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It is well known that the likelihood inferences in dynamic mixed models for count data is extremely complicated. In this paper, we, first, develop a generalized method of moments (GMM) approach for the estimation of the parameters of such models. We then consider an alternative generalized quasi-likelihood (GQL) approach.

The relative efficiency of the GQL approach to the GMM approach is examined by comparing the asymptotic variances of the GQL estimates of the parameters to the corresponding asymptotic variances of the GMM estimates.
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INTRODUCTION

In longitudinal studies for count data, a small number of repeated count responses along with a set of covariates are collected from a large number of individuals. For example, in health care utilization data, the number of visits to the physician by a large number of independent individuals may be recorded over a period of several years. Also, the information on the covariates-gender, education level and age may be recorded for each individual. In this set up, it is most likely that the repeated count responses of an individual may be influenced by individual's random effect and conditional on such a random effect the repeated responses are auto-correlated. This type of panel or longitudinal count data have been studied by many authors such as Sutradhar and [START_REF] Sutradhar | On Generalized Quasilikelihood Inference in Longitudinal Mixed Model for Count Data[END_REF] [see also [START_REF] Wooldridge | Distribution-free estimation of some non-linear panel data models[END_REF]]. In notation, let (y i1 , . . . , y it , . . . , y iT ) denote the T repeated count responses for the ith subject, i = 1, . . . , K. Also, let x it be the p × 1 vector of covariates corresponding to y it , and β is the p × 1 regression effects of x it on y it . Next suppose that in addition to x it , the repeated responses of the ith individual are also influenced by one random effect γ * i . Assume that γ * i iid ∼ N (0, σ 2 γ ). Now, by writing the marginal density of y i1 (but conditional on γ * ) as f i1 (y i1 |γ * i ), and the conditional density of y it given y i,t-1 as f it|t-1 (y it |y i,t-1 , γ * i ) for t = 2, . . . , T, one may write the likelihood function for the ith individual as

L i (β, ρ, σ γ ) = ∞ -∞ f i1 (y i1 |γ * i )Π T t=2 f it|t-1 (y it |y i,t-1 , γ * i ) × φ(σ γ γ i )dγ i , (1.1) 
φ(γ i ) being the standard normal density, and ρ being the dependence parameter of y it on y i,t-1 conditional on γ * i , yielding the likelihood function

L(β, ρ, σ γ |y) = Π K i=1 L i (β, ρ, σ γ ) (1.2)
for the complete data set y.

Note that since y i1 conditional on γ i = γ * i /σ γ has the Poisson density, we write

f i1 (y i1 |γ i ) = exp(-µ * i1 )µ * i1 y i1 y i1 ! , (1.3) where µ * i1 = exp(x i1 β + σ γ γ i ).
Next suppose that for t = 2, . . . , T, y it and y i,t-1 has the dynamic relationship

[y it |γ i ] = ρ • [y i,t-1 |γ i ] + [d it |γ i ],
(1.4) [START_REF] Mckenzie | Some ARMA Models for Dependent Sequences of Poisson Counts[END_REF], [START_REF] Sutradhar | An Review on Regression Models for Discrete Longitudinal Responses[END_REF], [START_REF] Sutradhar | On Generalized Quasilikelihood Inference in Longitudinal Mixed Model for Count Data[END_REF]] where ρ

• y i,t-1 = y i,t-1 s=1 b s (ρ) with P r[b s (ρ) = 1] = ρ and P r[b s (ρ) = 0] = 1 -ρ. In (1.3) [y i1 |γ i ] ∼ P oi(µ * i1 ), and in (1.4) for t = 2, . . . , T, [d it |γ i ] ∼ P oi(µ * it -ρµ * i,t-1 ), with µ * it = exp(x it β + σ γ γ i ), for t = 1, . . . , T.
(1.5)

By (1.4), it can be shown that conditional on γ i for t = 2, . . . , T, the lag 1 conditional density has the form

f it|t-1 (y it |y i,t-1 , γ i ) = exp[-(µ * it -ρµ * i,t-1 )] × min(y it ,y i,t-1 ) s it =0 y i,t-1 !ρ s it (1 -ρ) y it -s it (µ * it -ρµ * i,t-1 ) y it -s it s it !(y i,t-1 -s it )!(y it -s it )!
, (1.6) [START_REF] Freeland | Analysis of Low Count Time Series Data by Poisson Autoregression[END_REF] where µ * it = exp(x it β + σ γ γ i ) for all i = 1, . . . , K; t = 1, . . . , T. It is clear that when this conditional density (1.6) is used in (1.1), it provides a complicated likelihood function by (1.2). Thus it is impractical to use the likelihood approach for such repeated count data analysis.

Note that even though there may be other ways to model the repeated count data, the auto-regressive order 1 (AR(1)) type dynamic model (1.4) is much more attractive in practice because in stationary case it yields a correlation pattern where the lag correlations decay exponentially as lag increases. This is one of the main reasons why this model is used frequently [START_REF] Mckenzie | Some ARMA Models for Dependent Sequences of Poisson Counts[END_REF], [START_REF] Freeland | Analysis of Low Count Time Series Data by Poisson Autoregression[END_REF], [START_REF] Sutradhar | On Generalized Quasilikelihood Inference in Longitudinal Mixed Model for Count Data[END_REF]) as compared to other such as moving average order 1 (MA(1)) or equi-correlations type models. But, because of the complexity of the likelihood approach, it is of interest to seek for alternative approaches for the estimation of the parameters of the dynamic model (1.4).

With regard to the estimation of the parameters in a class of linear correlated dynamic mixed models, many econometricians such as [START_REF] Arellano | Some Tests of Specification for Panel Data : Monte Carlo Evidence and an Application to Employment Equations[END_REF], [START_REF] Ahn | Efficient Estimation of Models for Dynamic Panel Data[END_REF], [START_REF] Blundell | Initial Conditions and Moment Restrictions in Dynamic Panel Data Models[END_REF][START_REF] Blundell | Initial Conditions and Moment Restrictions in Dynamic Panel Data Models[END_REF][START_REF] Imbens | Generalized Method of Moments and Empirical Likelihood[END_REF] have exploited the well known generalized method of moments (GMM) due to [START_REF] Hansen | Large-Sample Properties of Generalized Method of Moment Estimators[END_REF]. But there does not appear any discussion about the use of this GMM approach in the present non-linear correlated dynamic mixed model set up for the count data. In this paper, we, first, develop this GMM approach to deal with estimation of the parameters of the proposed non-linear model for the repeated count data. Next, we consider a recently developed generalized quasi-likelihood (GQL) approach [START_REF] Sutradhar | On Generalized Quasilikelihood Inference in Longitudinal Mixed Model for Count Data[END_REF] and [START_REF] Sutradhar | An Review on Regression Models for Discrete Longitudinal Responses[END_REF]) for the inferences for correlated data. Details on the GMM and GQL estimation approaches for panel count data are given in Section 2. Note that the main objective of the paper is to examine the relative efficiency of the GQL and GMM approaches for the panel count data model (1.4). We also note here that recently [START_REF] Sutradhar | Generalized method of moments versus generalized inferences in binary panel data models[END_REF] have examined the relative efficiency of the GMM and GQL approaches in a binary panel data set up. But, as it is difficult to make a mathematical connection between the panel count model (1.4) and the binary panel data model considered by [START_REF] Sutradhar | Generalized method of moments versus generalized inferences in binary panel data models[END_REF], nothing can be said on efficiency performances under the count data model based on the results for a binary panel data model. Thus, it is important to conduct a separate study for the panel count data models. The efficiency comparisons between the GMM and GQL approaches for the panel count data model (1.4) are given in Section 3.

GMM AND GQL ESTIMATION

Estimation of β

To estimate β, we assume that the other two parameters, namely σ 2 γ and ρ are known. Note that both the GMM and GQL are moments based approaches. Estimation of the β vector requires the first and second order moments of the data under the model.

We first provide these moments and then use them to form the GMM and GQL estimating equations.

First and second order unconditional moments

Let µ it and σ itt denote the mean and the variance of y it . Since γ i i.i.d.

∼ N (0, 1), and because it follows from (1.4) that y it conditional on γ i follows the Poisson distribution with parameter µ * it given in (1.5), y it then unconditionally has the mean and the variance given by,

µ it = E[Y it ] = E γ i E[Y it |γ i ] = E γ i [µ * it ]) = exp[x it β + σ 2 γ /2] (2.1) σ itt = var[Y it ] = E[Y 2 it ] -[E(Y it )] 2 = E γ i E[Y 2 it |γ i ] -µ 2 it = E γ i [µ * it + µ * it 2 ] -µ 2 it = µ it + [exp(σ 2 γ ) -1]µ 2 it (2.2) A C C E P T E D M A N U S C R I P T
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Furthermore, it may be shown from (1.4) that conditional on γ i , the covariance between y iu and y it for (u < t) is given by

cov(Y iu , Y it |γ i ) = ρ t-u µ * iu . (2.3)
Consequently, under the serial dependence model, the unconditional covariance between y iu and y it has the form

σ iut (β, σ 2 γ , ρ) = E[cov{(Y iu , Y it )|γ i }] + cov[E(Y iu |γ i ), E(Y it |γ i )] = ρ t-u µ iu + [exp(σ 2 γ ) -1]µ iu µ it .
(2.4)

GMM estimation for β

Note that when the traditional method of moments (MM) is used to estimate the β vector, one solves the unbiased moment estimating equation

K i=1 ψ i1 (β, σ 2 γ ) = 0, (2.5) 
where [START_REF] Jiang | Consistent Estimators in Generalized Linear Mixed Models[END_REF], [START_REF] Sutradhar | On Exact Quasilikelihood Inference in Generalized Linear Mixed Models[END_REF]] is an unbiased moment function as

ψ 1i (β, σ 2 γ ) = T t=1 [x it (y it -µ it )] [
E[Y it ] = µ it leading to E[ψ 1i (β, σ 2 γ )] = 0.
In notation of (2.5) but for known σ 2 γ , in the GMM approach [START_REF] Hansen | Large-Sample Properties of Generalized Method of Moment Estimators[END_REF]) one would minimize the distance function

Q(β) = K -1 K i=1 ψ i1 (β|σ 2 γ )) C 1 K i=1 ψ i1 (β|σ 2 γ ) , (2.6)
where C 1 is a suitable weight. An optimal choice for C 1 would be the inverse of the variance of the unbiased moment function, that is,

C 1 = [var(K -1 K i=1 ψ i1 (β, σ 2 γ ))] -1 . (2.7)
Note that in the context of similar longitudinal studies, some authors such as [START_REF] Lindsay | Inference functions and quadratic score tests[END_REF] refer the distance function in (2.6) as quadratic inference functions.

See also the comments on the GMM approach by Lindsay and Qu (2003, Section 2.3), for example.

Note that minimizing Q(β) in (2.6) with respect to β is equivalent to solve the GMM estimating equation

∂ψ 1 ∂β C 1 ψ 1 = 0, (2.8) A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT for β, where ψ 1 = K -1 K i=1 ψ 1i with ∂ψ 1 ∂β = K -1 K i=1 T t=1 µ it x it x it .
As far as the C 1 matrix in (2.8) is concerned, by (2.7), this may be computed by

C -1 1 = K -2 K i=1 T u=1 T t=1 σ iut (β, σ 2 γ , ρ)x iu x it , (2.9) 
where for all u, t = 1, . . . , T, σ iut (β, σ 2 γ , ρ) is given by (2.2) and (2.4).

GQL estimation for β

Denote the count response vector for the ith (i = 1, . . . , K) individual by y i = (y i1 , . . . , y it , . . . , y iT ) .

Let µ i (β, σ 2 γ ) = [µ i1 (β, σ 2 γ ), . . . , µ it (β, σ 2 γ ), . . . , µ iT (β, σ 2 γ )
] be the expectation of the response vector y i , where by (2.1)

µ it (β, σ 2 γ ) = exp(x it β + σ 2 γ /2). Next denote by Σ i (β, σ 2 γ , ρ) the covariance matrix of y i . Thus, Σ i (β, σ 2 γ , ρ) = (σ iut ), (2.10) 
where the formulas for σ itt ≡ σ itt (β, σ 2 γ ) and σ iut ≡ σ iut (β, σ 2 γ , ρ) for u = t, are given by (2.2) and (2.4), respectively. Now, following [START_REF] Sutradhar | On Exact Quasilikelihood Inference in Generalized Linear Mixed Models[END_REF], for example, one may solve the generalized quasi-likelihood (GQL) estimating equation given by (2.11) [see [START_REF] Wedderburn | Quasilikelihood Functions, Generalized Linear Models, and the Gauss-Newton Method[END_REF] and [START_REF] Mccullagh | Quasilikelihood Functions[END_REF] for the independence case] to obtain the GQL estimate of β. For given σ 2 γ and ρ, the GQL estimate obtained from (2.11) is consistent for β. This is because, as E(Y i ) = µ i (β, σ 2 γ ), the estimating equation (2.11) is unbiased.

K i=1 ∂µ i (β, σ 2 γ ) ∂β Σ -1 i (β, σ 2 γ , ρ)[y i -µ i (β, σ 2 γ )] = 0,
In the next section, we compare the relative efficiency of the GQL estimate of β obtained from (2.11) to the GMM estimate obtained from (2.8).

Estimation of σ 2 γ

Notice in (2.2) that σ 2 γ plays a role for an over-dispersion index. Since in the mixed model set up, that is when ρ = 0 under the present set up, conditional on γ i , one can show that the count responses along with their squared and pairwise products are sufficient to estimate β and σ 2 γ (Jiang (1998), Sutradhar ( 2004)), we now exploit such information to estimate the σ 2 γ parameter. Note however that using the second order information in either GMM or GQL approach, will require the fourth order moments for the responses. Under the assumption that ρ = 0, these fourth order moments may be calculated directly. For example,

E(Y 2 iu Y iv Y it |ρ = 0) = E γ i [E(Y 2 iu |γ i )E(Y iv |γ i )E(Y it |γ i )] = E γ i [{µ * iu + µ * iu 2 }µ * iv µ * it ] = µ iu µ iv µ it exp(3σ 2 γ )[1 + µ iu exp(3σ 2 γ )].
(2.12)

GMM Estimation for σ 2 γ

In the fashion similar to that of the GMM estimation of β by solving (2.8), we obtain the GMM estimate for σ 2 γ by solving the GMM estimating equation

∂ψ 2 ∂σ 2 γ C 2 ψ 2 = 0, (2.13)
where

ψ 2 = K -1 K i=1 ψ 2i with ψ 2i = T u≤t [y iu y it -λ iut ], λ iut being the expectation of Y iu Y it for u ≤ t.
Note that by (2.2) and (2.4), we obtain

λ iut = E[Y iu Y it ] = µ it + [exp(σ 2 γ )]µ 2 it , for u = t ρ t-u µ iu + [exp(σ 2 γ )]µ iu µ it for u < t.
(2.14)

Further note that C 2 in (2.13) is not easy to compute for general ρ. We rather compute this matrix by using a 'working' longitudinal independence assumption, that is ρ = 0. The formula for C 2 is then given by

C -1 2 = var K -1 K i=1 ψ 2i = K -2 K i=1 T u≤ T m≤t φ iu mt (β, σ 2 γ , ρ = 0) , (2.15)
where for u ≤ and m ≤ t, the formulas for

φ iu mt (β, σ 2 γ , ρ = 0) = cov[Y iu Y it , Y im Y it |ρ = 0] = E[Y iu Y i Y im Y it |ρ = 0]-λ iu | ρ=0 λ imt | ρ=0
require the formulas for the fourth order moments that may be computed in the manner similar to that of (2.12).

GQL Estimation for σ 2 γ

Similar to the GMM estimation for σ 2 γ , in the GQL approach, we exploit the same basic data, namely the squared and pair-wise product of the observations, but in
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a different way. Let the squared and the pair-wise product of the observations be denoted by u i = (y 2 i1 , . . . , y 2 iT , y i1 y i2 , . . . , y it y i,t+1 , . . . , y i,T -1 y iT ) .

By (2.14), the expectation of u i is given by

λ i (β, σ 2 γ , ρ) = E[U i ] = (λ i11 , . . . , λ itt , . . . , λ iT T , λ i12 , . . . , λ iut , . . . , λ i,T -1,T ) , (2.16)
where

λ itt ≡ λ itt (β, σ 2 γ ) = µ it + µ 2 it exp(σ 2 γ ), for t = 1, . . . , T, λ iut ≡ λ iut (β, σ 2 γ , ρ) = ρ t-u µ iu + µ iu µ it exp(σ 2 γ ), for u < t.
Now in the fashion similar to that of (2.11) for the GQL estimation of β, one may now write the GQL estimating equation for σ 2 γ as

K i=1 ∂λ i (β, σ 2 γ , ρ) ∂σ 2 γ Ω -1 i (β, σ 2 γ , ρ)[u i -λ i (β, σ 2 γ , ρ)] = 0,
(2.17) [START_REF] Sutradhar | On Exact Quasilikelihood Inference in Generalized Linear Mixed Models[END_REF]] where Ω i is the covariance matrix of u i . Note that it is however extremely cumbersome to compute the fourth order moments matrix, Ω i , under the auto-regression model (1.4). As a remedy, we use a 'working' covariance matrix of u i such as Ω iw (β, σ 2 γ , ρ = 0) for the general Ω iw (β, σ 2 γ , ρ), which would be computed by pretending that the repeated responses, conditional on γ i , are independent, even though in reality they are not. Thus, we propose to solve the 'working' GQL estimating equation

K i=1 ∂λ i (β, σ 2 γ , ρ) ∂σ 2 γ Ω -1 iw (β, σ 2 γ , ρ = 0)[u i -λ i (β, σ 2 , ρ)] = 0, (2.18) 
for the estimation of σ 2 γ .

Estimation of the Longitudinal Correlation Parameter ρ

Note that the ρ parameter in the dynamic model (1.4) is understood in a much better way through the auto-covariances given in (2.4). It is clear from (2.4) that it would be sufficient to use the lag 1 pairwise product of the responses to estimate ρ. We exploit such information both in GMM and GQL approaches but in a different way.

The formulas for the estimate of ρ under these approaches are developed as follows.
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GMM Estimation for ρ

In the fashion similar to that of the GMM estimation of σ 2 γ by solving (2.13), we obtain the GMM estimate for ρ by solving the estimating equation

∂ψ 3 ∂ρ C 3 ψ 3 = 0, (2.19) 
where

ψ 3 = K -1 K i=1 ψ 3i with ψ 3i = T t=2 [y it y i,t-1 -λ it,t-1 ],
where by (2.4)

λ it,t-1 = E[Y it Y i,t-1 ] = ρµ i,t-1 + [exp(σ 2 γ )]µ i,t-1 µ it .
(2.20)

Similar to the computation for C 2 in (2.15), we compute C 3 in (2.19) under the 'working' longitudinal independence assumption (ρ = 0). To be specific,

C -1 3 = var K -1 K i=1 ψ 3i = K -2 K i=1 T u=2 T t=2 φ iu,u-1,t,t-1 (β, σ 2 γ , ρ = 0) - K i=1 T t=2 λ it,t-1 (β, σ 2 γ , ρ = 0) 2   , (2.21) 
where λ it,t-1 is given by (2.20), and the formula for φ iu,u-1,t,t-1 (β, σ 2 γ , ρ = 0) can be computed by using the formulas for the fourth order moments, similarly to (2.12).

ρ Estimation Under the GQL Approach

For given values of β and σ 2 γ , the correlation or probability parameter (ρ) may be consistently estimated by solving a suitable moment estimating equation that may be developed by equating the population covariance of the data given in (2.4), with its sample counterpart. Note that as ρ is a correlation parameter under the autoregressive order 1 set up, similar to the Gaussian set up, it would be sufficient to exploit the lag 1 auto-covariance only to estimate this parameter. More specifically, as by ( 2

.2), E(Y it -µ it ) 2 = σ itt = µ it +[exp(σ 2 γ )-1]µ 2 it , and by (2.4), E(Y it -µ it )(Y i,t+1 - µ i,t+1 ) = ρµ it + {exp(σ 2 γ ) -1}µ it µ i,t+1 , ρ may be estimated consistently by ρ = [a 1 -b 1 ]/g 1 , (2.22)
where a 1 is the observed lag 1 correlation defined as

a 1 = [ K i=1 T -1 t=1 y * it y * i(t+1) /K(T - 1)]/[ K i=1 T t=1 y * 2 it /KT ], with y * it = (y it -µ it )/(σ itt ) 1/2 , where σ itt = µ it + (exp(σ 2 γ ) - 1)µ 2 it . In (2.22), g 1 = K i=1 T -1 t=1 µ it (σ itt σ i,t+1,t+1 ) -1 2 /K(T -1), and b 1 = (exp(σ 2 γ ) - 1) K i=1 T -1 t=1 m it m i,t+1 /K(T -1), with m it = µ it /(σ itt ) 1 2 .
Since the means and the variances of the count responses are functions of both β and σ 2 γ , we are mainly interested to examine the relative efficiency of the GMM and GQL approaches in estimating these two parameters, by comparing their corresponding asymptotic variances.

Asymptotic variances of the GMM estimators

Since the K individuals provide repeated count responses independently, as K → ∞, it follows from (2.8) and (2.13), by using the central limit theorem that the GMM based estimators of β and σ 2 γ have the asymptotic covariances given by cov

( βGMM ) = lim K→∞ ∂ψ 1 ∂β C 1 ∂ψ 1 ∂β -1 (3.1) cov(σ 2 γ,GM M ) = lim K→∞ C -1 2 ∂ψ 2 ∂σ 2 γ -2 . (3.2)

Asymptotic variances of the GQL estimators

By similar calculations as in the GMM case, it follows from (2.11) that the asymptotic covariance matrix of the GQL estimator of β is given by cov

( βGQL ) = lim K→∞ K i=1 ∂µ i (β, σ 2 γ ) ∂β Σ -1 i (β, σ 2 γ , ρ) ∂µ i (β, σ 2 γ ) ∂β -1 . (3.3)
Next, it follows from (2.18) that the asymptotic variance of the GQL estimator of σ 2 γ is given by cov

(σ 2 γ,GQL ) = lim K→∞ K i=1 ∂λ i (β, σ 2 γ , ρ) ∂σ 2 γ Ω -1 iw (β, σ 2 γ , ρ = 0) ∂λ i (β, σ 2 γ , ρ) ∂σ 2 γ -1 . (3.4)

Asymptotic Efficiency Computation

We now illustrate the relative efficiency of the GQL and GMM estimators through a numerical example. For the purpose, we consider K = 500, p = 2, T = 4, and use a
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covariate matrix with the first covariate as

x it1 =         
0 for i = 1, . . . , K/2; t = 1, 2 1 for i = 1, . . . , K/2; t = 3, 4 1 for i = K/2 + 1, . . . , K; t = 1, . . . , 4, . whereas the second covariate is chosen to be

x it2 =                1 for i = 1, . . . , K/2; t = 1, 2
1.5 for i = 1, . . . , K/2; t = 3, 4 0 for i = K/2 + 1, . . . , K; t = 1, 2 1 fori = K/2 + 1, . . . , K; t = 3, 4.

. Furthermore, for true parameter values, we consider β 1 = β 2 = 1.0; ρ = 0.3 and 0.8, and σ 2 γ = 0.5, 1.0, 1.5 and 2.0. The asymptotic variances computed from (3.1) through (3.4) are shown in Table 1 for the above selection of the parameter values.

[Insert Table 1 about here] It is clear from Table 1 that the variances of the estimators for all three main parameters β 1 , β 2 , and σ 2 γ , under the GQL approach are uniformly much smaller than the corresponding variances under the GMM approach, justifying that the GQL approach produces much more efficient estimates than the GMM approach for all main parameters of the model. For example, when ρ = 0.8 and σ 2 γ = 1.5, the GQL estimates of β 1 and β 2 are respectively 1.93×10.0 -2 6.62×10.0 -4 = 29.15 and 1.49×10.0 -2 4.86×10.0 -4 = 30.66 times more efficient than the corresponding GMM estimates. For the estimation of σ 2 γ , the GQL approach appears to perform extra-ordinarily better than the GMM approach.

For example, for the same set of parameters, i.e., when ρ = 0.8 and σ 2 γ = 1.5, the GQL estimate of σ 2 γ is 0.230 1.08×10.0 -5 = 21296.30 times more efficient. In summary, the GQL approach performs much better than the GMM approach in estimating all main parameters, its performance being extra-ordinarily better in estimating the variance component σ 2 γ .
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Table 1. Comparison of asymptotic variances (Var) of the GQL and GMM estimators for the estimation of the regression parameters (β 1 and β 2 ), and the variance component (σ 2 γ ), of a longitudinal mixed model for panel count data, with T = 4 and K = 500.

Asymptotic variances ρ Method Quantity

σ 2 γ = 0.5 1.0 1.5 2.0 0.3 GQL Var( β1 ) 9.25 ×10.0 -4 7.88×10.0 -4 6.33×10.0 -4 4.99×10.0 -4 Var( β2 ) 7.11×10.0 -4 6.41×10.0 -4 5.27×10.0 -4 4.20 ×10.0 -4 Var(σ 2 γ ) 7.38 ×10.0 -5 3.03×10.0 -5 1.08×10.0 -5 1.04 ×10.0 -5 GMM Var( β1 ) 3.96 ×10.0 -3 9.63×10.0 -2 1.91×10.0 -2 3.47×10.0 -2 Var( β2 ) 2.99 ×10.0 -3 7.41 ×10.0 -3 1.47 ×10.0 -2 2.69×10.0 -2 Var(σ 2 γ ) 3.77 ×10.0 -3 3.08×10.0 -2 0.231 1.708 0.8 GQL Var( β1 ) 9.68 ×10.0 -4 8.21×10.0 -4 6.62×10.0 -4 5.24 ×10.0 -4 Var( β2 ) 6.74×10.0 -4 5.94×10.0 -4 4.86×10.0 -4 3.87×10.0 -4 Var(σ 2 γ ) 7.38×10.0 -5 3.03×10.0 -5 1.08×10.0 -5 1.04×10.0 -5 GMM Var( β1 ) 4.26×10.0 -3 9.86×10.0 -3 1.93×10.0 -2 3.48 ×10.0 -2 Var( β2 ) 3.16 ×10.0 -3 7.54×10.0 -3 1.49×10.0 -2 2.70×10.0 -2 Var(σ 2 γ ) 3.74×10.0 -3 3.07×10.0 -2 0.230 1.707