1 and y i+2 , the height of the triangle formed by these observations is given by [START_REF] Rousseeuw | Regression-free and robust estimation of scale for bivariate data[END_REF] propose robust scale estimators based on these heights in the context of nonparametric regression, and [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF] adapted them to the time series context. These estimators are invariant if a trend line a + bt is added to the data. Moreover, they do not require to model and estimate the signal µ t , and were shown to be applicable for signals containing jumps, trends, trend changes and non-linearities.

h i = |y i+1 - y i + y i+2 2 | for i = 1, ..., n -2.
The estimator [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF] advocate is the α-quantile of the heights of adjacent triangles

Q α adj (y 1 , ..., y n ) = c q h ( α(n-2)) , (2) 
which is the α(n-2) -th value in the sequence of ordered heights, and where c q is a consistency factor. For α = 0.25 the highest value for the breakdown point is attained, and we denote Q adj ≡ Q 0.25 adj . While this estimator has good properties, it has a Gaussian efficiency of only 25%. [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF] proposed to increase the value of α to get a better efficiency, at the price of a lower breakdown point. The procedure proposed in this paper, the τadjacent estimator, maintains the high breakdown point of the Q adj , but can attain an arbitrarily high efficiency.

This robust scale estimator τ adj is defined as

τ adj (y 1 , . . . , y n ) = c τ S 2 0 1 n -2 n-2 i=1 ρ( h i S 0 ) 1/2
(3) with initial scale estimator S 0 = Q adj (y 1 , . . . , y n ). The loss function ρ should be bounded, symmetric, ρ(0) = 0, and non-decreasing on the positive numbers. Its derivative ψ = ρ should exist and be positive at zero. In this paper we take Tukey's bisquare ρ function defined as

ρ(x) =    x 2 2 (1 -x 2 k 2 + x 4 3k 4 ), if |x| ≤ k k 2 6 if |x| > k.
The value of the tuning constant k depends on the desired level of efficiency.

As will be seen in Section 2, k = 5.48 yields a 95% asymptotic relative efficiency at the Gaussian model.

The performance of the adjacent τ -estimator is compared with the square root of the mean of squared adjacent heights,

M S adj (y 1 , . . . , y n ) = c s 1 n -2 n-2 i=1 h 2 i (4)
with c s again a consistency factor. The M S adj is not robust, but it is a standard proposal for scale estimation in nonparametric regression (see [START_REF] Gasser | Residual variance and residual pattern in nonlinear regression[END_REF]). It is not difficult to check that M S adj equals the τ adj for k → ∞.

Section 2 discusses statistical properties of the τ adj estimator. We show that the estimator has a breakdown point of 25%, a bounded influence function, and we compute its asymptotic variance. The good behavior of the estimator is confirmed in Section 3 by a simulation study. Section 4 summarizes the results.

Statistical Properties

In the section, we first derive the expression for the consistency factor c τ for the newly proposed estimator. Expressions for the constants c q in (2) and c s in (4) are given in [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF]. We then derive the breakdown point and the influence function of the τ adj estimator. The breakdown point measures the robustness under larger amounts of outliers, while the influence function measures the sensitivity of the estimator with respect to small amounts of contamination. The last subsection computes the asymptotic variance of the estimator.

Fisher Consistency

For all theoretical derivations, we assume local linearity and a constant scale within the considered time window. Hence

y i = a + bi + σ i (5) 
for i = 1, . . . , n where i ∼ F 0 . For an appropriately chosen window width

Let F be the distribution of the data and denote H F the distribution of the corresponding triangle heights. The functional form of the τ adj -scale

estimator (3) corresponds to τ adj (F ) = c τ S 2 0 (F )E H F ρ( h S 0 (F ) ) 1/2 (6)
where

S 0 (F ) ≡ Q adj (F ) = c q H -1 F (0.25).
The proposed scale estimator is location invariant, invariant when a trend is added to the data, and scale equivariant. Assume that the model ( 5) holds, and take a = b = 0 without loss of generality. Since the constant c q is such that Q adj is Fisher consistent, we have S 0 (F ) = σ. In order to achieve Fisher consistency, that is τ adj (F ) = σ, we need to take

c τ = 1 E H F 0 ρ( h S 0 (F 0 ) ) = 1 E H F 0 ρ(h) . ( 7 
)
For F 0 a standard normal N (0, 1) distribution, it is not difficult to verify that E H F 0 ρ(h) = E F 0 ρ(Z 3/2), allowing for immediate calculation of (7).

As such, we obtain for k = 5.48 that c τ = 1.24. To make the estimator practically unbiased at finite samples, we propose to replace c τ by a finite sample version c n τ . By Monte Carlo simulation, following the approach outlined in [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF], and for k = 5.48, we obtain

c n τ ≈ c τ n n -1.34
.

Breakdown point

The breakdown point of a scale estimator is the minimal amount of contamination such that the estimated scale becomes either infinite (explosion)

or zero (implosion). Let y n = {y 1 , . . . , y n } be a sample of size n. Let S be a scale estimator. Further, let y m n be a sample obtained from y n but with a proportion of m/n observations altered to arbitrary values (m ∈ {1, . . . , n}).

The finite sample breakdown point of S at the sample y n is defined as

ε * (S, y n ) = min 1 n m ∈ {1, 2, . . . , n} : sup y m n | log( S(y m n ) S(y n ) )| = ∞ ,
Suppose that y n is in general position, meaning that no three observations (i, y i ) lie on the same line for 1 ≤ i ≤ n. [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF] have shown that, for the initial estimator

S 0 = Q adj , ε * (S 0 , y n ) = 1 n min n -1 -α(n -2) 3 , α(n -2) . (8) 
The highest possible value for the breakdown point is attained for

α = n + 1 4(n -2) ≈ 0.25. ( 9 
)
The finite sample breakdown point tends to the asymptotic breakdown point of 25%. In the following proposition we state that the breakdown point of the τ adj estimator is the same as that of the initial estimator S 0 .

Proposition 1. Let y n be a sample in general position. For the τ adj estimator with a bounded loss function ρ we have that

ε * (τ adj , y n ) = ε * (S 0 , y n ).
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Proof: From definition (3) of the τ adj estimator it is readily seen that the estimator tends to infinity if and only if the initial scale estimator S 0 does, since ρ is bounded. Implosion of the τ adj estimator occurs if either (i) S 0 implodes to zero (ii) all heights h i are equal to zero (iii) S 0 is so large that ρ(h i /S 0 ) is arbitrarily small for all 1 ≤ i ≤ n -2. Since we assumed that the sample is in general position, (ii) cannot occur. Furthermore, by definition of S 0 , about 75% of the heights is larger than S 0 , and ρ(1) > 0, hence also (iii) is excluded. We conclude that the τ adj implodes if and only of the initial scale estimator implodes.

Influence function

The influence function of the functional S at the distribution F measures the effect on S of adding a small mass at the point w, standardized by the mass of the contamination. If we denote the point mass at w by ∆ w and consider the contaminated distribution F ε = (1ε)F + ε∆ w then the influence function is given by

IF (w; S, F ) = lim ε→0 S(F ε ) -S(F ) ε . ( 10 
)
In the Appendix we derive an explicit expression for the influence function of τ adj , assuming model ( 5) holds with F 0 = N (0, 1). Figure 1 

Asymptotic variance

The estimators are based on heights of triangles. While the observations themselves are assumed to be independent, the heights will be autocorrelated up to order two. As in [START_REF] Genton | Asymptotic variance of M-estimators for dependent Gaussian random variables[END_REF], the asymptotic variance of an estimator S based on the heights h i is given by

ASV (S, F ) = E(IF 2 (h i ; S, H F )) + 2E(IF (h i ; S, H F )IF (h i+1 ; S, H F )) + 2E(IF (h i ; S, H F )IF (h i+2 ; S, H F )).
where IF (h; S, H F ) is the influence function of the estimator S at the distribution H F . At model ( 5) with F 0 = N (0, 1), the influence function of the heights can be obtained by straightforward calculus. Without loss of generality we may further assume that σ = 1. Then, )], Z ∼ N (0, 1), ψ = ρ , and N is an index referring to the assumption of normality. The influence function of the initial scale estimator Q adj is given by

IF (h; S, H N ) = IF (h; S 0 , H N ) c τ √ d - c τ 2 √ d E[ψ(Z)Z] + σ 0 2 c τ √ d ρ( h σ 0 ) - √ dc τ where σ 0 = 3 2 , d = E[ρ(Z
IF (h; S 0 , H N ) = c q [ 0.25 -I(h < Q α N ) 2 2/3ϕ( 2/3Q 0.25 N ) ] where Q 0.25 N = H -1 N (0.25)
is the first quartile of the distribution of the heights at the standard normal distribution, and I is the indicator function, see [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF].

The exact value of the ASV for the non-trimmed mean-squared-heights estimator M S adj is 35/36, at the normal model with σ = 1. For the τ -scale estimator, the ASV is obtained by numerical integration. The asymptotic relative efficiency of the τ adj estimator w.r.t. M S adj is then defined as Eff(S, F ) = ASV (M S adj , F ) ASV (S, F ) .

Figure 2 present the asymptotic efficiency of the τ adj as a function of k, at the normal model. An efficiency of 0.95 is attained at k = 5.48. We also simulated, over M = 10000 simulation runs, finite-sample efficiencies for a window width of n = 20. One sees that the asymptotic results provide a good approximation for the finite sample setting. Furthermore, for k converging to zero, the efficiency of the Q adj and τ adj estimators coincide.

Simulation

In this section, we simulate a time series generated from model ( 1 where a patch is a groups of 3 consecutive outliers having the same value, and (c) innovation outliers. For schemes (a) and (b) we consider independent error terms ε t ∼ N (0, 1), and induce outliers by replacing a proportion ε of the observations, for ε = 0, 0.01, 0.05, and 0.10, by values coming from a N (0, 5). In simulation scheme (c) we consider a first order autoregressive model ε t = θε t-1 + v t , with v t ∼ N (0, 1), and θ = 0.5. Outliers are then induced by replacing a proportion ε of the v t by values coming from a N (0, 5).

For every simulated series, we compute the root mean squared error (RMSE)

RM SE = 1 T -n + 1 T t=n (σ t -σ t ) 2 σ 2 t 1/2 .
Here n = 20 is the window width, T is the length of the time series, and σt is the estimated scale.

In Table 1 the average RMSE over the M = 10000 simulated time series is reported. In absence of outliers, the robust τ adj is almost as efficient as 

= c τ ∂ ∂ε [S 2 0 (F ε )E H F ε ρ( h S 0 (F ε ) )] 1/2 )| ε=0 = c τ 2 E H F ρ(h) -1/2 ∂ ∂ε [S 2 0 (F ε )E H Fε ρ( h S 0 (F ε ) )]| ε=0 = c τ 2 E H F ρ(h) -1/2     2IF (w; S 0 , F )E H F ρ(h) + ∂ ∂ε E H F ε ρ( h S 0 (F ε ) )| ε=0 A    
where we used that S(F 0 ) = 1. In the above expression, with ψ = ρ , (11)

A = ∂ ∂ε ∞ 0 ρ( h S 0 (F ε ) )dH F (h)| ε=0 = -IF (w; S 0 , F ) ∞ 0 ψ(h)hdH F (h) + ∞ 0 ρ(h)d ∂ ∂ε H F (h) B | ε=0 .
The above integrals can be computed either analytically or numerically. An expression for IF (w; Q adj , F ) is given in [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF].
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 1 Figure 1: Influence function of the τ adj estimator at the normal model with σ = 1.

Figure 2 :

 2 Figure 2: Asymptotic efficiencies (left) and finite sample efficiencies for n = 20 (right) of the τ adj estimator (solid line) and the Q adj estimator (dashed line) as a function of the tuning constant k at the normal model.

  τ adj , F ) = ∂ ∂ε τ adj (F ε )| ε=0

  One has H F (u) = Φ( 2/3u) -Φ(-2/3u), giving us for B:∂H F (u) ∂ε | ε=0 = -3(2Φ( 2/3h) -1) + Φ( √ 2(h + w)) -Φ( √ 2(wh))+ 2(Φ 4/5(w/2 + h)) -Φ 4/5(w/2h) := G(h, w).So we can writeA A = -IF (w; S 0 , F ) dG(h, w).We conclude that, withc 2 τ = 1/E H F 0 ρ(h), IF(w; τ adj , F ) = IF (w; S 0 , F ) 1 -
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Table 1: Simulated RMSE for clean data, 1%, 5% and 10% outliers, for window width n = 20, T = 1000, and averaged over M = 10000 simulation runs. Three types of outlier configurations are considered.

Additive outliers

Patches of outliers Innovation outliers the M S adj estimator. This is as expected, since the tuning constant k was selected to achieve a 95% relative efficiency. This in contrast with the Q adj estimator, having a RMSE which is almost twice as large. In presence of even only 1% of contamination, the M S adj is no longer the most precise, and the τ -estimator behaves best. For larger amounts of contamination, i.e. 10%, the Q adj estimator is slightly better than the τ adj , at least for additive outliers.

For patches of outliers and innovation outliers, the τ adj remains to have the smallest RMSE. We conclude from the simulation study that in presence of amounts of contamination up to 10%, the τ adj estimator is to be preferred.

If we have a larger (but less than 25%) proportion of outliers, then the bias of the τ adj remains bounded, given its high breakdown point, but the Q adj estimator tends to perform better. Since we expect that most univariate time series contain few outliers and that it is in practice quite rare to have large amounts of outliers, we recommend the τ adj estimator.
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Conclusion

Robust scale estimators based on the heights of triangles formed by triplets of successive observation are used for monitoring the scale of nonlinear noisy time series, as is documented in [START_REF] Gelper | Robust online scale estimation in time series: A regression-free approach[END_REF]. In this paper we propose to use τ -estimators. These estimators keep the high breakdown point of the initial estimator, while they may have an arbitrarily high efficiency. The efficiency of the τ adj estimator depends on a tuning constant k. We computed the value of k yielding a 95% relative efficiency with respect to the standard estimator. Monte Carlo simulations illustrate the good performance of the proposed procedure.

A major question we did not addressed is the choice of the window width n. It needs to be small enough for (5) to hold, but large enough to still provide accurate estimates. Another topic for future research is to investigate the properties of the τ adj estimator for dependent data. The scale estimator can then still be applied, and will maintain the high breakdown point. The asymptotic variance, however, will depend on the dependency structure in the data.

Appendix

Derivation of the influence function of the τ adj estimator at the normal model:

Assume that model (5) holds, with F 0 = N (0, 1). Without loss of generality, assume a = b = 0, and σ = 1, such that F = N (0, 1). From (6) it follows