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ON 3D DDFV DISCRETIZATION OF GRADIENT AND DIVERGENCE

OPERATORS. II. DISCRETE FUNCTIONAL ANALYSIS TOOLS AND

APPLICATIONS TO DEGENERATE PARABOLIC PROBLEMS.

B. ANDREIANOV, M. BENDAHMANE, AND F. HUBERT

Abstract. This paper is the sequel of the paper [2] of S. Krell and the authors, where a family of
3D finite volume schemes on “double” meshes was constructed and the crucial discrete duality
property was established. Heading towards applications, we state some discrete functional
analysis tools (consistency results, Poincaré and Sobolev embedding inequalities, discrete W 1,p

compactness, discrete L1 compactness in space and time) for the DDFV scheme of [2]. We apply
them to infer convergence of discretizations of nonlinear elliptic-parabolic problems of Leray-
Lions kind, and illustrate them with numerical results. Applications to degenerate parabolic-
hyperbolic PDEs and to a degenerate parabolic system known in electro-cardiology are briefly
discussed.
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1. Introduction

Duality formula linking discrete divergence and discrete gradient operators are a key property for
the convergence analysis of many known numerical schemes (cf. [2]). The name of DDFV (Discrete
Duality Finite Volume) was given to a particular kind of 2D schemes that possess this duality
feature and work on “double” meshes (see Hermeline [40, 42] and references therein; Domelevo and
Omnès [25]; cf. Nicoläıdes [45]). The present paper partially follows the guidelines of Andreianov,
Boyer and Hubert [10], where the 2D DDFV method was used for discretization of nonlinear
diffusion problems. The importance of the discrete duality feature stems from the fact that it
makes finite volume discretizations of numerous elliptic operators “structure-preserving” (which
means e.g. that the discretization of monotone coercive operators is monotone and coercive).

The goal of this paper is to collect several tools for analysis of DDFV schemes (many of them
are straightforward extensions from the 2D case); to illustrate their use in convergence proofs (see
also [25, 10, 15, 3, 5, 19] for this purpose); and to illustrate one of the convergence theorems by
numerical experiments.

We focus on the 3D DDFV schemes from the works [4, 2] of the authors and Karlsen and Krell.
In these works, a 3D generalization of the 2D DDFV scheme, called CeVe-DDFV, was decribed
and the discrete duality property was justified. Our construction coincides with the one given
by Hermeline in [42]1. Other kinds of 3D DDFV schemes are in use. First, a slightly different
CeVe-DDFV scheme was designed by Pierre in [47] (see also [24, 22, 23] and [21]). Developing the
approach of Hermeline [41] for introducing additional unknowns, a scheme with a different idea
for mesh and gradient construction, now called CeVeFE-DDFV, was introduced by Coudière and
Hubert in [18, 19], see also [20]. A 3D DDFV construction inspired by [19] was recently proposed
in [32]; this construction boils down to a generalization of the scheme of [47]. More information is
given in [10].

In Section 2 we recall the basic notation for 3D DDFV schemes, spaces of discrete functions
and fields, discrete divergence and discrete gradient operators; the details are given in [2]. The
notation reflects the far-reaching analogy between the continuous framework and the discrete
DDFV framework, and makes the convergence proofs quite similar to the proofs of structural
stability (i.e., of the stability of solutions w.r.t perturbation of data and nonlinearities) in the
continuous framework.

In Section 3, we first give consistency results for the mesh projection operators and for the
discrete gradient operator. Then, we discuss the discrete Poincaré and Sobolev embeddings for
the DDFV schemes, and sketch the proof of the embeddings in the case of the Neumann boundary
conditions. We give two kinds of discrete compactness results. The W 1,p weak compactness in
space is well known in 2D (see in particular [10]). The L1 space-time compactness is a result of
independent interest: its proof (Appendix A) is based upon the original idea of Kruzhkov [44]. In
Appendix B, we introduce a penalization operator, helpful in some convergence studies, and in
Appendix C we give a hint on discretization of reaction terms in the context of DDFV schemes.

In Section 4 we outline the proof of the convergence of our 3D DDFV discretizations for elliptic
and parabolic-elliptic equations with Leray-Lions kind nonlinear diffusion (see Alt and Luckhaus
[1]) b(u)t−divϕ(∇u) = f with the homogeneous Dirichlet boundary conditions. The arguments of
the proof are similar to those of the work [10] of the elliptic case, augmented by specific techniques
for time compactness of discrete solutions. A similar study (with, in addition, error estimates like
in [10]) for the 3D CeVeFE-DDFV scheme is given in [18], in the elliptic case. We also describe
the convergence results obtained in the joint work of two of the authors with Karlsen and Pierre
[5] on degenerate parabolic problems coming from applications in electrocardiology (see [5] for
numerical results); and we discuss the additional tools needed for degenerate hyperbolic-parabolic
problems coming from sedimentation applications ([3]).

In Section 5, we report on numerical results for both linear and nonlinear equations with Leray-
Lions kind diffusion. For related numerical results on convergence of different kinds of 3D DDFV

1The work [42] imposes unnecessary restrictions on the meshes but it treats the more delicate case of diffusion
operators with discontinuous coefficients.
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schemes, we refer to Hermeline [41, 42] and Coudière and Hubert [18] (in the context of linear
heterogeneous anisotropic diffusion operators) and to Coudière et al. [22, 24, 23] (in the context of
electrocardiology). An extended comparison of different schemes on linear 3D diffusion problems
will be carried out in the benchmark [38], see in particular [12, 20, 21]. Recall that the problem
we solve numerically is a nonlinear one; Appendix D presents the coordination-decomposition
iterative algorithm (see [36, 37, 15]) used in the numerical tests of the present paper.

2. Notation for 3D CeVe-DDFV scheme, operators and discrete duality

Let us briefly recall our discrete framework, limited to the case of operators with homogeneous
Dirichlet of Neumann boundary conditions. The cases of non-homogeneous and mixed boundary
conditions are treated in [10] and in [5].

We only reproduce the notation needed to understand the statements of the paper and the
applications in Section 4. Illustrative figures and additional notation that is only needed in some
proofs of Section 3 are given without comment in Section 2.1 (for details, see the paper [2] of the
authors and S. Krell).

DDFV schemes are designed for discretization in space of second-order elliptic operators in
divergence form; therefore we concentrate on description of the meshes of a domain Ω ⊂ R3

(notation related to the time dependence is given in Section 3.5). The 3D CeVe-DDFV meshes

of Ω described in [2, 12] (cf. [4] and Hermeline [42]) are triples T =
(
M

o,M∗,D
)
; actually both

M
∗ and D are constructed from M

o which is given.
The mesh T consists of control volumes of two kinds, the primal ones (denoted K ∈ M

o) and

the dual ones (denoted K∗ ∈ M
∗). Both primal and dual volumes form a partition of Ω, up to

a set of measure zero. The volumes are associated with centers xK and xK∗ , respectively; one
may assume that xK ∈ K and xK∗ ∈ K∗. The dual volumes are constructed using, as vertices,
the primal volume centers (xK)K , some face centers (xK|L)K|L (K|L being the notation for a face
separating neighbours K and L) and the edge middlepoints (xK∗|L∗)K∗|L∗ (K∗ and L∗ being neighbour
dual centers), see [2, Sec. 2] for details; cf. [42].

The dual and primal volumes with centers lying on ∂Ω are considered as “boundary” volumes
(denoted K ∈ ∂Mo and K∗ ∈ ∂M∗, resp.), in the case we look at Dirichlet boundary conditions.
The primal boundary volumes are in fact fictive ones (they are flat: each face of K ∈ M

o contained
in ∂Ω gives rise to a boundary volume). With each (primal or dual) interior control volume
(denoted K ∈ M

o or K∗ ∈ M
∗, resp.), unknown values uK, resp. uK∗ for a discrete solution u are

associated (the value uK, resp. uK∗ , is seen as the value of u at the point xK , resp. xK∗); Dirichlet
boundary conditions are imposed at the centers of the boundary volumes. The Neumann or Robin
boundary conditions, when present, enter the definition of the discrete divergence operator near
the boundary (see [16, 43] and [5] for details).

Thus we consider the space R
T of discrete functions on interior volumes; a discrete function

uT ∈ RT consists of one real value per primal or dual interior control volume. The space of discrete
functions that take the value zero in the boundary volumes is denoted by RT

0 ; more generally, by
uT ∈ RT we mean the extension of uT ∈ RT by values assigned in boundary volumes. On RT,

one considers the appropriate product
[[
· , ·

]]
Ω
(see formula (2) below) which is a bilinear positive

form.
The couples of neighbour primal and dual volumes define a partition of Ω into diamonds (de-

noted D ∈ D), used to represent discrete gradients and other discrete fields on Ω. A diamond D is
uniquely determined by a couple K, L of primal volumes that have common interface K|L contained
within D; in this case, we denote it D

K|L (see [2, Sec. 4] for several generalizations). Diamonds are
further cut into subdiamonds, denoted S

K|L

K∗|L∗
(or S ∈ S, for a generic subdiamond) that involve

neighbours K, L and dual neighbours K∗, L∗ intersecting K, L (see Fig. 1); these are only needed
inside some proofs of Section 3. The space (RD)3 of discrete fields on Ω serves to define the fluxes

through the boundaries of control volumes. A discrete field ~FT ∈ (RD)3 on Ω consists of one R3

value per diamond. On (RD)3, one considers the appropriate scalar product
{{
· , ·

}}
Ω
(see formula

(3) below).
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A Discrete Duality Finite Volume scheme is determined by the mesh, the discrete divergence
operator divT : (RD)3 −→ RT (see formula (4) below) obtained by the standard finite volume
discretization procedure (taking into account the Neumann or Robin boundary condition, if nec-
essary), and by the associated discrete gradient operator ∇T : RT −→ (RD)3 (see formula (5)
below) obtained diamond-wise, by a kind of affine interpolation (see [2] for the motivation behind
the definition of ∇T). The essential property of the DDFV schemes is the discrete duality [2,
Prop.3.2] (cf. [42, Th.1]), stated as

(1)
[[
− divT ~FT, vT

]]
Ω
=

{{
~FT, ∇TvT

}}
Ω
;

this form is suitable either for v satisfying the homogeneous Dirichlet boundary condition, or for
~F satisfying the homogeneous Neumann (zero-flux) boundary condition (see [5, 43] for the general
case including a boundary scalar product).

The discrete solution uT will be often identified with the piecewise constant function

uT :=
1

3
vM

o

+
2

3
vM

∗

with vM
o
and vM

∗
representing the piecewise constant discrete solutions on the primal and the

dual mesh, respectively; e.g., vM
o
(x) =

∑
K∈M

o vK1lK(x). Similarly, we identify ∇TuT with the

piecewise constant function ∇TuT :=
∑

D∈D
∇Du

T1lD(x). This identification is related to the
notion of reconstruction (lifting) operator used in the context of “gradient schemes”, see Eymard,
Herbin and Guichard [32].

We denote by Vol(A) the three-dimensional Lebesgue measure of A which can stand for a control
volume, a dual control volume, a diamond, etc.

2.1. Notation and formulas used in some proofs. For the sake of self-consistency, let us
reproduce some figures and formulas from [2] used in the proofs of Section 3.

xK⊕

xK⊕

xK⊕

volume
K⊙

xK∗
3
|K∗

1

K⊙|K⊕

xK⊙

xK⊙

xK∗
3
|K∗

1

xK⊙

xK∗
3

xK∗
3
|K∗

1
xK∗

1

xK∗
1

xK∗
3

xK⊙|K⊕

xK∗
1

volume

xK⊙|K⊕

orientation

xK⊙|K⊕

xK∗
2

interface

xK∗
3

xK∗
2

K⊕

diamond

DK⊙|K⊕

subdiamond

S
K⊙|K⊕

K∗
3|K

∗
1

����
����
����
����
����
����
����

����
����
����
����
����
����
��������
����
����
����
����
����
����

����
����
����
����
����
����
����

x⊕

α⊙,⊕

x∗
i

x∗
i,i+1

x∗
i+1

(part of K⊙|K⊕)
interface σS

interface σ∗
S⊙x⊙

(part of Ki|Ki+1)

~e⊙,⊕

interface σ∗
S⊕

~nS⊕

S
K⊙|K⊕

K∗
i
|K∗

i+1

(part of Ki|Ki+1)
subdiamond

~n⊙,⊕

~e⊙,⊕

~nS≡~n⊙,⊕

x∗⊙,⊕

angle

Figure 1. 3D neighbour volumes, diamond, subdiamond. Zoom on a subdiamond.

For wT, vT ∈ RT and for ~FT, ~GT ∈ (R3)D, the scalar products are given by

(2)
[[
wT, vT

]]
Ω
=

1

3

∑
K∈M

o
Vol(K) wKvK +

2

3

∑
K∗∈M

∗
Vol(K∗) wK∗vK∗ ;

(3)
{{
~FT, ~GT

}}
Ω
=

∑
D∈D

Vol(D) ~FD · ~GD.

The entries of the discrete divergence of a field F are given by

(4)
divK ~FT=

1

Vol(K)

∑
S∼K

mS
~FS · (−1)ǫ

K

S~nS,

divK∗ ~FT=
1

Vol(K∗)

∑
S∼K∗

~FS · (−1)ǫ
K∗

S

(
m∗

S⊙
~n∗

S⊙
+m∗

S⊕
~n∗
S⊕

)
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where “∼” means that the subdiamond S is associated with the primal volume K (resp. with the

dual volume K∗); further, ǫK
S
, ǫK

∗

S
are sign selectors such that (−1)ǫ

K

S ~nS is the unit normal vector to

the part σS of K|L that points outside K, and (−1)ǫ
K∗

S ~n∗
S⊙
, (−1)ǫ

K∗

S ~n∗
S⊕

are the unit normal vectors

to the two planar parts σ∗
S⊙
, σ∗

S⊕
of K∗|L∗ that point outside K∗.

The entries of the discrete gradient are calculated by the formula

(5) ∇Dw
T =

1

6Vol(D)

l∑

i=1

{ 〈−−→x⊙x⊕,
−−−−−→
x∗⊙,⊕x

∗
i,i+1,

−−−−→
x∗i x

∗
i+1 〉

−−→x⊙x⊕ · ~n⊙,⊕

(w⊕−w⊙)~n⊙,⊕+2(w∗
i+1−w∗

i )
[−−→x⊙x⊕×

−−−−−→
x∗⊙,⊕x

∗
i,i+1

]}

with the notation of Fig. 1 (the depicted case corresponds to primal interface K⊙|K⊕ with l = 3
vertices, with the convention “l+ 1 := 1”); in (5), · × · and < · , · , · > denote the vector and the
mixed products of vectors of R3, respectively.

2.2. An illustration: cartesian DDFV meshes in 3D. We reproduce the simple yet impor-
tant example of a 3D DDFV mesh given in [2].

Primal volume K⊙Primal volume K

xK⊙xK

Dual volume K∗

xK∗

Four primal cells
and a dual cell

xK⊕

A primal interface
and its diamond

Diamond D
K⊙,K⊕

Interface K⊙|K⊕

Primal volume K⊕

xK
∗
SE

xK
∗
NW

xK
∗
NE∗

xK
∗
SW

~k

~i

~j

Figure 2. Cartesian DDFV mesh in 3D and an associated diamond

Take the unit cube Ω = [0, 1]3 and partition it into N3 primal cubic volumes of edge 1
N . The

diamonds are octahedrons built on two primal cubes’ centers xK⊙
,xK⊕

and on the square interface
K⊙|K⊕ between them. One chooses for xK⊙|K⊕

the center of symmetry of K⊙|K⊕. The interior dual

volumes are also cubes of the same edge 1
N centered at the vertices of the primal mesh that do

not lie on ∂Ω.
To give the entries of the associated discrete gradient, for the sake of being definite we consider a

diamond D = D
K⊙|K⊕ with orientation and notation of Fig. 2. Applying the reconstruction formula

for discrete gradient (5) (see also [2]) one finds that the entry ∇Dw
T of ∇TwT is computed as

∇Dw
T =

1

2

(wK
∗
NE
− wK

∗
NW

1/N
+
wK

∗
SE
− wK

∗
SW

1/N

)
~i+

1

2

(wK
∗
NE
− wK

∗
SE

1/N
+
wK

∗
NW

− wK
∗
SW

1/N

)
~j +

wK⊕
− wK⊙

1/N
~k;

here the triple
(
~i,~j,~k

)
denotes the canonical basis of R3. For later use, notice that the most

convenient orthonormal basis for expressing ∇Dw
T is

(~i+~j√
2
,
~j−~i√

2
, ~k
)
; accordingly, we find

(6)
∣∣∇Dw

T
∣∣2 =

∣∣∣
wK

∗
NE
− wK

∗
SW√

2/N

∣∣∣
2

+
∣∣∣
wK

∗
NW

− wK
∗
SE√

2/N

∣∣∣
2

+
∣∣∣wK⊕

− wK⊙

1/N

∣∣∣
2

.

Further, let K be an interior primal volume. For the six diamonds that intersect K, we introduce
the specific notation Dabv(K),Dblw(K), DE(K),DW(K) and DN(K),DS(K) with the obvious meaning
of the subscripts (e.g., the diamond pictured on the right in Figure 2 is Dblw(K⊕) and at the same
time, it is Dabv(K⊙)).
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Applying the formula for the discrete divergence (4) (see also [2]) one finds that the entry

divK ~FT of divT ~FT is computed as

divK ~FT =
1

1/N3

{ 1

N2
( ~FDE(K)− ~FDW(K)) ·~i+

1

N2
( ~FDN(K)− ~FDS(K)) ·~j +

1

N2
( ~FDabv(K)

− ~FDblw(K)) ·~k
}
.

The formula for the entries of divK∗ ~FT has an entirely similar form.

3. Discrete functional analysis tools

In this section, we give a few “discrete functional analysis tools” related to CeVe-DDFV schemes
(such properties or their analogues also hold for 2D DDFV schemes and for 3D CeVeFE-DDFV
schemes). Notice that the proof of the asymptotic discrete compactness property of Proposition 3.9
is based upon the discrete duality; the duality is also used, in a much weaker form, in the proof
of Proposition 3.11. This section is essentially self-contained; some details are given in references
[6, 10, 29], notation is taken from Section 2.1 and [2], and one longer proof is postponed to the
Appendix A. In addition, two hints on DDFV discretization (namely, the penalization operator
and a structure-preserving discretization of the reaction terms) that may be useful for coping with
“double” nature of the CeVe-DDFV approximations are postponed to Appendices B and C.

For a given mesh T of Ω as described in [2, Sec. 2] (see also [2, Sec. 4]), the size of T is defined
as

size(T) := max
{
max

K∈M
o diam(K) , max

K∗∈M
∗ diam(K∗) , maxD∈D diam(D)

}
.

If the assumption xK ∈ K made in [2, Sec. 2] is dropped (see [2, Sec. 4]), then in the above
expression diam(K) should be replaced with the diameter of the convex hull of K and xK .

In what follows, we will always think of a family of meshes such that size(T) goes to zero.

3.1. Regularity assumptions on the meshes.

In various finite volume methods, one always needs some qualitative restrictions on each mesh
T considered (such as, e.g., the assumption that xK ∈ K, or the convexity of volumes and/or
diamonds, or the mesh orthogonality, or the Delaunay condition on a simplicial mesh). For the
convergence analysis on families of such meshes, it is convenient (though not always necessary)
to impose shape regularity assumptions on the family of meshes considered. These assumptions
are quantitative: this means that the “distortion” of certain objects in a mesh is measured with
the help of a regularity constant reg(T), which is finite for each individual mesh but may get
unbounded if an infinite family of meshes is considered.

For the 3D DDFV meshes presented in this paper, there are two main mesh regularity assump-
tions. First, we require several lower bounds on dKL = |xK − xL|, dK∗L∗ = |xK∗ − xL∗ |:

(7)

∣∣∣∣∣∣∣∣

For all primal neighbours K, L, diam(K) + diam (L) ≤ reg(T)dKL;
for all dual neighbours K∗, L∗, diam(K∗) + diam (L∗) ≤ reg(T)dK∗L∗ ;

for all diamond D with vertices xK , xL

and with neighbour dual vertices xK∗ , xL∗ , diam(D) ≤ reg(T)min{dKL, dK∗L∗}.
Further, we need a bound on the inclination of the (primal and dual) interfaces with respect to
the (dual or primal) edges (see Fig. 1):

(8)

∣∣∣∣∣∣∣∣∣∣∣

For all primal neighbour volumes K, L, the angle αK,L between −−−→xKxL and the plane K|L
is separated from 0 and π, meaning that reg(T) cosαK,L ≥ 1;

and for all neighbour vertices xK∗ , xL∗ of K|L,
the angle α∗

K∗,L∗ between −−−−→xK∗xL∗ and −−−−−−→xK∗|L∗xK|L

is separated from 0 and π, namely reg(T) cosα∗
K∗,L∗ ≥ 1.

Also a uniform bound on the number of neighbours of volumes and diamonds is useful:

(9)

∣∣∣∣∣∣

All primal volume K has at most reg(T) neighbour primal volumes;
all dual volume K∗ has at most reg(T) neighbour dual volumes;
and all diamond D has at most reg(T) vertices.
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The last line in (9) is satisfied, e.g., if one works either with meshes where all primal interfaces are
triangles (thus any diamond has five vertices), or with the uniform cartesian mesh of Section 2.2.
Indeed, when the number l of vertices of a face K|L exceeds three, the kernel of the linear form used
to reconstruct the discrete gradient in D

K|L (see (5) and [2]) is not reduced to discrete functions
constant at the vertices of K|L. This is a problem e.g. for the discrete Poincaré inequality and
for the proof of discrete compactness. In general, the situation with l ≤ 4 vertices is not clear;
e.g. the discrete Poincaré inequality holds on every individual mesh, but it is not an easy task to
prove that the embedding constant is uniform, even under rigid proportionality assumptions on
the meshes. The uniform cartesian meshes is one case with l = 4 that can be treated thoroughly.
From the numerical point of view, higher values of l do not lead to troubles for the test cases we
have examined (see, e.g., [2, Sec. 5]).

For the Sobolev embedding inequalities and for strong compactness in Lq, q > 1, we also require

(10)

∣∣∣∣
For all primal volume K and interface K|L, mK|LdKL ≤ reg(T)Vol(K);
For all dual volume K and interface K∗|L∗, mK∗|L∗dK∗L∗ ≤ reg(T)Vol(K∗).

Whenever one is interested in error rate analysis, further constraints on the shape of volumes,
dual volumes, diamonds, and their intersections are needed (see [10] for the 2D case). In the 3D
case, shape-regularity constraints on the faces of primal and dual meshes would also be required.

3.2. Consistency of projections and discrete gradients. Here we gather basic consistency
results for the DDFV discretizations. Heuristically, for a given function ϕ on Ω, projection of ϕ
on a mesh T and subsequent application of the discrete gradient ∇T should produce a discrete

field sufficiently close (as size(T) gets small) to ∇ϕ. Similarly, for a given field ~F , the adequate
projection on the mesh and the application of divT to this projection should yield a discrete

function close to div ~F . Actually, we state two different kinds of consistency results, those in a
norm and those in a weaker formulation using duality.

We use two kinds of projection, the mean-value and the center-value ones. Namely, for scalar
functions on Ω, the following projections on RT (which have two components, namely the projec-
tions on M

o and on M
∗) are used:

P
T : ϕ 7→

( ( 1

Vol(K)

∫

K

ϕ
)
K∈Mo ,

( 1

Vol(K∗)

∫

K∗

ϕ
)
K∗∈M∗

)
=:

(
P

M
o

ϕ , PM
∗
ϕ
)
,

P
T

c : ϕ 7→
( (

ϕ(xK)
)
K∈Mo ,

(
ϕ(xK∗)

)
K∗∈M∗

)
=:

(
P

M
o

c ϕ , PM
∗

c ϕ
)
.

If, in addition, ϕ is zero on ∂Ω, then PT

cϕ ∈ RT is extended to PT

cϕ ∈ RT

0 ; P
T

cϕ is the projection of
ϕ on RT2. For R3-valued fields on Ω, we use the projection on (R3)D by

~PT : ~F 7→
( 1

Vol(D)

∫

D

~F
)

D∈D

.

Let us stress that for the study of weak compactness in Sobolev spaces and analysis of conver-
gence of discrete solutions to a weak solution of PDEs, the consistency results can be formulated

for source terms and for test functions only (and the consistency for divT◦~PT is formulated in
a weak form, except on very symmetric meshes). These results are shown under the regularity
restrictions (7),(8),(9) on the mesh.

Proposition 3.1. Let T be a 3D CeVe-DDFV mesh of Ω as described in [2, Sec. 2,4]. Let reg(T)
measure the mesh regularity in the sense (7),(8),(9). Then

(i) For all ϕ ∈ D(Ω) one has
∥∥ϕ− P

M
o

ϕ
∥∥
L∞(Ω)

≤ C(ϕ) size(T),
∥∥ϕ− P

M
∗
ϕ
∥∥
L∞(Ω)

≤ C(ϕ) size(T);

2In this paper, we only discuss DDFV discretizations of diffusion operators supplied with homogeneous Dirichlet
or Neumann BC. In the homogeneous Dirichlet case, the boundary values of a discrete function are zero. In
the homogeneous Neumann case, boundary values never appear. Consideration of non-homogeneous boundary
conditions is a highly technical issue. We refer to the analysis of [10] for the Dirichlet case, and to [16, 43, 5] for
the non-homogeneous Neumann condition on a part of the boundary.
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analogous properties hold for PM
o

c , PM
∗

c . Similarly, for all ~F ∈
(
D(Ω)

)3
one has

∥∥ ~F − ~PT~F
∥∥
L∞(Ω)

≤ C( ~F) size(T).

(ii) For all ϕ ∈ D(Ω) one has
∥∥∇ϕ− ∇T(PT

cϕ)
∥∥
L∞(Ω)

≤ C(ϕ, reg(T)) size(T).

(iii) Assume that all primal interface K|L is a triangle.

Then for all ~F ∈
(
D(Ω)

)3
, for all wT ∈ RT

0 one has
∣∣∣
[[
P

T
(
div ~F

)
− divT(~PT~F) , wT

]]
Ω

∣∣∣ ≤ C( ~F , reg(T)) size(T) ‖∇TwT‖L1(Ω).

(iii-bis) Let T be a uniform cartesian mesh of Section 2.2. Then for all ~F ∈
(
D(Ω)

)3
,

∥∥PT
(
div ~F

)
− divT(~PT~F)

∥∥
L∞(Ω)

≤ C( ~F) size(T).

Remark 3.2.

(i) One can perceive (iii),(iii-bis) as a kind of commutation relation, but actually these items

also express consistency results. Indeed, by (i), PT
(
div ~F

)
is size(T)-close to div ~F in L∞(Ω).

Therefore the item (iii) can be interpreted as a size(T)-smallness of
(
div ~F − divT(~PT~F)

)
in the

weak-* topology of W−1,∞(Ω) =
(
W 1,1

0 (Ω)
)∗
. Similarly, the item (iii-bis) means that, for the

uniform cartesian mesh,
(
div ~F − divT(~PT~F)

)
is of order size(T) in L∞ norm.

(ii) The items (iii),(iii-bis) reflect a technical difficulty specific to the DDFV context. Indeed,
in the context of finite volume schemes with two-point gradient reconstruction (iii),(iii-bis) holds
just with C = 0, for an appropriately defined field projection operator. To be specific, instead of
the DDFV double mesh T consider the primal mesh M

o alone. One keeps the same definition

for diamonds D
K|L, but sets ~PM

o~F =
(

1
mK|L

∫
K|L

~F
)
DK|L∈D

. One only looks at the first components

of the DDFV operators PT and divT (it is natural to denote them PM
o
and divM

o

, respectively).
Then from the Green-Gauss formula it is straightforward that

(11) ∀ ~F ∈
(
D(Ω)

)3
P

M
o(
divM

o ~F
)
= divM

o

(~PM
o~F).

Because in the DDFV context, for D = D
K|L

K∗|L∗
, the values 1

mK|L

∫
K|L

~F and 1
mK∗|L∗

∫
K∗|L∗

~F may differ,

the analogue of the commutation relation (11) cannot be achieved, whatever definition is chosen

for ~PT.

Notice that error analysis for diffusion operators would require consistency properties also for

functions ϕ and fields ~F in Sobolev spaces; this requires more regularity restrictions on the meshes,
and much finer techniques (see e.g. [10]). Here, we only need the following additional property
generalizing (i) and applicable to source terms:

Corollary 3.3. Let p ∈ [1,+∞). For all ϕ ∈ Lp(Ω) one has
∥∥ϕ− P

M
o

ϕ
∥∥
Lp(Ω)

→ 0,
∥∥ϕ− P

M
∗
ϕ
∥∥
Lp(Ω)

→ 0 as size(T) → 0.

Proof : The proof is a straightforward combination of the density of D(Ω) in Lp(Ω), of Proposi-
tion 3.1(i) and of the uniform boundedness of the projection operators PM

o
, PM

∗
seen as operators

from Lp(Ω) to itself. �

Proofof Proposition 3.1:

(i) The properties are evident from the Lipschitz continuity of ϕ and of ~F , respectively.

(ii) Here the consistency of the discrete gradient on affine functions, stated in [2, Prop.2.3], is
used together with the C2 regularity of ϕ. Namely, we compare ∇T

P
Tϕ to ∇ϕ diamond-wise.

From the regularity assumption (7), it is clear that some C(reg(T))diam (D)-neighbourhood ND

of a given diamond D = D
K|L ∈ D contains the two primal volumes K, L and the dual volumes
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K∗
i, i = 1, . . . , l, used to reconstruct ∇DP

Tϕ. Let w denote the affine Taylor polynomial of ϕ at
some fixed point of D (when D touches the boundary ∂Ω, we pick a point at the boundary and
get w ≡ 0). Then
∥∥∇ϕ− ∇w

∥∥
L∞(D)

≤ C(ϕ)size(T), |ϕK − wK |, |ϕL − wL|, |ϕK
∗
i
− wK

∗
i
| ≤ C(ϕ)

(
diam (D)

)2
,

where ϕK , ϕK
∗
i
, etc. denote the entries of the discrete function PT

c ϕ, while wK := w(xK), wK
∗
i
:=

w(xK
∗
i
) are the values of PT

c w.

From [2, Prop.2.3], the values ∇Dw
T and ∇w|D coincide. In order to estimate the difference∥∥∇ϕ−∇T(PTϕ)

∥∥
L∞(D)

, it remains to compare the values ∇Dw
T and ∇D(P

Tϕ). Notice that thanks

to the previous (diam (D))2 bounds on |ϕK−wK|, |ϕL−wL| and to the bound reg(T)dKL ≥ diam(D)
in (7), we have

∣∣∣wL − wK

dKL

− ϕL − ϕK

dKL

∣∣∣ ≤ C(reg(T)) diam (D) ≤ C(reg(T)) size(T).

In view of the expression of the discrete gradient (formula (5) and [2, form. (4),(5)]) and in view of
the mesh inclination bound (8) (notice that cosαK,L appears in the denominator of formula (5)),

the contribution of the values in K, L into
∣∣∇Dw

T−∇D(P
Tϕ)

∣∣ is estimated by C(reg(T)) size(T).
Looking closely at the Proj∗

D
component in formula [2, form. (4),(5)] (notice in particular that

cosα∗
K
∗
i
,K∗

i+1
appears in the denominator, cf. [2, form. (22)]), using in addition the bound on the

number l of xK
∗
i
-vertices of D (this bound is contained in the regularity assumption (9)), we

estimate in the same way the contribution of the values in K∗
i into

∣∣∇Dw
T − ∇D(P

Tϕ)
∣∣.

(iii) We refer to Section 2.1 and [2, Fig. 2,4] for the notation used in the proof.

First, using the Green-Gauss formula, we can rewrite the value
(
div ~F

)
K
of the discrete function

PT
(
div ~F

)
in K under the form reminiscent of the form (4) of the discrete divergence operator:

(
div ~F

)
K
=

∑
S∼K

∫

σS

~F · (−1)ǫ
K

S~nS =
∑

S∼K

mS
~FσS · (−1)ǫ

K

S~nS.

Here ~FσS is the mean value of the field ~F on the part σS ⊂ S of the primal interface defining the

subdiamond S. One represents analogously the value
(
div ~F

)
K∗ of PT

(
div ~F

)
in K∗, using the mean

values ~Fσ∗
S⊙
, ~Fσ∗

S⊕
of ~F on the parts σ∗

S⊙
, σ∗

S⊕
⊂ S of the dual interface defining S. Recall that S is

contained in (or associated with, see [2, Sec. 4]) a diamond D; it is convenient to define ~FS := ~FD

for all subdiamond S of D. In turn, ~FD denotes the value in D of the discrete field ~PT~F ; recall that

this is the mean value of the field ~F on the diamond D.
With this notation in hand, using the definition (2) of the scalar product

[[
· , ·

]]
Ω

and the

summation-by parts procedure (recall that wT is zero on the boundary volumes), analogously to
the proof of [2, Prop. 3.2] we get
[[
P

T
(
div ~F

)
− divT(~PT~F) , wT

]]
Ω

=
1

3

∑

S∈S

(
(mSd⊙,⊕)

w⊕ − w⊙

d⊙,⊕

~n⊙,⊕ ·
(
~FσS − ~FS

)

+ 2
(w∗

i+1−w∗
i )

d∗i,i+1

{
(m∗

S⊙
d∗i,i+1) ~n

∗
S⊙

·
(
~Fσ∗

S⊙
− ~FS

)
+(m∗

S⊕
d∗i,i+1) ~n

∗
S⊕

·
(
~Fσ∗

S⊕
− ~FS

)})
.

Here the summation runs over all subdiamonds S ∈ S represented as S = S
K⊙|K⊕

K
∗
i
|K∗

i+1
.

Now, notice that the mesh inclination bound (8) implies that for a subdiamond S = S
K⊙|K⊕

K
∗
i
|K∗

i+1
,

(12) reg(T) Vol(S
K⊙|K⊕

K
∗
i
|K∗

i+1
) ≥ mSd⊙,⊕, reg(T) Vol(S

K⊙|K⊕

K
∗
i
|K∗

i+1
) ≥ m∗

S⊙
d∗i,i+1 +m∗

S⊕
d∗i,i+1,

for the case of the meshes described in [2, Sec. 2]. Remark that, if one allows for subdiamonds of
negative volume as in [2, Sec. 2], then (12) may loose sense; yet exploiting the restriction on the
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number of vertices of K|L, one can replace the bound (12) used in the below calculation by the
bound

reg(T) Vol(DK⊙|K⊕) ≥ mSd⊙,⊕, reg(T) Vol(DK⊙|K⊕) ≥ m∗
S⊙
d∗i,i+1 +m∗

S⊕
d∗i,i+1,

which is always true.

From the Lipschitz continuity of ~F , it is clear that

∣∣ ~FσS − ~FS

∣∣,
∣∣ ~Fσ∗

S⊙
− ~FS

∣∣,
∣∣ ~Fσ∗

S⊕
− ~FS

∣∣ ≤ C( ~F) size(T);

hence using (12), we get the estimate

(13)
∣∣∣
[[
P

T
(
div ~F

)
− divT(~PT~F) , wT

]]
Ω

∣∣∣

≤ C( ~F , reg(T)) size(T)
∑

S∈S

Vol(S)
( |w⊕ − w⊙|

d⊙,⊕

+
|w∗

i+1−w∗
i |

d∗i,i+1

)
.

It remains to notice that if ∇Sw
T = ∇Dw

T denotes the value in S ∼ D (which means S ⊂ D, for
the meshes of [2, Sec. 2]) of the discrete gradient ∇TwT, then

|w⊕ − w⊙|
d⊙,⊕

=
∣∣Proj

D

(
∇Dw

T
)∣∣ ≤

∣∣∇Dw
T
∣∣.

In addition, because the dual interface K⊙|K⊕ is assumed to be a triangle, according to [2, Rem. 5.4]

each divided difference
|w∗

i+1−w∗
i |

d∗
i,i+1

is precisely the projection of the 2D vector Proj∗
D

(
∇Dw

T

)
on the

direction of
−−−→
x∗i+1x

∗
i . Therefore we also have

|w∗
i+1−w∗

i |
d∗i,i+1

≤
∣∣Proj∗

D

(
∇Dw

T
)∣∣ ≤

∣∣∇Dw
T
∣∣.

Combining (13) with the two latter estimates, we deduce

∣∣∣
[[
P

T
(
div ~F

)
− divT(~PT~F) , wT

]]
Ω

∣∣∣ ≤ C( ~F , reg(T)) size(T)
∑

S∈S

Vol(S)
∣∣∇Sw

T
∣∣

= C( ~F , reg(T)) size(T)
∑

D∈D

Vol(D)
∣∣∇Dw

T
∣∣ = C( ~F , reg(T)) size(T)

∥∥∇TwT
∥∥
L1(Ω)

.

(iii-bis) Let ~FD, ~FK|L and ~FK∗|L∗ denote the mean values of ~F on D = D
K|L

K∗|L∗ , on K|L and on K∗|L∗,
respectively. The claim stems from the fact that on a uniform cartesian mesh, the differences
~FD − ~FK|L, ~FD − ~FK∗|L∗ are upper bounded by C( ~F)(size(T))2. This follows from the cancellation

of the order one terms in the Taylor expansion of ~F (e.g., we expand ~F at each point of K|L and

use the expansion to calculate the mean value ~FD on the diamond D = D
K|L

K∗|L∗
which is symmetrical

with respect to K|L).
Indeed, for all primal volume K, denote by σE(K), σW(K), σN(K), σS(K), σabv(K), σblw(K) the

six interfaces surrounding K (we mimic the notation used in Section 2.2 for the six diamonds

surrounding K). Using the definitions of ~PT, divT and the Green-Gauss theorem, as in the proof
of (iii) we can write

P
T
(
div ~F

)
− divT(~PT~F) =

1

1/N3

{ 1

N2

(
~FσE(K) − ~FDE(K)

)
·~i+ · · ·+ 1

N2

(
~Fσblw(K) − ~FDblw(K)

)
· (−~k)

}
.

Thus the claim of (iii-bis) is direct from the above bound of order (size(T))2 = 1
N2 on the differences

~FDE(K) − ~FσE(K), . . . ,
~FDblw(K) − ~Fσblw(K). �
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3.3. Discrete Poincaré inequality, Sobolev embeddings and strong compactness.

The key fact here is the following remark:

Assuming that each face K|L of the mesh M
o is a triangle,

one gets the same embedding results on the 3D CeVe-DDFV meshes
as the results known for the two-point discrete gradients on M

o and on M
∗.

Indeed, it has been already observed in the proof of Proposition 3.1(iii) that the restriction l = 3
on the number l of dual vertices of a diamond D

K⊙|K⊕ allows for a control by | ∇Dw
T| of the divided

differences:

(14)
|w⊕ − w⊙|
d⊙,⊕

≤
∣∣∇Dw

T
∣∣, |w∗

i+1−w∗
i |

d∗i,i+1
≤

∣∣∇Dw
T
∣∣

(here i = 1, 2, 3 and by our convention, w∗
4 := w∗

1 , d3,4 := d1,3; see Fig. 1). Therefore for a proof
of the different embeddings, we can treat the primal and the dual meshes in T separately, as if
our scheme was a scheme with the two-point gradient reconstruction.

If the number l of vertices of a face of M
o is unrestricted, it is not difficult to construct

examples of non-zero discrete functions on Ω, null on ∂Ω, and with non-zero discrete gradient. This
phenomenon does not occur if l ≤ 4; and we justify in Proposition 3.7 the Sobolev embeddings for
the uniform rectangular DDFV meshes of Section 2.2. Yet Remark 3.8 below shows that a control
on the discrete gradient still allows for oscillations in discrete solutions. The compactness of sub-
critical embeddings is false when the primal meshes with quadrangular faces are considered, unless
the solution on the dual mesh M

∗ is further separated into two components (which corresponds
to a 3D CeVe-DDFV scheme in the spirit of [19]).

Let us first give discrete DDFV versions of the embeddings of the discrete W 1,p
0 (Ω) spaces. We

mean the embedding into Lp(Ω) (the Poincaré inequality), into Lp∗

(Ω) with p∗ := 3p
3−p , p < 3 (the

critical Sobolev embedding), as well as the compact embeddings into Lq(Ω) for all q < p∗.

Proposition 3.4.

(i) Let T be a 3D CeVe-DDFV mesh of Ω as described in [2, Sec. 2,4]. Let reg(T) measure the
mesh regularity in the sense (8) and (10). Assume that all primal interface K|L is a triangle.

Let wT ∈ RT

0 . Then for all p ∈ [1,+∞),

‖wM
o‖Lp(Ω), ‖wM

∗‖Lp(Ω) ≤ C(p,Ω, reg(T)) ‖∇TwT‖Lp(Ω).

Moreover, if p ∈ [1, 3) and p∗ := 3p
3−p , then

‖wM
o‖Lp∗(Ω), ‖wM

∗‖Lp∗(Ω) ≤ C(p,Ω, reg(T)) ‖∇TwT‖Lp(Ω).

(ii) Let wTh ∈ R
Th

0 be discrete functions on a family (Th)h of 3D CeVe-DDFV meshes of Ω as
described in [2, Sec. 2,4], parametrized by h ≥ size(Th). Assume that all primal interface K|L is a
triangle. Assume that suph∈(0,hmax] reg(Th) < +∞, where reg(Th) measures the regularity of Th

in the sense (8) and (10).
Assume that the family

(
∇ThwTh

)
h∈(0,hmax]

is bounded in Lp(Ω) for some p < +∞.

Then for all sequence (hi)i converging to zero, each of the families
(
wM

o
hi

)
i
,
(
wM

∗
hi

)
i
is rela-

tively compact in Lq(Ω) for all q < +∞ (if p ≥ 3) or q < p∗ (if 1 ≤ p < 3).

Notice that for the Poincaré inequality (the first statement of (i)), the assumption (10) is not
needed: we refer to [11] for a proof of this fact. Actually, with the hint of [11, Lemma 2.6] the
Sobolev embeddings for q ≤ p× 1∗ = 3p

2 can be obtained without using (10).
The statements (i),(ii) follow in a very direct way from the proofs given in [28, 17, 29]. Because

of (14), the assumption that the primal mesh faces are triangles (i.e., l = 3) is a key assumption
for the proof. In some of the proofs we refer to, admissibility assumptions on the mesh (such as
the mesh orthogonality and assumptions of the kind “|xK − xL| ≤ reg(T)|xK − xK|L|”, see [28, 29])
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were imposed. Yet, as in [10] (where the proof of the Poincaré inequality is given for the 2D case),
these assumptions are easily replaced with the bounds

(15)
mK|LdKL ≤ C(reg(T)) min

{
Vol(DK|L),Vol(K),Vol(L)

}
,

mK∗|L∗dK∗L∗ ≤ C(reg(T)) min
{
Vol(SK|L

K∗|L∗
),Vol(K∗),Vol(L∗)

}

that stem from the mesh regularity assumptions (10) and (8).

Remark 3.5. The corresponding embeddings of the discrete spaceW 1,p(Ω) contain an additional
term in the right-hand side, which is usually taken to be either the mean value of wT on some
fixed part Γ of the boundary ∂Ω (used when a non-homogeneous Dirichlet boundary condition
on Γ is imposed), or the mean value of wT on some subdomain ω of Ω (the simplest choice is
ω = Ω, used for the pure Neumann boundary conditions). Let us point out that the strategy
of Eymard, Gallouët and Herbin in [29] actually allows to obtain Sobolev embeddings for the
“Neumann case” as soon as the Poincaré inequality is obtained. For the proof, one bootstraps
the estimate of

∫
Ω |u|α. First obtained from the Poincaré inequality with α = p, it is extended to

α = p×1∗ with the discrete variant [29, Lemma 5.2] (where one can exploit (15)) of the Nirenberg
technique. In the same way, the bound of

∫
Ω
|u|α is further extended to α = p(1∗)2 and so on,

until one reaches the critical exponent p∗. The details are given in [6]. Moreover, the Poincaré
inequality for the “Neumann case” and p = 2 (i.e., the embedding into L2(Ω) of the discrete space{
u ∈ H1(Ω)

∣∣ ∫
Ω u = 0

}
) was shown in [29], [35]. The assumption that p = 2 is not essential in

these proofs, and thus we can consider that the analogue of Proposition 3.4 with the additional
terms

∣∣ 1
Vol(Ω)

∫
Ω
wM

o
∣∣,
∣∣ 1
Vol(Ω)

∫
Ω
wM

∗
∣∣ in the right-hand side of the estimates is justified.

Remark 3.6. Notice that the same arguments that yield the Poincaré inequality with zero bound-
ary condition yield the trace inequalities of the kind

∥∥wM
o
∥∥
Lp(Γ)

≤ C(Γ,Ω, reg(T), p)
(∥∥wM

o
∥∥
Lp(Ω)

+
∥∥∇TwT

∥∥
Lp(Ω)

)

(the inequality on the dual mesh is completely analogous). These inequalities are useful for treating
non-homogeneous Neumann boundary conditions on a part Γ of ∂Ω (see e.g. [5]).

Now we treat the case of uniform cartesian DDFV meshes.

Proposition 3.7. Let Ω be the unit cubic domain, N ∈ N and let T be the mesh of Ω as described
in Section 2.2. Then the two claims of Proposition 3.4(i) (as well as the corresponding “Neumann-
case” embedding inequalities with the additional term

∣∣ 1
Vol(Ω)

∫
Ω w

T

∣∣ in the right-hand side) still

hold true.

Proof : For a proof, notice that (14) is false for the cubic meshes: more precisely, we see from (6)
that ∇Dw

T controls the divided differences
∣∣wK−wL

1/N

∣∣ of the values of wT in all neighbour primal

volumes K,L, and also the divided differences
∣∣wK∗−wL∗√

2/N

∣∣ along the diagonals of the faces of primal

volumes. Therefore, firstly, the arguments that justify Proposition 3.4(i) also yield the embedding

estimates for wM
o
. Secondly, we replace the dual mesh M

∗ by two meshes M∗
e, M

∗
o such that the

edges of each mesh are either the diagonals of the faces of primal volumes, or parts of ∂Ω. Then

the same arguments apply to each of the two meshes. To be specific, the family M
∗ of the dual

volumes (their centers (xK∗)
K∗∈M

∗ form a uniform cartesian net of Ω = [0, 1]3) is split into two

families e∗, o∗. Namely, if a vertex xK∗ has the coordinates
(
nx

N ,
ny

N , nz

N

)
in the canonic coordinates

of R3, then the corresponding volume K∗ belongs to the family e∗ whenever nx + ny + nz is even,
and it belongs to the family o∗ otherwise. Inside Ω, one can connect the dual vertices (xK∗)

K∗∈ e∗

into a uniform tetrahedral graph of edge length
√
2/N ; the same is true for (xK∗)

K∗∈ o∗ . Now, the

meshes M
∗
e and M

∗
o are defined as the Voronöı meshes of Ω corresponding to the two separate

families (xK∗)
K∗∈ e∗ , (xK∗)

K∗∈ o∗ of dual vertices. The Voronöı volumes corresponding to xK∗ are

denoted by K̂∗ (thus the union for K∗ ∈ e∗ ∪o∗ of all Voronöı volumes K̂∗ covers Ω twice). If we
define

wM
∗
e :=

∑
K∗∈ e∗

wK1lK̂∗ , wM
∗
o :=

∑
K∗∈o∗

wK1lK̂∗ ,
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then the embedding estimates of Proposition 3.4(i) are valid for wM
∗
e and for wM

∗
o . By construction,

wM
∗
takes alternatively the values of wM

∗
e and wM

∗
o ; more precisely,

(16) wM
∗
= wM

∗
e

(∑
K∗∈ e∗

1lK∗

)
+ wM

∗
o

(∑
K∗∈ o∗

1lK∗

)
.

Thus |wM
∗ | ≤ max

{
wM

∗
e , wM

∗
o

}
, and we get the desired estimates for |wM

∗ |. �

Remark 3.8. In the situation of Proposition 3.7, the compactness claim from Proposition 3.4(ii)
gets wrong. More precisely, the compactness of the families

(
wM

∗
h
)
h
,
(
wM

∗
eh

)
h
,
(
wM

∗
oh

)
h
is true,

with the same arguments borrowed from [17, 28, 29]. Yet in general, there is no relation between
the accumulation points of the three families. Therefore one can see from formula (16) that the
family

(
wM

∗
h
)
h
may present oscillations.

Let us illustrate the remark with an example. Take a smooth function w ∈ D(Ω), non identically
zero, and set

∀K ∈ M
o wK := 0; ∀xK∗ ∈e∗ wK∗ := 0; ∀xK∗ ∈o∗ wK∗ := w(xK∗).

In view of (6), and in particular because the discrete gradient ∇T does not couple the two families
e
∗
, o

∗ of dual vertices, the discrete gradient ∇TwT is bounded pointwise by ‖∇w‖L∞(Ω). Yet the

family wM
∗
oscillates. Indeed, while wM

∗
e is identically zero, wM

∗
o converges in L∞(Ω), as size(T)

goes to 0, to the non-zero function w. It is easy to see from (16) that wM
∗
converges weakly in

Lq(Ω), q < +∞, to the same limit as 1
2

(
wM

∗
e +wM

∗
o

)
; and the latter function converges strongly to

1
2 (0 + w) = w

2 . The family of the differences (wM
∗ − w

2 ) weakly converges to zero; yet from (16),
it oscillates, roughly speaking, between −w

2 and +w
2 . Thus in the above example, the family of

wM
∗
it is not compact in the strong Lq(Ω) topologies.

3.4. Discrete W 1,p(Ω) weak compactness. In relation with Proposition 3.4(ii), let us stress
that there is no reason that the components wM

o
h , wM

∗
h of a sequence

(
wTh)h of discrete func-

tions with bounded in Lp discrete gradients converge to the same limit. Counterexamples are
constructed in the same way as in Remark 3.8 above, starting from two distinct smooth functions

discretized, one on the primal mesh M
o, the other on the dual mesh M

∗. To cope with this
difficulty, the penalization technique of Appendix B can be useful.

The below result shows that in our 3D CeVe-DDFV framework, one should consider that

the “true limit” of discrete functions wTh =
(
wM

o
h, wM

∗
h
)
is the limit of 1

3w
M

o
h + 2

3w
M

∗
h .

Proposition 3.9.

(i) Let wTh ∈ R
Th

0 be discrete functions on a family (Th)h of 3D CeVe-DDFV meshes of Ω as
described in [2, Sec. 2,4], parametrized by h ≥ size(Th). Let us assimilate wTh to the piecewise
constant functions

(17) wTh(x) :=
1

3
wM

o
h +

2

3
wM

∗
h =

1

3

∑

K∈M
o
h

wK1lK(x) +
2

3

∑

K∗∈M
∗
h

wK∗1lK∗(x).

Assume that all primal interface K|L is a triangle. Assume that suph∈(0,hmax] reg(Th) < +∞,

where reg(Th) measures the regularity of Th in the sense (7),(8),(9) and (10). Assume that the
family

(
∇ThwTh

)
h∈(0,hmax]

is bounded in Lp(Ω) for some p ∈ (1,+∞).

Then for all sequence (hi)i converging to zero there exists w ∈ W 1,p
0 (Ω) such that, along a

subsequence,

(18)

∣∣∣∣∣∣

wThi converges to w = 1
3w

o + 2
3w

∗ weakly in Lq(Ω), q ≤ p∗

(the components wM
o
h ,wM

∗
h converge to wo, w∗, resp., strongly in Lq(Ω), q < p∗)

and ∇ThiwThi converges to ∇w weakly in Lp(Ω).

(ii) If wTh ∈ RTh are not assumed to be zero in the boundary volumes, and if the additional
assumption of uniform boundedness of

mwM
o
h
:=

1

Vol(Ω)

∫

Ω

wM
o
h , mwM

∗
h
:=

1

Vol(Ω)

∫

Ω

wM
∗
h
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is imposed, then (18) holds with w ∈W 1,p(Ω).

(iii) For the uniform cartesian meshes of Section 2.2, the statement analogous to (i) holds with

(19) wTh(x) :=
1

3
wM

o
h +

1

3
wM

∗
e,h +

1

3
wM

∗
o,h

=
1

3

∑

K∈M
o
h

wK1lK(x) +
1

3

∑

K∗∈ e∗
h

wK∗1l
K̂∗(x) +

1

3

∑

K∗∈o∗
h

wK∗1l
K̂∗(x);

the strong convergence concerns each of the components wM
o
h , wM

∗
e,h , wM

∗
o,h .

The statement analogous to (ii) holds if uniform bounds on the mean values of wM
o
h and of

wM
∗
e , wM

∗
o on Ω are imposed.

It should be noticed that formula (19) is analogous to the natural reconstruction formula for
the 3D CeVEFE-DDFV schemes as considered by Coudière and Hubert in [18] and by Eymard,
Herbin and Guichard [32].

Remark 3.10.

(i) In the case p = 1, the claim remains true with the limit w that belongs to BV (Ω) ∩ L1∗(Ω),
and with discrete gradients converging weakly-* in BV to ∇w.
(ii) The compactness claim for sequences of discrete functions with non-homogeneous boundary
conditions on a part of the boundary can be obtained as in [10, Lemma 3.8].

Proofof Proposition 3.9:

Let us prove (i). The strong compactness claim for (wM
o
h)h and (wM

∗
h)h follows by Proposi-

tion 3.4(ii); the weak Lp∗

compactness of (wTh)h comes from Proposition 3.4(i). The weak Lp

compactness of the family
(
∇ThwTh

)
h
is immediate from its Lp(Ω) boundedness. Thus if w is

the weak Lp limit of a sequence wTh = 1
3w

M
o
h + 2

3w
M

∗
h as h → 0 and χ is the weak Lp limit of

the associated sequence of discrete gradients ∇ThwTh , it only remains to show that χ = ∇w in
the sense of distributions and that w has zero trace on ∂Ω. These two statements follow from the
identity

(20) ∀ ~F ∈ D(Ω)3
∫

Ω

χ · ~F +

∫

Ω

w div ~F = 0

that we now prove. We exploit the discrete duality (1) and the consistency property of Proposi-
tion (3.1)(i),(iii).

Take the projection ~PTh~F ∈ (R3)Dh , wTh ∈ R
Th

0 and write the discrete duality formula:

(21)
{{
∇ThwTh , ~PTh~F

}}
Ω

+
[[
wTh , divTh

(
~PTh~F

)]]
Ω
= 0.

According to the definition (3) of
{{
· , ·

}}
Ω
, the first term in (21) is precisely the integral over Ω of

the scalar product of the constant per diamond fields ∇ThwTh and ~PTh~F . By Proposition 3.1(i)
and the definition of χ, this term converges to the first term in (20) as h→ 0. Similarly, introducing

the projection PTh
(
div ~F

)
of div ~F on RTh , from the definition (2) of

[[
· , ·

]]
Ω
, Proposition 3.1(i)

and the definition of wTh in (17) we see that, as h→ 0,
[[
wTh , PT

(
div ~F

) ]]
Ω
−→ 1

3

∫

Ω

(
lim
h→0

wM
o
h
)
div ~F +

2

3

∫

Ω

(
lim
h→0

wM
∗
h
)
div ~F =

∫

Ω

w div ~F .

It remains to invoke Proposition (3.1)(iii) and the L1(Ω) bound on ∇ThwTh to justify the fact
that

lim
h→0

[[
wTh , divTh

(
~PTh~F

)]]
Ω
= lim

h→0

[[
wTh , PTh

(
div ~F

)]]
Ω
.

For a proof of (ii), one uses the versions of the compact Sobolev embeddings with control by the

mean value in Ω, and uses test functions ~F compactly supported in Ω.

The point (iii) is shown with the same arguments, using Proposition 3.1(iii-bis) and (16). �
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3.5. Discrete operators, functions and fields on (0, T )× Ω. Whenever evolution equations
are discretized in space with the help of the DDFV operators as described above, analogous
consistency properties, Poincaré inequality and discrete Lp(0, T ;W 1,p(Ω)) compactness properties
hold.

To be specific, given a CeVe-DDFV mesh T of Ω and a time step ∆t, one considers the additional
projection operator

S
∆t : f 7→

(
fn

)
n∈[1,N∆t]

⊂ L1(Ω), fn(x) :=
1

∆t

∫ n∆t

(n−1)∆t

f(t, x) dt.

Here f can mean a function in L1((0, T )×Ω) or a field in
(
L1((0, T )×Ω)

)3
. The smallest integer

greater than or equal to T/∆t is denoted by N∆t. It is always meant that n takes values in
[1, T/∆t] ∩ N; in other words, n takes the values 1, . . . , N∆t.

One defines discrete functions wT,∆t ∈ (RT)N∆t on (0, T )×Ω as collections of discrete functions
wT,n on Ω parametrized by n ∈ [1, N∆t]. Discrete functions wT,∆t ∈ (RT)N∆t on (0, T ) × Ω and

discrete fields ~FT,∆t ∈ ((R3)D)N∆t are defined similarly.

The associated norms are defined in a natural way; e.g., the discrete Lp(0, T ;W 1,p
0 (Ω)) norm of

a discrete function wT,n ∈ (RT

0 )
N∆t is computed as

∑N∆t

n=1
∆t ‖∇TwT,n‖Lp(Ω).

To treat space-time dependent test functions and fields in the way of Proposition 3.1, one replaces

the projection operators PT (and its components PM
o
,PM

∗
), PT and ~PT by their compositions with

S∆t. Then the statement and the proof of Proposition 3.1 and Corollary 3.3 are extended in a
straightforward way.

Also the statement of Proposition 3.9 extends naturally to this time-dependent case; one only
has to replace the statement (18) with the weak Lp(0, T ;W 1,p(Ω)) convergence statement:

(22)

∣∣∣∣∣∣

wTh,∆th converges to w = 1
3w

o + 2
3w

∗ weakly in Lp((0, T )× Ω)
(and the components wM

o
h ,wM

∗
h converge to wo, w∗, resp., weakly in Lp((0, T )× Ω))

and ∇ThwTh,∆th converges to ∇w weakly in Lp(Ω)

as size(Th) + ∆th → 0. It is natural that strong compactness on the space-time cylinder (0, T )×
Ω not follow from the sole space discrete gradient bound; one also needs some control of time
oscillations. It is also well known that this control can be a very weak one (cf. e.g. the well-known
Aubin-Lions and Simon lemmas; see [34] for a discrete version). In the next section, we give the
discrete version of a similar result due to Kruzhkov [44].

3.6. Strong compactness in L1((0, T )×Ω). Here we state a lemma that combines a basic space
translates estimate (for the “compactness in space”) with the Kruzhkov L1 time compactness
lemma (see [44]). Actually, the Kruzhkov lemma is, by essence, a local compactness result. For
the sake of simplicity, we state and prove the version suitable for discrete functions null on the
boundary; the general L1

loc([0, T ]× Ω) version can be shown with the same arguments (cf. [6]).

Proposition 3.11. Let
(
uTh,∆th

)
h
∈ (RTh

0 )N∆th be a family of discrete functions on the cylinder

(0, T )×Ω corresponding to a family (∆th)h of time steps and to a family (Th)h of 3D CeVe-DDFV
meshes of Ω as described in [2, Sec. 2,4]; we mean that h ≥ size(Th) + ∆th.

Assume that suph∈(0,hmax] reg(Th) < +∞, where reg(Th) measures the regularity of Th in the

sense (7) and (8). Assume that every primal interface K|L for all mesh Th is a triangle.
For all h > 0, assume that discrete functions uTh,∆th satisfy the discrete evolution equations

(23) for n ∈ [1, N∆th ],
b(uTh,n)− b(uTh,n−1)

∆t
= divTh ~FTh,n + fTh,n

with some fixed uniformly continuous3 non-decreasing function b : R → R, with some initial data

b(uTh,0) ∈ RTh , source terms fTh,∆th ∈ (RTh)N∆th and discrete fields ~FTh,∆th ∈ ((R3)Dh)N∆th .

3Mere continuity of b(·) is enough if the families
(

b(uM
o
h,∆th )h

)

h
,
(

b(uM
o
h,∆th)h

)

h
are equi-integrable.
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Assume that there exists a constant M such that the uniform L1((0, T )× Ω) estimates hold:

(24)
∑N∆th

n=1
∆t

(∥∥ b(uM
o
h,n)

∥∥
L1(Ω)

+
∥∥ b(uM

∗
h,n)

∥∥
L1(Ω)

+
∥∥ fM

o
h,n

∥∥
L1(Ω)

+
∥∥ fM

∗
h,n

∥∥
L1(Ω)

+
∥∥ ~FTh,n

∥∥
L1(Ω)

)
≤M,

and, moreover, the uniform L1((0, T )× Ω) estimate on ∇ThuTh,∆th holds:

(25)
∑N∆th

n=1
∆t

∥∥ ∇ThuTh,n
∥∥
L1(Ω)

≤M.

Assume that the families
(
b(uM

o
h,0)

)
h
,
(
b(uM

∗
h,0)

)
h
are bounded in L1(Ω).

Then for all sequence (hi)i converging to zero there exist βo, β∗ ∈ L1((0, T ) × Ω) such that,
along a subsequence,

b(uM
o
hi

,∆thi ) −→ βo and b(uM
∗
hi

,∆thi ) −→ β∗ in L1((0, T )× Ω) as i→ ∞.

Notice that the specific structure of the DDFV meshes is not important for the above result,
neither the dimension; we refer to [6] for a version of the lemma on the admissible finite volume
meshes in the sense of [28]. Yet, contrarily to the situation with the Sobolev compact embedding
results, in the proof of Proposition 3.11 the two meshes Mo, M∗ should not be considered sepa-
rately; and the discrete duality (1) is an important ingredient of the proof. We postpone the proof
of Proposition 3.11 to Appendix A.

4. Applications and convergence proofs

Here we describe the application of the DDFV schemes to the discretization of three classes
of nonlinear elliptic or degenerate parabolic PDEs. In Sections 4.1 and 4.2, the role of the weak
formulation of the scheme (coming from the discrete duality property) in the convergence proofs
is emphasized; and the preceding results and hints are combined into sketchy convergence proofs.
In Section 4.3, we briefly discuss the additional “dissipation property” that holds for orthogonal
DDFV meshes and allows for analysis involving nonlinear test functions of the unknown solution.

The ideas and the hints of Sections 4.1–4.3 are taken from the works [10] (see also [11] and Alt
and Luckhaus [1]), [3] and [5]. For details, we refer to the aforementioned papers.

4.1. Leray-Lions elliptic and parabolic problems. Following Alt and Luckhaus [1] (see also
[46]), we consider the problem

(26)

{
b(u)t = divϕ(∇u) + f
u(0,T )×∂Ω = 0, b(u)t=0 = b0,

for b : R → R a continuous non-decreasing function with b(0) = 0, and for

−divϕ(∇·) :W 1,p
0 (Ω) →W−1,p′

(Ω)

which is a Leray-Lions operator; namely,

(27)

{
ϕ ∈ C(R3,R3), ∀ξ 6= η (ϕ(ξ) − ϕ(η)) · (ξ − η) > 0;

∀ξ ϕ(ξ) · ξ ≥ c|ξ|p, |ϕ(ξ)|p′ ≤ C(1 + |ξ|p)
with p ∈ (1,+∞) and p′ the conjugate exponent of p. The p-laplacian operator, i.e., ϕ(ξ) = |ξ|p−2ξ,
is the main example in the applications; more generally, it can be combined with an anisotropy
and heterogeneity, as for the case ϕ(ξ, x) = |A(x)ξ|p−2A(x)ξ, (A(x))x∈Ω being a uniformly elliptic
bounded family of symmetric matrices. Due to the non-strict monotonicity of b and the possible
degeneracy/singularity of the diffusion coefficient ϕ′(∇u), problem (26) is a degenerate parabolic
problem (for b ≡ 0 and f constant in t, it reduces to an elliptic problem).

We consider f ∈ Lp′

(Q) the so-called “finite energy initial data” b0, i.e.,

b0 : Ω 7→ Range(b), b0 = b(u0) with the restriction B(u0) =

∫ u0

0

s db(s) ∈ L1(Ω).

Finite volume discretization of (26) in the parabolic case and its convergence were studied
in [11]. Different finite volume schemes and their convergence in the elliptic case were studied in
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[7, 10, 26, 30]; error estimates were obtained, in three different situations, in [7, 8, 9]; the important
refinements for the case with discontinuous coefficients were introduced in [15].

Let us consider the following time-implicit DDFV scheme for (26):

(28)
find uT,∆t = (uT,n)n=1..N∆t

∈ RT

0 such that

∀n = 1..N∆t
b(uT,n)−b(uT,n−1)

∆t = divTϕ(∇TuT,n) + fT,n + PT[uT,n]

with the initial conditions and source term given by

(29) b(uT,0) = P
Tb0, fT,n = P

T (S∆tf)n.

The notation is the one of Sections 2 and 3.5, except for the penalization operator PT[·] introduced
and explained in Appendix B. The penalization term serves for the convergence proof; in practice
the numerical scheme without this term converges as well. Penalization can also be replaced by a
more intricate approximation of the time evolution term; see Remark 6.3 in Appendix C.

The scheme thus leads to a nonlinear system to be solved at each time step; for a description
of the strategy for solving the resulting nonlinear algebraic equations, see [15] and Appendix D.

Proposition 4.1. A discrete function uT,∆t solves (28) if and only if there holds the weak for-
mulation:

(30)

∀n = 1..N∆t ∀ vT ∈ R
T

0

[[ b(uT,n)− b(uT,n−1)

∆t
, vT

]]
Ω
+
{{
ϕ(∇TuT,n) , ∇TvT

}}
Ω

=
[[
fT,n , vT

]]
Ω

+
2

3

∑

K∈M
o,K∗∈M

∗

Vol(K ∩ K∗)
(un

K
−un

K∗)(vK−vK∗)

size(T)
.

Formulation (28) with the initial condition implies the following weak space-and-time formulation:

(31)

−
N∆t

−1∑

n=0

∆t
[[
b(uT,n) ,

vT,n+1 − vT,n

∆t

]]
Ω
+

N∆t∑

n=1

∆t
{{
ϕ(∇TuT,n) , ∇TvT,n

}}
Ω

=

N∆t∑

n=1

∆t
[[
fT,n , vT,n

]]
Ω
+
[[
b(uT,0) , vT,0

]]
Ω

+
2

3

N∆t∑

n=1

∆t
∑

K∈M
o,K∗∈M

∗

Vol(K ∩ K∗)
(un

K
−un

K∗)(vK−vK∗)

size(T)

for all test function vT,∆t such that vT,N = 0.

For the proof, the deduction of (30),(31) from (28) is straightforward using the discrete duality,
Proposition 6.1 and (for getting (31)) using the Abel transformation of the sum in n. Conversely,
to get from (30) to (28) one uses the test functions vT with only one non-zero entry.

Theorem 4.2. Assume that b, b0 and ϕ satisfy the assumptions of the beginning of this section.
Let T be a CeVe-DDFV mesh as described in the introduction, further assume that it is either a
uniform cartesian mesh, or a mesh such that every primal interface K|L is a triangle. Let ∆t > 0
be a time step. There exists a unique solution to scheme (28),(29).

Further, assume we are given a family (∆th)h of time steps and a family (Th)h of CeVe-
DDFV meshes (with ∆th+ size(Th) ≤ h) satisfying the uniform regularity assumptions (7),(8),(9)
and (10). Let uTh,∆th denote the corresponding discrete solution, and ∇TuTh,∆th denote the
corresponding discrete gradient of the solution (both are considered as functions of Q). Then as
h→ 0, there holds

b(uTh,∆th) → b(u) in L1(Q), uTh,∆th → u in Lp(Q), and ∇TuTh,∆th → ∇u in Lp(Q),

where u ∈ Lp(0, T ;W 1,p
0 (Ω)) is the unique solution of (26).
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Now we turn to the proof of Theorem 4.2.
Proof (sketched): The weak formulations (30),(31) (coming from the discrete duality) are the
main tool, along with the “discrete versions” of the arguments of Alt and Luckhaus [1].

The proof is not specific to dimension three, the same result and proof apply for the 2D DDFV
schemes (cf. [3] for a unified treatment). Before passing to the limit h→ 0, we drop the subscript
h from the notation ∆th and Th.

Uniqueness of a discrete solution follows from the monotonicity of b(·), ϕ(·). Indeed, by induc-
tion in n, we obtain the equality
[[
b(uT,n)− b(ûT,n) , uT,n − ûT,n

]]
Ω
+ ∆t

{{
ϕ(∇TuT,n)− ϕ(∇TûT,n) , ∇TuT,n − ∇TûT,n

}}
Ω
≤ 0

(here uT,∆t, ûT,∆t are two discrete solutions, and we have used (30) at time step n with the test
function vT = uT,n− ûT,n; the inequality “≤” comes from the penalization term which is dropped,
because it is non-negative). The strict monotonicity of ϕ(·) implies that ∇TuT,n = ∇TûT,n,
whence uT,n = ûT,n from the discrete Poincaré inequality of Proposition 3.4(ii) or Proposition 3.7.

Further, existence of a discrete solution follows by an application of the Brouwer fixed-point
theorem or of the finite-dimensional topological degree theory from the a priori estimates we now
prove (see e.g. [11, 10, 26, 30]). Indeed, first note the following convexity inequality:

(32) (b(z)− b(ẑ)) z ≥ B(z)−B(ẑ) with B(z) =

∫ z

0

s db(s).

Assume uT,∆t is a solution of (28),(29). Using vT = uT,n as test function in formulation (30) at
time step n, summing in n from 1 to k, k ≤ N∆t and using (32) for the time evolution terms,
the coercivity (27) in the diffusion term and the Young and discrete Poincaré inequalities in the
source term, we find the a priori bound
(33)

max
1≤k≤N∆t

(∑

K

mKB(uK) +
∑

K∗

mK∗B(uK∗)
)
+

N∆t∑

n=1

∆t
∑

D

mD

∣∣∇Du
T,n

∣∣p

+

N∆t∑

n=1

∆t
[[
PTuT,n , uT,n

]]
Ω

≤ const(‖f‖p
′

Lp′(Q)
+ ‖B(u0)‖L1(Ω)).

Notice that in the variational case, i.e., for ϕ = ∇Φ, the discrete duality allows to show (see
e.g. [10]) that the discrete solution uT,n at time step n is the unique minimizer of the following
convex coercive functional:

Jn[uT] :=
1

3

∑

K

mKD(uK) +
2

3

∑

K∗

mK∗D(uK∗) + ∆t
∑

D

mDΦ(∇Du
T)

−
[[
∆tfT,n + b(uT,n−1) , uT

]]
Ω
+

1

3

∑

K∈M
o,K∗∈M

∗

Vol(K ∩ K∗)
(uK−uK∗)2

size(T)
,

where D(·) is a primitive of b(·). This variational point of view may be useful for a practical
implementation of the nonlinear scheme using descent algorithms (cf. [7, 10]); the coordination-
decomposition approach of [37] is a more general and more efficient alternative, see [15]. We recall
this algorithm in Appendix D.

Now, estimate (33) contains, in particular, a uniform Lp(Q) bound on the discrete functions
∇ThuTh,∆th . Then the compactness result (22) permits to extract a subsequence (here and in the
sequel, extracted subsequences are not relabelled) such that

∇ThuTh,∆th ⇀ ∇u in Lp(Q) weakly with u ∈ Lp(0, T ;W 1,p
0 (Ω))

and u :=
1

3
uo +

2

3
u∗ with uM

o
h,∆th ⇀ uo and uM

∗
h,∆th ⇀ u∗ in Lp(Q) weakly

(the lack of control of time oscillations precludes us from getting the strong convergence here).
Moreover, Proposition 6.2 says us that uo = u∗ = u. From the growth assumption in (27) we

infer the convergence ϕ(∇ThuTh,∆th) ⇀ χ weakly in Lp′

(Q). Furthermore, the L1(Q) estimate
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of ∇ThuTh,∆th , the discrete evolution equations (28) and the discrete Kruzhkov lemma permit to
get the strong convergences

b(uM
o
h,∆th) → βo and b(uM

∗
h,∆th) → β∗ in L1(Q)

(notice that (33) and the definition of B(·) imply equi-integrability of b(uM
o
h,∆th), b(uM

∗
h,∆th), so

that mere continuity of b(·) is enough). The monotonicity of b(·) permits to identify both βo and
β∗ with b(u), using the equi-integrability of (uM

o
h,∆th)h, (u

M
∗
h,∆th)h and the Minty argument.

Consequently, we also have the strong convergence

B(uM
o
h,∆th) → B(u) and B(uM

∗
h,∆th) → B(u) in L1(Q).

Without loss of restriction, we may assume that the above convergence also takes place in L1(Ω)
for t = T (this takes place for a.e. T > 0). Now, we can pass to the limit in the weak discrete for-
mulation (31) (using, in particular, Corollary 3.3 for the initial condition term, using the parabolic
version of Corollary 3.3 for the source term, and using the parabolic analogue of Proposition 3.1
for the test function) to get

(34) −
∫ ∫

Q

b(u)vt −
∫

Ω

b0v(0, ·) +
∫ ∫

Q

χ · ∇v =

∫ ∫

Q

fv

with regular test functions v that are zero at t = T . Then, in the way of Alt and Luckhaus [1]
we can write (34) under the equivalent “variational” formulation with test functions v ∈ X =

Lp(0, T ;W 1,p
0 (Ω)), using the duality product to give sense to the product of v by b(u)t ∈ X∗ =

Lp′

(0, T ;W−1,p′

(Ω)):

−
∫ ∫

Q

b(u)vt −
∫

Ω

b0v(0, ·) becomes

∫ T

0

< b(u)t, v >W−1,p′ ,W 1,p
0

.

The key step is to identify χ (the weak limit of χTh,∆th := ϕ(∇ThuTh,∆th)) with ϕ(∇u) (see, e.g.,
[1]). This is done starting from the weak formulation (30), with vTh = uTh,n at the time step n:
summing in n from 1 to N∆th and using the convexity inequality (32), we get

1

3

∑

K

mKB(u
N∆th
K ) +

2

3

∑

K∗

mK∗B(u
N∆th

K∗ ) +

N∆th∑

n=1

∆th

{{
ϕ(∇ThuTh,∆th) , ∇ThuTh,∆th

}}
Ω

≤
N∆th∑

n=1

∆th

[[
fTh,n , uTh,n

]]
Ω
+

1

3

∑

K

mKB(u0
K
) +

2

3

∑

K∗

mK∗B(u0
K∗).

Notice that the penalization term can has the good sign and it is dropped in the above inequality.
Using Corollary 3.3 and the continuity of B(z) as function of b(z) (for the initial condition term)
and using the parabolic version of Corollary 3.3 (for the source term), from the previously obtained
weak convergences we deduce

(35) lim
h→0

N∆th∑

n=1

∆th

{{
ϕ(∇ThuTh,∆th) , ∇ThuTh,∆th

}}
Ω
≥

∫ ∫

Q

fu−
∫

Ω

(B(u(T ))−B(u0));

at this point, we have used that B(uo) ≡ B(u∗) ≡ B(u). By the integration-by-parts argument of
[1, 46], ∫

Ω

(B(u(T ))−B(u0)) =

∫ T

0

< b(u)t, u >W−1,p′ ,W 1,p
0

.

Thus the right-hand side of (35) can be written as
∫ ∫

Q

fu−
∫ T

0

< b(u)t, u >W−1,p′ ,W 1,p
0

and then, due to (34), as

∫ ∫

Q

χ · ∇u.

Hence we get the inequality

(36)

∫ ∫

Q

χ ·G ≥ lim inf
h→0

N∆th∑

n=1

∆th

{{
ϕ(∇ThuTh,∆th) , ∇ThuTh,∆th

}}
Ω
= lim inf

h→0
ϕ(Gh) ·Gh,
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with G = ∇u and Gh = ∇ThuTh,∆th . With (36) in hand, the monotonicity of ϕ(·) in (27) and
the classical Minty-Browder argument (see e.g. [1]; cf. [10, 26, 30] for its use in finite volumes)
ensures that χ = ϕ(G) and, moreover, the strict monotonicity of ϕ(·) yields strong convergence in
Lp(Q) of Gh to G.

With χ = ϕ(∇u), we see that (34) is indeed the weak formulation of problem (26); thus u is
a solution of the problem. The uniqueness of a solution permits to get the convergence results as
h→ 0 without extracting subsequences. �

More general problems of kind (26) can be discretized and their convergence can be proved in
much the same spirit; for the elliptic case, see [10, 15, 30] and [26] for the cases of x-dependent
and u-dependent Leray-Lions type nonlinearities ϕ(x, u, ∇u), respectively.

4.2. A parabolic-elliptic “bidomain” cardiac model. In this section, we describe another
problem that motivated the analysis tools for CeVe-DDFV schemes presented in the previous
sections.

The bidomain model, originating in [48], provides a description of the cardiac electric activity
by means of two potentials: intercellular (ui) and extracellular (ue), as well as of their difference
v = ui − ue. It uses auxiliary “gating variables”, governed by stiff ordinary differential equations,
in order to simulate the “ionic current” term which depends on v in a non-local in time way.
For a study of space discretization, a simplified model was introduced in [13] (see [14] for a first
finite volume study on the meshes of [28]) where the ionic current H [v] is just a local function
of v (nonetheless, such a simplification allows to mimic, to a certain extent, the depolarization
sequence in the cardiac tissue, taking the ionic current term H [v] to be a cubic polynomial); this
model writes

(37)

{
vt − div (Mi(x)∇ui) +H(v) = Iap, in Q = (0, T )× Ω,

vt + div (Me(x)∇ue) +H(v) = Iap, in Q,

where Mi,e are positive definite space-dependent matrices (they are anisotropic due to the fiber
structure of the heart muscle); Iap is an L2 “applied current” which is the forcing term; and
there is an initial condition v0 ∈ L2(Ω) for v and boundary conditions (in the simplest case, the
Neumann ones) for ui, ue. For the nonlinearity h, it is assumed that

1

C
|v|r − Cv2 ≤ H(v)v ≤ C(1 + |v|r) for some constant C > 0 and r > 2;

the practical case is r = 4. The domain Ω is three-dimensional, but the 2D case (corresponding
to slices of the heart) is also of interest. It should be emphasized that the goal of the simulation
is to reproduce, in the mean, the very rapid transitions (polarization-depolarization sequences)
occuring in the heart; the indicators of interest include, e.g., the depolarization front propagation
velocity (see e.g. [5]). Further work is needed to couple these electrical phenomena with elastic
contractions of the heart muscle.

The use of CeVe-DDFV schemes fo (37) and the simpler (“monodomain”) model was initiated
by Ch. Pierre in his thesis [47]. The scheme, which is very similar to the ours (the gradient
reconstruction is the same; the only difference is in the discretization of the source terms) was
applied to the bidomain equations in [22, 23]. In [5], based on the above presentation of the
3D CeVe-DDFV scheme, two finite volume schemes for (37) are studied from the point of view
of convergence. Writing of the schemes is straightforward; e.g., the first equation in (37) is
approximated by

vT,n − vT,n−1

∆t
− div T[MT

i ∇TuT,n
i ] +HT,n − IT,n

ap = 0,

where MT

i is the constant per diamond projection of Mi, I
T,n
ap is the projection of the source

term on the CeVe-DDFV mesh, and HT,n is the vT,∆t-dependent ionic current term (this point
be specified in more detail). Further, the Neumann boundary condition is taken into account into
the definition of the discrete divergence. More precisely, there are no boundary volumes for this
scheme; additional unknowns are introduced on the boundary, so that the space RT

0 is replaced
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by the space not including the boundary conditions, and additional equations for these unknowns
are obtained from the balance of the flux, given by the scheme, with the boundary flux prescribed
for Mi(x)∇ui. We refer to [5] for details of the construction and for the discrete duality formula
taking into account non-zero boundary conditions.

What is to be made precise is the discretization of the ionic current term HT,n at time step n.
In [5], we made the following two choices:

• (Fully implicit scheme) HT,n := (H(v))T,n;
• (Linearized scheme) for the sake of simplicity of presentation, assume zH(z) ≥ 0, thus

H(z) = zH̃(z); then we pick HT,n := (H̃(v))T,n−1 vT,n.

Here, (H(v))T,n denotes the re-projection, on the CeVe-DDFV mesh T, of the function

1

3
H(vM

o,n) +
2

3
H(vM

∗,n)

(with vM
o,n and vM

∗,n the two components of vT,n), according to formula (51) in Appendix C

below. The meaning of (H̃(v))T,n−1 is analogous. The technical reasons leading to this choice are
presented in Appendix C.

It is understood that the first scheme is nonlinear, thus making appeal to heavier implementation
schemes; the second scheme is linear, but it leads to weaker a priori estimates and its convergence is
therefore more difficult to analyze. Convergence proof for the fully implicit, nonlinear scheme uses
(in a somewhat simpler setting) the same arguments as in the proof of Theorem 4.2. Notice that
L2-based compactness tools, in the spirit of [1] and [28], can replace the use of Proposition 3.11,
(indeed, the estimates on discrete ionic current term allow for multiplying HT,∆t by an Lr(Q)
function). Yet the study of the linearized scheme requires the use of the Sobolev embeddings of
Proposition 3.4 or Remark 3.5, and the resulting integrability is just HT,∆t ∈ L1(Q) for r ≤ 4
(in dimension three). Thus the L1-based Proposition 3.11 appears as an optimal tool for proving
space-time compactness of (vTh,∆th)h. To conclude the proof, an equi-integrability of (HTh,∆th)h
is needed, which leads to the restriction r < 4 in dimension three of which the practical case is
the borderline (in 2D, the practical case r = 4 is covered by the analogous proof).

Numerical results on problem (37) are presented and commented in [5].

4.3. Degenerate convection-diffusion problems and discrete entropy dissipation. The
DDFV schemes were initially designed as one among many other solutions to the problem of
approximating anisotropic diffusion problems or even isotropic problems on general meshes (Her-
meline [40, 39, 41, 42], Domelevo and Omnès [25], Pierre et al. [47, 24]). They turned out to be
well suited for nonlinear diffusion problems ([10, 15, 19] and the above Section 4.1). The common
feature here is that these problems are analyzed using variational techniques, i.e. using the solu-
tion itself as the test function. The discrete duality feature therefore allowed for getting energy
conservation properties that lead to a priori estimates; with the estimates (and thus the weak
compactness properties) in hand, one recasts the scheme under the weak form (see Proposition 4.1
in Section 4.1; cf. [5]) and thus proves convergence.

Many important applications, such as nonlinear degenerate parabolic problems of convection-
diffusion type

(38) ut − div (ϕ(∇A(u))− F (u)) = 0

(with A continuous, increasing but non-strictly increasing, and with ϕ(·) of the kind (27)) require
the use of nonlinear test functions and of dissipation inequalities in the place of energy conservation
identities. The same is true for linear problems analyzed by nonlinear methods, such as generalized
solutions of −∆u = f with L1 or measure datum f (see Gallouët et al. [33],[27] and references
therein). In both cases, the analysis methods heavily rely on nonlinear chain rule arguments, that
are not natural in the discrete setting.

While e.g. the DDFV discretization of the diffusion term appears as suitable in both cases
(and on quite general meshes, as it was the case in Sections 4.1,4.2), the tools of stability and
convergence analysis seem to require the orthogonality condition on the meshes, in order to get
appropriate “chain rule kind”-inequalities. Indeed, in the previous works on the subject the
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condition −−−→xKxL⊥K|L was always exploited (see [33, 27] for the linear case, and [31, 3] for the case
(38)). The schemes of [33, 27, 31] are two-point schemes in the spirit of Eymard, Gallouët and
Herbin [28] (the diffusion being linear and isotropic in these cases); while in [3], the diffusion is
nonlinear and therefore, an “orthogonal” DDFV scheme, in 3D and in 2D, was used. Let us point
out the key ingredient of the convergence analysis of [3], which can be seen as a discrete entropy
dissipation inequality for diffusion terms. Notice that a discrete maximum principle for DDFV
approximations of (38) is deduced from this result.

Proposition 4.3. (see Andreianov, Bendahmane and Karlsen [3])
Let T de a DDFV mesh in 2D or in 3D; in the latter case, assume all the primal interfaces K|L
are triangles. Impose the following orthogonality restriction:

for all neighbours K, L (resp., K∗, L∗) there holds −−−→xKxL⊥K|L (resp., −−−−→xK∗xL∗⊥K∗|L∗),

and assume that ϕ(ξ) = k(|ξ|)ξ with a nonnegative (possibly singular at zero) function k(·). Let
A be a continuous nondecreasing function on R; given a non-decreasing function θ on R, set
Aθ(z) =

∫ z

0
θ(s) dA(s).

Let uT ∈ RT

0 and ψT ∈ RT

0 (the zero boundary condition for ψT can be replaced by the require-
ment θ(0) = 0), with ψT ≥ 0. Then the following “dissipative chain rule property” holds:

(39)

[[
div T

[
k
(
∇TA(uT)

)
∇TA(uT)

]
, θ(uT)ψT

]]
Ω

≤ −
{{
k
(
∇TA(uT)

)
∇TAθ(u

T) , ∇TψT

}}
Ω
.

Inequality (39) comes from the convexity inequality that replaces the chain rule A′(z)θ(z) =
(Aθ)

′(z):
(A(z)−A(ẑ))θ(ẑ) ≤ Aθ(z)−Aθ(ẑ) for all z, ẑ ∈ R.

The proof is straightforward: it uses the summation-by-parts procedure, the particular structure
ϕ(ξ) = k(|ξ|)ξ of ϕ(·) which is, in particular, isotropic, and also the particular expression of
the discrete gradient under the orthogonality condition that avoids mixing the primal and the
dual unknowns (except in the term k

(
∇TA(uT)

)
that is not transformed). In absence of the

orthogonality condition (or for anisotropic ϕ) we are not aware of any proof of properties that
could play the role of (39) in the convergence analysis for (38).

5. Numerical results for elliptic-parabolic problems

We illustrate the convergence behaviour of the CeVe-DDFV scheme for the parabolic problem
(26) in two situations. Test 1 corresponds to a linear anisotropic problem, whereas Test 2 is a
fully non linear one.

Test 1

b = Id

ϕ(ξ) = Aξ, with A =




1 0.5 0
0.5 1 0
0 0.5 1




Test 2

b(s) =
1

2
(1− cos(πs))1[0,1](s) + 1[1,+∞[(s)

ϕ(ξ) = |ξ|p−2ξ, with p = 3

The tests are performed in the 3D unit square, on three families of meshes: cubic meshes,
tetrahedral meshes and prismal meshes with general faces as illustrated in Figure 3. We take the
exact solution u(t, x) = v(t)w(x, y, z) = e−t sin(πx) sin(πy) sin(πz) (now (x, y, z) denotes a generic
point of the unit cube), with the homogeneous Dirichlet boundary condition (note that w|∂Ω = 0),
and we calculate the source term corresponding to the solution u of (26). The penalization operator
used in the convergence proof of Section 4.1, is omitted. In case of Test 2, the scheme is nonlinear;
it is solved thanks to the decomposition-coordination algorithm described in Appendix D.

Accuracy of the scheme. To put the discrete and the exact solutions “at the same level”, we
use the projection PTue of the exact solution and the associated discrete gradient reconstruction−→∇TPTue. The Lp(0.T ;Lp(Ω)) norm of the error eT := uT− PTue (p = 2 for Test 1), as well as
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Figure 3. Cubic mesh level 0 (6x6x6), Tetrahedral meshes level 0 and level 1,
Prismatic meshes level 0 (5x5x5) and level 1 (10x10x10)

Mesh level ∆t ‖eT‖Lp(Lp) rate ‖−→∇TeT‖Lp(Lp) rate ‖δTb‖L∞(L1) rate
0 - 6x6x6 5.0E-02 0.455E-01 - 0.520E-01 - 0.390E-01 -
1 - 9x9x9 2.4E-02 0.198E-01 1.933 0.228E-01 1.918 0.174E-01 1.878

2 - 12x12x12 1.25E-02 0.111E-01 1.938 0.127E-01 1.931 0.979E-02 1.905
3 - 18x18x18 5.07E-03 0.488E-02 1.951 0.564E-02 1.947 0.436E-02 1.933
4 - 24x24x24 2.79E-03 0.274E-02 1.962 0.317E-02 1.960 0.245E-02 1.953

Table 1. Test 1-Cubic meshes

Mesh level ∆t ‖eT‖Lp(Lp) rate ‖−→∇TeT‖Lp(Lp) rate ‖δTb‖L∞(L1) rate
0 5.0E-02 0.856E-01 - 0.164E+00 - 0.774E-01 -
1 1.16E-02 0.187E-01 1.998 0.685E-01 1.148 0.154E-01 2.122
2 7.02E-03 0.117E-01 2.072 0.535E-01 1.098 0.103E-01 1.799
3 4.42E-03 0.742E-02 1.987 0.396E-01 1.308 0.671E-02 1.850
4 2.79E-03 0.485E-02 1.852 0.313E-01 1.015 0.445E-02 1.786

Table 2. Test 1-Tetrahedral meshes

Mesh ∆t ‖eT‖Lp(Lp) rate ‖−→∇TeT‖Lp(Lp) rate ‖δTb‖L∞(L1) rate
0 - 5x5x5 5.0E-02 0.462E-01 - 0.584E-01 - 0.418E-01 -

1 - 10x10x10 1.51E-02 0.143E-01 1.886 0.202E-01 1.710 0.134E-01 1.831
2 - 15x15x15 6.18E-03 0.631E-02 1.916 0.101E-01 1.617 0.595E-02 1.895

Table 3. Test 1-Prismal meshes with general faces

the L∞(0.T ;Lp(Ω)) norm of the gradient
−→∇TeT :=

−→∇TuT−−→∇TPTue and the L∞(0.T ;L1(Ω)) of
δTb = b(uT)− b(PTue) are reported in Tables 1-5. We focus here on the accuracy of the diffusive
part of the discrete operator. Therefore we have adapted the time step ∆t to the size of the mesh

by choosing ∆ti = ∆t0((#unknowns)i/(#unknowns)0))
1
3 . Note that we obtain super-convergence

for cubic meshes even in the nonlinear case; this was observed for other kinds of schemes (see, e.g.,
[9]).



24 B. ANDREIANOV, M. BENDAHMANE, AND F. HUBERT

Mesh level ∆t ‖eT‖Lp(Lp) rate ‖−→∇TeT‖Lp(Lp) rate ‖δTb‖L∞(L1) rate
0 - 6x6x6 5.0E-02 0.456E-01 - 0.497E-01 - 0.525E-01 -
1 - 9x9x9 2.4E-02 0.197E-01 1.950 0.217E-01 1.921 0.222E-01 1.993

2 - 12x12x12 1.25E-02 0.110E-01 1.942 0.122E-01 1.934 0.123E-01 1.976
3 - 18x18x18 5.07E-03 0.485E-02 1.952 0.539E-02 1.943 0.539E-02 1.965

Table 4. Test 2 : Cubic meshes

Mesh level ∆t ‖eT‖Lp(Lp) rate ‖−→∇TeT‖Lp(Lp) rate ‖δTb‖L∞(L1) rate
0 - 5x5x5 5.0E-02 0.472E-01 - 0.588E-01 - 0.593E-01 -

1 - 10x10x10 1.51E-02 0.143E-01 1.922 0.214E-01 1.626 0.175E-01 1.961
2 - 15x15x15 6.18E-03 0.620E-02 1.950 0.115E-01 1.456 0.765E-02 1.939

Table 5. Test 2-Prismal meshes with general faces
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Figure 4. Number of iterations of the decomposition coordination algorithm for
Test 2 (Prismatic mesh level 0 is used).

Behaviour the decomposition coordination algorithm. We fixed here the value of the
penalization parameters r and γ to 1. Optimal choice of this parameters will not be investigated
here. The number of iterations of the decomposition coordination decreases with time, as it is
shown in Figure 4 (with the tolerance tol that has been fixed to 10−5). Note that no more than
three iterations are needed in the Newton steps of the algorithm.

6.A. Appendix A: An L1 space-and-time compactness lemma

Before turning to the proof, let us mention that in view of the uniform L1((0, T )× Ω) bound
on the two components of b(uTh,∆th), the assumption that the components of ( b(uTh,0) )h are
bounded in L1(Ω) is clearly not essential (yet, it is not restrictive in practice). The only purpose
of the assumption that uTh,∆th are zero in the boundary volumes of Th is to make trivial the issue
of extension of uTh,∆th in space to a small neighbourhood of Ω.

To stress the three aspects of the meshing that are important for the below proof, firstly, let us
recall that the assumption l = 3 yields the bounds (14) that we rewrite as

(40)
|wL− wK|

dKL

≤
∣∣∇Sw

T
∣∣, |wL∗− wK∗ |

dK∗L∗

≤
∣∣∇Sw

T
∣∣
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for S = S
K|L

K∗|L∗ . Secondly, notice that the construction of the discrete gradient and the assumptions
(7) and (8) permit to get the bound
(41)

∀wo, w∗ ∈ D(Ω)
∥∥∇T

(
P

M
o
hwo,PM

∗
hw∗)∥∥

L∞(Ω)
≤ C(reg(T))

(
‖∇wo‖L∞(Ω) + ‖∇w∗‖L∞(Ω)

)
.

Thirdly, note that the discrete duality property readily yields the bound

(42) ∀ wT ∈ R
T

0 ∀ ~FT ∈ (R3)D
∣∣∣
[[
− divT ~FT , wT

]]
Ω

∣∣∣ ≤
∥∥∇TwT

∥∥
L∞(Ω)

‖ ~FT‖L1(Ω).

Proofof Proposition 3.11: The proof is divided into four steps, the heart of it being Step 3.

First, let us fix some notation. Set QT := (0, T ) × Ω. We will denote by uh,o(t, x), uh,∗(t, x)
the components

uh,o(t, x) :=

N∆th∑

n=1

uM
o
h,n(x)1l((n−1)∆th,n∆th](t), uh,∗(t, x) :=

N∆th∑

n=1

uM
∗
h,n(x)1l((n−1)∆th,n∆th](t)

of the discrete solution. These functions are extended by the constant in t values u
M

o
h,N∆th (x),

u
M

∗
h,N∆th (x) on (N∆th∆th,+∞), then they are extended by zero on (0,+∞) × (R3 \ Ω) (notice

that both extensions do not introduce additional jumps).

Step 1 : Property (40) and the uniform estimate (25) of the discrete gradient imply the uniform

local estimate of the space translates of uh: the space translates of uh,o obey

(43) sup
|∆x|≤∆

∫ T

0

∫

R3

|uh,o(t, x+∆x)−uh,o(t, x)| dxdt ≤ ∆M C(reg(Th)),

and the identical estimate holds for uh,∗.
The proof of (43) is standard; we give it here for the sake of completeness. A shorter proof can

be derived from the arguments of [29, Lemma 5.1] (it is justified in this lemma that discrete W 1,1

estimates are in fact BV estimates, and therefore the standard translation properties of the BV
functions can be used).

For x ∈ R3 and an interface K|L of the mesh M
o
h, set ψ

K|L(x) = 1, in case the segment

[x, x+ ∆x] crosses K|L, and ψ
K|L(x) = 0 otherwise. Note that

∫

R3

ψ
K|L(x) dx ≤ mK|L∆. Using (40)

and property

reg(Th)Vol(S
K|L

K∗|L∗
) ≥ mK|LdKL

that comes from the inclination bound (8), we have

∫ T

0

∫

Ω

|uh(t, x)− uh(t, x+∆x)| dxdt ≤
N∆th∑

n=0

∑

S∈S

∆th |unK − un
L
|
∫

Ω

ψ
K|L(x) dx

≤ ∆

N∆th∑

n=0

∆th
∑

S∈S

mK|L |un
K
− un

L
| ≤ ∆

N∆th∑

n=0

∆th
∑

S∈S

mK|LdKL | ∇Su
Th,n|

≤ reg(Th)∆

N∆th∑

n=1

∆th
∑

S∈S

Vol(S) | ∇Su
Th,n|,

meaning as usual that the summation runs over all the subdiamonds S = S
K|L

K∗|L∗
. The right-hand

side of the above inequality is exactly reg(Th)∆
∑N∆th

n=1 ∆th
∥∥ ∇ThuTh,n

∥∥
L1(Ω)

, and we conclude

using (25).
The same arguments yield the space translation estimate on uh,∗.
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Step 2 : We replace the study of uh,o, uh,∗ (constant per cylinder Qn
K

:= K × ((n−1)∆th, n∆th)

or Qn
K∗ := K∗ × ((n−1)∆th, n∆th)) by the study of functions ūh,o, ūh,∗ continuous in t for all x,

constant in x for all volume K or K∗, defined via

b(ūh,o)(t, x) =

N∆th∑

n=1

∑

K∈M
o
h

1

∆th

(
(t− (n−1)∆th)b(u

n
K
) + (n∆th − t)b(un−1

K
)
)
1lQn

K
(t, x),

b̄(uh,∗)(t, x) =

N∆th∑

n=1

∑

K∗∈M
∗
h

1

∆th

(
(t− (n−1)∆th)b(u

n
K∗) + (n∆th − t)b(un−1

K∗ )
)
1lQn

K∗
(t, x).

We also extend ūh,o, ūh,∗ by the constant in time values u
M

o
h,N∆th , u

M
∗
h,N∆th on (N∆th∆th,+∞).

Similarly, we introduce the functions fh, fh,∗ and ~Fh in L1(QT ); moreover, we define

divh,o ~Fh :=

N∆th∑

n=1

∑

K∈M
o
h

divK
~FT,n 1lQn

K
(t, x), divh,∗ ~Fh :=

N∆th∑

n=1

∑

K∗∈M
∗
h

divK∗ ~FT,n 1lQn
K∗
(t, x).

The functions, fh, fh,∗ and Fh,divh,o ~Fh,divh,∗ ~Fh are extended by zero from QT to (0,+∞)×R
3.

Considering the t-dependent discrete functions ūTh(t) with the components ūh,o(t), ūh,∗(t) on
the meshes M

o
h and M

∗
h, we are in a position to rewrite the discrete equations (23) under the

form

(44)
∂

∂t
b(ūh,o) = div h,o ~Fh + fh,o,

∂

∂t
b(ūh,∗) = div h,∗ ~Fh + fh,∗

where the equation is satisfied in W 1,1(R+) in time, for a.e. x ∈ R3.
In addition, denoting by ωb a concave modulus of continuity4 of b, by the definition of ūh,o and

the Jensen inequality we have

∫ +∞

0

∫

Ω

|b(ūh,o)(t, x+∆x)− b(ūh,o)(t, x)| dxdt

≤ 2

∫ T

0

∫

Ω

|b(uh,o)(t, x+∆x)− b(uh,o)(t, x)| dxdt + 2∆th

∫

Ω

|bh,o0 (x)| dx

≤ TVol(Ω)ωb

( 1

TVol(Ω)

∫ T

0

∫

Ω

|uh,o(t, x+∆x)− uh,o(t, x)| dxdt
)
+ 2∆th

∫

Ω

|bh,o0 (x)| dx,

where bh,o0 (x) =
∑

K∈M
o
h
b(u0

K
)1lK(x) is the first component of the initial datum b(uTh,0).

By the result of Step 1, the assumption ∆th → 0 as h → 0 and the uniform L1(Ω) bound on
b(uM

o
h,0)h, the space translates of ū

h,o on (0, T )×Ω are estimated uniformly for all sequence (hi)i
convergent to zero. In the same way, the space translates of ūh,∗ on (0, T )× Ω are estimated.

Finally, b(ūhi,o), b(ūhi,∗) are bounded in L1((0, T )×Ω) uniformly in i. Indeed, this comes from
∫ T

0

∫

Ω

|b(ūh,o)(t, x)| dxdt ≤ 2

∫ ∆thN∆th

0

∫

Ω

|b(uh,o)(t, x)| dxdt + ∆th

∫

Ω

|bh,o0 (x)| dx

(the identical estimate holds for b(ūh,∗)) and from the assumptions of the proposition.
In the sequel, we drop the subscript i in the notation.

Step 3 : Now we adapt the idea of the Kruzhkov lemma ([44]). We show that, provided ūh,o, ūh,∗

solve a discrete evolution equation of the form (44) with terms bounded in L1 and an estimate
of the space translates of b(ūh,o), b(ūh,∗) is available, there is also a uniform estimate of the time
translates of b(ūh,o), b(ūh,∗) :
(45)

sup
θ∈(0,τ ]

∫ +∞

0

∫

Ω

(1
3

∣∣∣b(ūh,o)(t+θ, x)−b(ūh,o)(t, x)
∣∣∣+ 2

3

∣∣∣b(ūh,∗)(t+θ, x)−b(ūh,∗)(t, x)
∣∣∣
)
dxdt ≤ ω̃(τ).

4If b(ūhi,o) are equi-integrable, a local modulus of continuity is enough.
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Here ω̃ : R+ −→ R+ is a modulus of continuity, i.e., a non-decreasing function such that lim
τ→0

ω̃(τ) =

0.

Let us construct ω̃(·) verifying (45). First fix h and fix θ ∈ (0, τ ]. Denote by Ih(θ) the integral
in the left-hand side of (45). For t ≥ 0, set

wh,o(t, ·) := b(ūh,o)(t+ θ, ·)− b(ūh,o)(t, ·), wh,∗(t, ·) := b(ūh,∗)(t+ θ, ·)− b(ūh,∗)(t, ·).

Notice that wh,o(t, ·) ≡ 0, wh,∗(t, ·) ≡ 0 for large t.
Take a standard family (ρδ)δ of mollifiers on R3 defined as ρδ(x) := δ−3ρ(x/δ), where ρ is a

Lipschitz continuous, nonnegative function supported in the unit ball of R3, and
∫
Rl ρ(x) dx = 1.

In particular, we have

| ∇ρδ| ≤
C

δ3+1
.

Here and throughout the proof, C will denote a generic constant independent of h and δ. For all
t > 0, define the function ϕh,o(t, ·) : R3 −→ R by ϕh,o(t) := ρδ ∗ (signwh,o(t)). In order to lighten
the notation, we do not stress the dependence of ϕh,o on δ. Define ϕh,∗(t) similarly, starting from
wh,∗(t).

Now discretize ϕh,o(t, ·) on the mesh M
o
h by setting ϕM

o
h(t) := P

M
o
hϕh,o(t, ·); recall that this

means that

ϕK(t) =
1

Vol(K)

∫

K

ϕh,o(t, x) dx.

Further, discretize ϕh,∗(t, ·) on the mesh M
∗
h by setting ϕM

∗
h(t) := PM

∗
hϕh,∗(t, ·) Denote by ϕh(t)

the discrete function on the CeVe-DDFV mesh Th of Ω with the two components ϕM
o
h(t), ϕM

∗
h(t).

Denote by wh(t) the discrete function on Th with the components wh,o(t), wh,∗(t).
Now for all fixed t, we integrate equations (44) in t ∈ [s, s + θ], then take the scalar product[[
· , ·

]]
Ω
of the result by ϕTh(t). Finally, we integrate the obtained equality in s over R+ to get

(46)

∫ +∞

0

[[
wh(s) , ϕh(s)

]]
Ω
ds =

∫ +∞

0

∫ s+θ

s

[[
divTh ~Fh(t) + fh(t) , ϕh(s)

]]
Ω
dtds.

Denote by Ihδ (θ) the left-hand side of (46). Using property (42), the definitions of discrete norms
and the Fubini theorem, we infer

Ihδ (θ) ≤ θ
( ∥∥∇TwT

∥∥
L∞(Ω)

∥∥Fh
∥∥
L1(QT )

+ max
{
‖ϕM

o
h‖L∞(QT ), ‖ϕM

o
h‖L∞(QT )

}
×
(
‖fh,o‖L1(QT ) + ‖fh,∗‖L1(QT )

) )
.

Now the L1([0, T ]× Ω) bounds (24) on (Fh)h,(f
h,o)h and (fh,∗)h, the bounds

|ϕh,o(t, ·)| ≤ 1, |ϕh,∗(t, ·)| ≤ 1, | ∇ϕh,o(t, ·)| ≤ C/δ4, | ∇ϕh,∗(t, ·)| ≤ C/δ4

and property (41) yield the estimate

(47) Ihδ (∆t) ≤ θ C(reg(Th))M (1 + δ−4)

for all h and δ small enough, uniformly in h. Now, notice that, wh,o and ϕh,o being constant per
K ∈ M

o
h, by the definition of ϕK(t) we have

Vol(K)
(
|wK(t)| − wK(t)ϕK(t)

)
= Vol(K) |wh,o(t, x)| − wK(t)

∫

K

ϕh,o(t, x) dx

=

∫

K

(
|wh,o(t, x)| − wh,o(t, x)ϕh,o(t, x)

)
dx;
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the identical equality holds on dual volumes K∗. Therefore (recalling again the definition of[[
· , ·

]]
Ω
),

Ih(θ)− Ihδ (θ) =

∫ +∞

0

∫

Ω

(1
3

(
|wh,o(t, x)| − wh,o(t, x)ϕh,o(t, x)

)

+
2

3

(
|wh,∗(t, x)| − wh,∗(t, x)ϕh,∗(t, x)

))
dxdt.

Starting from this point, the agrument of Kruzhkov [44] applies exactly as for the “continuous”
case. Note the key inequality, valid for all monotone b such that b(0) = 0:

∀α, γ ∈ R
∣∣|α| − α sign γ

∣∣ ≤ 2 |α− γ|.
Setting σ := (x−y)/δ, we upper bound |Ih(θ)−Ihδ (θ)| by

2

∫ +∞

0

∫

Ω

∫

R3

ρδ(x−y)
(1
3
|wh,o(t, x)−wh,o(t, y)|+ 2

3
|wh,∗(t, x)−wh,∗(t, y)|

)
dydxdt ≤

≤ 2

∫

R3

ρ(σ)

∫ +∞

0

∫

Ω

(1
3
|b(ūh,o)(t, x)−b(ūh,o)(t, x−δσ)|+ 2

3
|b(ūh,∗)(t, x)−b(ūh,∗)(t, x−δσ)|

)
dxdt dσ;

therefore if ω(·) is the modulus of continuity controlling the space translates of b̄(uh,o) and of
b̄(uh,∗) in L1((0, T )× Ω), then

(48) |Ih(θ)−Ihδ (θ)| ≤ 2ω(δ).

Recall that, by Steps 1 and 2 of the proof, one can choose ω(·) independent of h. Combining (47)
with (48), we conclude that the function

ω̃(τ) := inf
δ>0

C
{
τ (1 + δ−4) + 2ω(δ)

}

upper bounds the quantity supθ∈(0,τ ] I
h(θ). Because ω̃(τ) tends to 0 as τ → 0, this proves (45).

Step 4 : By the Frechet-Kolmogorov compactness criterion, the relative compactness of
(
b(ūh,o)

)
h

and
(
b(ūh,∗)

)
h
in L1((0, T )× Ω) is a consequence of the estimates of Steps 2 and 3. In order to

conclude, it suffices to show that

‖b(uh,o)− b(ūh,o)‖L1((0,T )×Ω) → 0 and ‖b(uh,∗)− b(ūh,∗)‖L1((0,T )×Ω) → 0

as h→ 0. An easy calculation shows that

for all α, γ ∈ R,

∫ 1

0

∣∣κα+ (1− κ)γ
∣∣ dκ ≥ 1

2
(|α|+ |γ|).

Applying this inequality to α := b(uM
o
h,n+1) − b(uM

o
h,n), γ := b(uM

o
h,n) − b(uM

o
h,n−1), from the

definition of ūh we deduce
∫ T

0

∫

Ω

|b(uh,o)(t, x)− b(ūh,o)(t, x)| dxdt ≤ 2

∫ T+∆th

0

∫

Ω

|b(ūh,o)(t+∆th, x)− b(ūh,o)(t, x)| dxdt.

The identical estimate holds with b(uh,o), b(ūh,o) replaced by b(uh,∗), b(ūh,∗). Since ∆th tends to
zero as h → 0, estimate (45) of Step 3 implies that the right-hand side of the above inequality
converges to zero as h tends to zero. This ends the proof of the proposition. �

6.B. Appendix B: A penalization operator

Penalization of a DDFV scheme may be useful in order to guarantee that the two components
of a discrete “double” function wTh converge to the same limit.

Indeed, we have seen that in the context of Proposition 3.9, the two components wM
o
h , wM

∗
h

of discrete functions wTh with bounded discrete W 1,p
0 norm may converge to two distinct limits.

This can complicate the analysis of the DDFV discretizations for certain PDEs (although the fact
that the components wM

o
h , wM

∗
h converge to a common limit can be implied by the structure of

the PDE considered; see [10] for one particular case). In the context of the work [3], this difficulty
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turned out to be an obstacle for proving convergence of the DDFV scheme. Therefore the idea to
penalize the differences wK − wK∗ for K ∩ K∗ 6= Ø was introduced. Let us give some details.

On the set RT of discrete functions wT on Ω, following [3] we define the operator PT[·] of
“double” mesh penalization by

PT : wT ∈ R
T 7→ PTwT =

( (
PKw

T
)
K∈M

o ,
(
PK∗wT

)
K∗∈M

∗

)
∈ R

T,

where the entries PKw
T, PK∗wT of the discrete function PTwT on Ω are given by

PKw
T := 2

1

size(T)

1

Vol(K)

∑
K∗∈M

∗
Vol(K ∩ K∗) (wK − wK∗);

PK∗wT :=
1

size(T)

1

Vol(K∗)

∑
K∈M

o
Vol(K ∩ K∗) (wK∗ − wK).

The definitions are designed to get the following summation-by-parts formula:

Proposition 6.1. Let wT ∈ RT and ϕT ∈ RT

0 . Then

[[
PTwT, ϕT

]]
Ω
=

2

3

∑
K∈M

o,K∗∈M
∗
Vol(K ∩ K∗)

(wK−wK∗)(ϕK−ϕK∗)

size(T)
.

The proof is straightforward from the definitions of
[[
· , ·

]]
Ω
in (2) and of the operator PT.

Notice that adding such a penalization term into discrete equations corresponds, roughly speak-
ing, to adding a small amount of discrete diffusion (e.g. on the uniform cartesian DDFV meshes of
Section 2.2, the penalization operator is in fact a size(T)-small multiple of a discrete Laplacian).
Therefore it is clear that this additional term does not affect the convergence of the schemes.
In addition, except in some degenerate situations (e.g. on the meshes satisfying the orthogonal-
ity condition, the equations corresponding to primal and dual volumes are actually not coupled)
adding this term does not enlarge the stencil of the scheme.

Adding the penalization leads to an additional estimate on discrete solutions that can be used
as follows.

Proposition 6.2. In the assumptions of Proposition 3.9, let us require in addition that

(49)
[[
PThwTh , wTh

]]
Ω
≤ const

uniformly in h. Then (upon extraction of convergent subsequences) the limits of the families(
wM

o
h
)
h
and

(
wM

∗
h
)
h
coincide.

The proof is straightforward (see [3]).
In a similar manner, for the case of cartesian meshes one could penalize the differences between

the neighbour values on K∗ ∈ e
∗
h
and on K∗ ∈ o

∗
h
, to ensure that wM

∗
e,h and wM

∗
o,h converge to the

same limit (notice that in case of such penalization, the example of Remark 3.8 would not be
compatible with the uniform estimate (49)).

6.C. Appendix C: DDFV discretization of reaction terms

Recall that (unless the penalization technique of the previous paragraph is used) the two compo-
nents wM

o
h , wM

∗
h of discrete functions wTh may converge to two distinct limits wo, w∗. Therefore,

discretizing a function Ψ := ψ(w) on T in the most straightforward way, namely

ΨT :=
( (
ψ(wK)

)
K∈M

o ,
(
ψ(wK∗)

)
K∗∈M

∗

)

may lead to a difficulty. Indeed, at the limit e.g. of Ih :=
[[
(ψ(w))Th , wTh

]]
Ω
we will find (see the

definition (2) of the scalar product on RT)

(50)

∫

Ω

(1
3
ψ(wo)wo +

2

3
ψ(w∗)w∗

)
.
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Because we have seen that the function 1
3w

o + 2
3w

∗ should be considered as the natural limit of

wTh (namely, ∇ThwTh converges to the gradient of this function), as long as we cannot prove that
wo = w∗ we need to find

I :=

∫

Ω

ψ
(1
3
wo +

2

3
w∗) (1

3
wo +

2

3
w∗).

at the limit of Ih, in the place of (50). Therefore we suggest that either penalization operators
(see Appendix B) be used in order to enforce the equality wo = w∗; or that the reaction terms be
discretized on a 3D CeVe-DDFV mesh by taking, for discretization of Ψ = ψ(w), the expression

(51)

ΨT :=
( (
ψ(w̌K)

)
K∈M

o
,
(
ψ(w̌K∗)

)
K∗∈M

∗

)
,

w̌K :=
1

3
wK +

2

3

∑

K∗∈M
∗

Vol(K ∩ K∗)

Vol(K)
wK∗ , w̌K∗ :=

1

3

∑

K∈M
∗

Vol(K ∩ K∗)

Vol(K∗)
wK +

2

3
wK∗

In other words, w̌K and w̌K∗ are the mean values of the function 1
3w

M
o
+ 2

3w
M

∗
on K and on K∗,

respectively. With this choice, we have for all wT ∈ RT

0 , for all ϕ
T ∈ RT,

[[
(ψ(w))T, ϕT

]]
Ω
=

∫

Ω

ψ
(1
3
wM

o

+
2

3
wM

∗) (1
3
ϕM

o

+
2

3
ϕM

∗)
.

Notice that in the case of general meshes, such treatment of reaction terms does not enlarge the
stencil of a DDFV scheme used for the discretization of a diffusion operator.

One example of the use of (51) is given in [5] and in Section 4.2 below.
Notice that this approach to discretization of reaction terms is particularly natural if the DDFV

scheme is viewed as a “gradient scheme” in the sense of Eymard, Herbin and Guichard [32], because
in this case the unknown discrete solution in the scheme is approximated via a lifted function that,
in our case, takes precisely the form 1

3w
M

o
+ 2

3w
M

∗
.

Remark 6.3. Note that, instead of adding the penalization operator in the scheme (28), one
could treat the time evolution term in (28) using the discretization of type (51) for b(u).

6.D. Appendix D: The coordination-decomposition algorithm

The goal is to solve the nonlinear system

b(uT,n)− ∆t divTϕ(∇TuT,n) = b(uT,n−1) + ∆tfT,n

(in the numerical tests, we drop the penalization operator needed for the theoretical justification
of convergence of the scheme); recall that uT,n ∈ RT

0 , i.e., the boundary values of uT,n are set to
be zero. The algorithm, which is a simplified version of the one of [15], follows the guidelines of
Glowinski and Marrocco [36, 37]. Note that a convergence analysis of such an algorithm can be
found in [15], for the more involved case of m-DDFV schemes.

We fix two parameters: r > 0 and γ > 0, and a tolerance threshold tol.

Initialization of the algorithm

• k = 0
• uT

0 = uT,n−1 (in the case b is not invertible, one may pick uT

0 = (b+ εI)−1(bT,0))
• errit = 1
• source = b(uT,n−1) + ∆tfT,n

• gT

0 = ∇TuT

0

• λT

0 = −ϕ(∇TuT

0 ).

While (errit > tol) do iterations of the algorithm (uT

k−1, g
T

k−1, λ
T

k−1) → (uT

k , g
T

k , λ
T

k )

• First step Evaluation of uT

k ∈ RT

0 solution of

b(uT

k )− ∆t divT(r(∇TuT

k − gT

k−1)− λT

k−1) = source

or, equivalently, of

b(uT

k )− r∆t divT(∇TuT

k ) = −∆t divT(rgT

k−1 + λT

k−1) + source

(we can denote by sourcek the right-hand side of the above expression).
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Thus we use the Newton method to solve this system; notice that it takes the form

(52) b(uT

k ) + r∆tA0u
T

k = sourcek

where A0 is the matrix corresponding to the CeVe-DDFV discretization of the linear −∆
operator5 on the mesh T. For the sake of completeness, we write the algorithm:

– Initialization : X0 = uT

k−1

– While ‖b(X l) + r∆t A0X
l − sourcek‖ > tol do

X l+1 = X l − (diag b′(X l) + r∆t A0)
−1(b(X l) + r∆t A0X

l − sourcek)

where diag · is the diagonal matrix with the prescribed vector · of diagonal entries.
– uT

k is assigned to be the final value of X l.

• Second step Evaluation of gT

k = (gD,k)D ∈ (RD)3.
Here we have card(D) decoupled nonlinear problems in R3 to be solved. In every

diamond D we have to solve the following problem:

ϕ(gD,k) + λD,k−1 + r(gD,k − ∇Du
T

k ) = 0

Once more, we use the Newton method:
– Initialization : Y 0 = gD,k−1

– While ‖ϕ(Y l) + λD,k−1 + r(Y l − ∇Du
T

k )‖ > tol do

Y l+1 = Y l − (Dϕ(Y l) + rI3)
−1(ϕ(Y l) + λD,k−1 + r(Y l − ∇Du

T

k ))

where I3 is the 3 × 3 identity matrix, and Dϕ denotes the jacobian matrix of ϕ :
R3 → R3. Notice that this 3× 3 system can be solved manually, offline.

– gD,k is assigned to be the final value of Y l.

• Third step Evaluation of λT

k ∈ (RD)3.

λT

k = λT

k−1 + rγ(gT

k − ∇TuT

k )

• Update of the stopping criterion.

errit = ‖b(uT

k )− ∆t divTϕ(∇TuT

k )− source‖.
End of k’th iteration

• At the end of the iterative procedure, assign uT,n to be the final value uT

k .
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[28] R. Eymard, T. Gallouët, and R. Herbin. Finite Volume Methods. Handbook of Numerical Analysis, Vol. VII,

P. Ciarlet, J.-L. Lions, eds., North-Holland, 2000.
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Bordeaux Cedex, France mostafa.bendahmane@u-bordeaux2.fr
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