N

N
N

HAL

open science

Efficient Search of Combinatorial Maps using Signatures

Stéphane Gosselin, Christine Solnon, Guillaume Damiand

» To cite this version:

Stéphane Gosselin, Christine Solnon, Guillaume Damiand. Efficient Search of Combinatorial Maps
using Signatures. Theoretical Computer Science, 2011, 412, pp.1392-1405. 10.1016/j.tcs.2010.10.029 .

hal-00567332v1

HAL Id: hal-00567332
https://hal.science/hal-00567332v1
Submitted on 20 Feb 2011 (v1), last revised 23 Jun 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00567332v1
https://hal.archives-ouvertes.fr

Efficient Search of Combinatorial Maps using Signatures

Stéphane Gosselin, Guillaume Damiand, Christine Solnon

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

Abstract

In this paper, we address the problem of computing canonical representa-
tions of n-dimensional combinatorial maps and of using them for efficiently
searching for a map in a database. We define two combinatorial map sig-
natures: the first one has a quadratic space complexity and may be used to
decide of isomorphism with a new map in linear time whereas the second
one has a linear space complexity and may be used to decide of isomorphism
in quadratic time. We show that these signatures can be used to efficiently
search for a map in a database.

Keywords:
Combinatorial map, signature, map isomorphism

1. Motivations

Combinatorial maps are nice data structures for modelling the subdivision
of a space into cells. First defined in 2D [7, 15, 9, 3], they have been extended
tonD [2, 11, 12] and model the subdivision of an object in cells, and all the
adjacency and incidence relations in any dimension. Hence, combinatorial
maps are often used to model the partition of an image in regions and to
describe the topology of this partition (e.g., [1] for 2D images and [4] for
3D images). There exist efficient image processing algorithms using this
topological information.

Email addresses: stephane.gosselin@liris.cnrs.fr (Stéphane Gosselin),
guillaume.damiand@liris.cnrs.fr (Guillaume Damiand),
christine.solnon@liris.cnrs.fr (Christine Solnon)

Article published in Theoretical Computer Science, Volume 412, Pages 1392-1405,
DOTI: 10.1016/j.t¢s.2010.10.029.

Preprint submitted to Elsevier February 20, 2011

Our goal is to define new algorithms for classifying images modelled by
combinatorial maps. More precisely, we propose to characterize image classes
by extracting patterns (submaps) which occur frequently in these classes.
Finding frequent patterns in large databases is a classical data mining prob-
lem, the tractability of which highly depends on the existency of efficient
algorithms for deciding if two patterns are actually different or if they are
two occurrences of a same object. Hence, if finding frequent subgraphs is
intractable in the general case, it may be solved in incremental polynomial
time when considering classes of graphs for which subgraph isomorphism may
be solved in polynomial time, such as trees or outerplanar graphs [8].

In this paper, we address the problem of computing canonical representa-
tions of combinatorial maps which may be used to efficiently search for a map
in a database. This work is related to [10], which introduces a polynomial al-
gorithm for deciding of the isomorphism of ordered graphs (i.e., graphs such
that the set of nodes adjacent to every node is ordered), based on a vertex
labelling. Recently, this work has been extended to combinatorial maps by
proposing a polynomial algorithm for map and submap isomorphism based
on a traversal of the map [6].

Contribution. In this paper, we define canonical representations of combina-
torial maps which are based on these traversal and labelling principles. More
precisely, we define two map signatures. Both signatures may be computed
in quadratic time with respect to the size of the map. The first signature
(called Set Signature) is a set of words and is modelled by a lexicographical
tree. It has a quadratic space complexity and it allows us to decide if a new
map is isomorphic to a map modelled by this signature in linear time. The
second signature (called Word Signature) is a word and has a linear space
complexity. As a counterpart, isomorphism with a new map is quadratic.

We also show that these signatures can be used to efficiently search for
a map into a database of maps. More precisely, each map of the database
is modelled by its signature and the different signatures are merged into a
tree. Space and time complexities depend on the considered signature (Set
or Word Signature): the first one is faster but needs more space.

QOutline. Basic definitions on combinatorial maps are recalled in section 2.
The two map signatures are defined in section 3. We show how to use these
signatures to model a database of maps in section 4. In sections 3 and 4,
we only consider connected maps. We show how to extend this work to non

A1 5 d [1 2374567879
i 1 By 234567 [1]9]10
) 4 Bo(d) |15 |14 |18 |17 (10| 9 | 8 | 7| 6

13 16 d 10|11 (12 |13 |14 | 15| 16 | 17 | 18

d (11| 8 [13|14 | 15| 12| 17|18 |16
d

B
14 5 Bo(d) | 5 [1211 (16| 2 | 1 [13| 4 | 3

Z

Figure 1: 2D combinatorial map example. Darts are represented by numbered black
arrows. Two darts 1-sewn are drawn consecutively, and two darts 2-sewn are concurrently
drawn and in reverse orientation, with a little grey segment between the two darts.

connected maps in section 5. Finally, we experimentally evaluate our work
in section 6.

2. Recalls on Combinatorial Maps

Definition 1 (Combinatorial map [12]). An nD combinatorial map (or
n-map) is defined by a tuple M = (D, (4, ..., 5,) where

e D is a finite set of darts;
e (31 is a permutation on D, i.e., a one-to-one mapping from D to D;

o V2 < i <mn, [is an involution on D, i.e., a one-to-one mapping from
D to D such that 3; = ;!

o V1<i<n-—2,Vi+2<j<n,op;isan involution on D.

A dart d is said to be i-sewn with another dart d' if d = g;(d'). (5 is a
permutation which models edge successions when turning around 2D cells
(i.e. faces) with respect to some given order. We note 3 for 3, so that
Bo models edge successions when turning around 2D cells with respect to
the opposite order. Fig. 1 and 2 give examples of 2D and 3D combinatorial
maps.

In some cases, it may be useful to allow some (3; to be partially defined,
thus leading to open combinatorial maps. The basic idea is to add a new
element € to the set of darts, and to allow darts to be i-sewn with e. By
definition, V0 < i < n, f;(¢) = e. Fig. 3 gives an example of open map

d 123 5 16| 7 | 8] 9 10|11l |12]13]14] 15
B1(d) 341856 7]I11

Ba(d) 10 | ... 9 | 14 6 | 2 7
Ba(d) | 5| 6 | 7| 8|1]|2|3|4]10]09

Figure 2: An example of a 3D combinatorial map. (a) A 3D object. (b) The corresponding
3D combinatorial map (external volume on the left; interior on the middle and the right).
The graphical convention is the same as in 2D. 3 is not drawn, but (partially) given in
the array.

b
a cldle|fl|g
a € Bilblcldlal|flgl|e
Bylelelele|lc]e
d

Figure 3: Open combinatorial map example. Darts a, b, d, f and g are not 2-sewn.

(see [14] for precise definitions). In this paper, we always consider open
combinatorial maps.

A map is connected if there exists a path of sewn darts between every
pair of darts.

Definition 2 (Connected map). An n-map M = (D, 5,...,[,) is con-
nected if Vd € D,Vd' € D, there exists a path (dy,...,dx) such that d; = d,
dp=d and Vi € {1,...,k},35; € {0,...,n},dix1 = B;,(d;).

Lienhardt has defined isomorphism between two combinatorial maps as
follows.

Definition 3 (Map isomorphism [13]). Two n-maps M = (D, p,...,)
and M' = (D', By, ...,) are isomorphic if there exists a one-to-one mapping
f: D — D', called isomorphism function, such that Vd € D,Vi € {1,...,n}

f(Bid)) = Bi(f(d)).

This definition has been extended to open maps in [6] by adding that f(¢) = e,
thus enforcing that, when a dart is i-sewn with €, then the dart matched to
it by f is i-sewn with e.

3. Signatures of connected maps

In this section, we introduce two different canonical representations of
maps, called signatures. We only consider connected maps; the extension of
this work to non connected maps is discussed in Section 5.

3.1. Labelling of a connected map

Our signatures are based on map labellings, which associate a different
label with every different dart. By definition, the label associated with € is
0.

Definition 4 (Labelling). Given an n-map M = (D, f,. .., 3,) alabelling
of M is a bijective function [: DU {e} — {0,...,|D|} such that I(¢) = 0.

Example 1. | ={¢:0,a:3,b:1, ¢c:5,d:7,e:2, f:6, g:4} isa
labelling of the map displayed in Fig. 3.

One may compute a labelling of a map by performing a map traversal
and labelling darts with respect to the order in which they are discovered.
Different labellings may be computed, depending on (i) the initial dart from
which the traversal is started, (ii) the strategy used to memorize the darts
that have been discovered but that have not yet been treated (e.g., FIFO or
LIFO), and (iii) the order in which the f3; functions are used to discover new
darts.

We define below the labelling corresponding to a breadth first traversal
of a map where ; functions are used in increasing order.

Definition 5 (Breadth first labelling (BFL)). Given a connected n-map
M = (D,p,...,05,) and a dart d € D the breadth first labelling associated
with (M, d) is the labelling returned by the function BF L(M,d) described
in algorithm 1.

Algorithm 1: BFL(M,d)
Input: a connected n-map M = (D, f1,...,5,), and a dart d € D
Output: a labelling I : DU {e} — {0,...,|D|}
for each d' € D do I(d') < —1
l(e) «+ 0
let () be an empty queue
add d at the end of @)
I(d) «+ 1
nextLabel < 2
while () is not empty do
remove d’ from the head of Q
for i in0...n do
if [(Bi(d')) = —1 then
[(Bi(d')) + nextLabel
nextLabel <— nextLabel + 1
add §;(d’) at the end of @

© 00 N O Uk W N =

[S S
w N = O

14 return [

Example 2. The breadth first labellings associated with the map of Fig. 3
for darts a and e respectively are

Y Y

BFL(M,a) ={e:0, a:1,

b:3,c:4,d:2,e:5, f:7,g:6}
BFL(M,e) ={€:0,a:7,b:5,¢c:4,d:6,e:1, f:3, g:2}

Proposition 1. Algorithm 1 returns a labelling.

PROOF.

e [(€) is set to 0 in line 2.

o Vd,d € D,d# d = 1(d) # I(d'). Indeed, each time a label is assigned
to a dart (line 11), nextLabel is incremented (line 12).

e Vd € D,1 <I(d) < |D|. Indeed, each dart enters exactly once in the
queue because (i) the map is connected and (ii) a dart enters the queue
only if it has not yet been labelled, and it is labelled just before entering
it. a

Proposition 2. The time complexity of algorithm 1 is O(n - |D|)

PROOF. The while loop (lines 7-13) is iterated |D| times as (i) exactly one
dart d is removed from the queue at each iteration; and (ii) each dart d € D
enters the queue exactly once. The for loop (lines 9-13) is iterated n + 1
times. a

Note that the for loop (lines 9-13) iterates for every i € {0,...,n}, in-
cluding 0. Indeed, as we consider open maps, some darts may not be 1-sewn.
In this case, some darts may not be reachable from the initial dart d without
using (y. Let us consider for example the open map displayed in Fig. 3, and
let us suppose that dart b has been removed. If BFL is started from the
initial dart a, then no dart will be discovered if we only use ; and (5 to
discover new darts (as fi(a) = f2(a) = € in this case). However, if we use
Bo, P1, and P, we can actually discover all darts.

Given a map M and a labelling [, one may describe M (i.e., its func-
tions 31 to (3,) by a sequence of labels of I. The idea is to first list the
n labels of the n darts which are i-sewn with the dart labelled by 1 (i.e.,

1(B1(1)),...,1(Ba(1))), and then by 2 (i.e., [(81(2)),...,1(5.(2))), etc. More
formally, we define the word associated with a map and a labelling as follows.

Definition 6 (Word). Given a connected n-map M = (D, f,...,5,) and
a labelling [: DU {e} — {0,...,|D|} the word associated with (M, 1) is the
sequence

W(M, l) =< Wy, ... » Wn.| D >
such that Vi € {1,...,n}, Vk € {1,...,|D|}, wir = I(5;(dx)) where dj, is the
dart labelled with &, i.e., dy = [71(k).

Notation. The word associated with the breadth first labelling of a map M,
starting from a dart d, is denoted Wgpr (M, d), i.e.,

WerL(M,d) = W(M, BEL(M, d))

Example 3. The words associated with the map of Fig. 3 for the two la-
bellings of example 2 respectively are

Wepr(M,a) =<3,0,1,0,4,0,2,5,7,4,5,0,6,0 >
Wepr(M,e) =<3,4,1,0,2,0,6,1,4,0,7,0,5,0 >

Algorithm for building Wgpr(M,l). Given an n-map M = (D, p1,...,Bn),
the word Wgpr(M,1) is computed by calling BFL(M,l) and considering
every dart of D in increasing label order and enumerating the labels of its n
i-sewn darts. Note that we do not have to sort darts with respect to their
labels as we can save this order during the run of BF L. Hence, the time
complexity of the construction of the word Wgpr(M,1) is O(n - |D|).

The key point which allows us to use words for building signatures is that
two maps are isomorphic if and only if they share a word for a breadth first
labelling, as stated in theorem 1.

Theorem 1. Two connected n-maps M = (D, p1,...,0,) and M = (D', B},...,5.)

are isomorphic iff there exist d € D and d € D’ such that Wgpp(M,d) =
WerrL(M',d')

PROOF. = Let us first consider two isomorphic n-maps M = (D, f1, ...,)
and M' = (D', By, ..., [B.), and let us show that there exist two darts d and
d such that Wgpr(M,d) = Wgp(M',d"). If M and M’ are isomorphic
then there exists f : D — D’ such that Vd € D,Vi € {1,...,n}, f(Bi(d)) =
Bi(f(d)) (Def. 3). Let d; be a dart of D, and let us note [(resp.) the
labellings returned by BFL(M,d,) (resp. BFL(M', f(dy))). Claim 1: [
and ! are such that Vd; € D,l(d;) = I'(f(d;)). This is true for the ini-
tial dart d; as both d; and f(d;) are labelled with 1 at the beginning of
each traversal. This is true for every other dart d; € D as the traversals
of M and M’ performed by BFL are completely determined by the fact
that (i) they consider the same FIFO strategy to select the next labelled
dart which will be used to discover new darts and (ii) they use the f; func-
tions in the same order to discover new darts from a selected labelled dart.
Claim 2: Vk € {1,...,|D|}, f(I"*(k)) = I'"*(k). This is a direct consequence
of Claim 1. Conclusion: Vi € {1,...,n},Vk € {1,...,|D|}, the i.k" ele-
ment of Wgpr(M,d;) is equal to the i.k™ element of W, (M’, f(dy)), i.e.,

(B, (k))) = V(B ~1(k))). Indeed,

1B (7Y (Kk))) = U'(f(B:(I7*(k)))) (because of Claim 1)
= U'(BI(f(I7"(k)))) (because f is an isomorphism function)
= U'(Bi(I'"'(k))) (because of Claim 2)

< Let us now consider two n-maps M = (D,B,...,5,) and M’ =
(D', By, ..., 0) and two darts d and d’' such that Wrpr (M, d) = Wep(M',d'),

8

and let us show that M and M’ are isomorphic. Let us note [(resp. ') the
labellings returned by BFL(M,d) (resp. BFL(M’,d’)), and let us define
the function f : D — D’ which matches darts with same labels, i.e., Vd; €
D, f(d;) = I'""'(I(dy)). Note that this implies as well that I(d;) = I'(f(d;)).
Claim 3: Vi € {1,...,n},Vk € {1,...,|D|} (Bl (k))) = U(B.(I'-1(k))).
This comes from the fact that Wgpp (M, d) = Wgrr(M',d') so that the i.k™"
element of Wgrr(M,d;) is equal to the i.k" element of Wy (M’, f(dy)).
Conclusion: Vi € {1,...,n},Vd; € D,

F(Bildy)) = IH(I(Bi(d))))
= P (BI)
= B (U(d))))
= BUTH(S(d))))
= pi(f(d;))

by definition of f)

because of Claim 3)

by definition of f)

(
(
(by simplification)
(
(by simplification)

Hence, f is an isomorphism function and M and M’ are isomorphic. O

3.2. Set Signature of a connected map

A map is characterized by the set of words associated with all possible
breadth first labellings. This set defines a signature.

Definition 7 (Set Signature). Given an n-map M = (D, 5y,...,[,), the
Set Signature associated with M is SS(M) = {WgpL(M,d)|d € D}

Fig. 4 shows the Set Signature of the map of Fig. 3. Note that a Set
Signature may contain less than |D| words as there may exist different darts
d and d’ such that Wgpr(M,d) = Wgpr(M,d') (in case of automorphisms).

Theorem 2. SS(M) is a signature, i.e., two connected maps M and M’ are
isomorphic if and only if SS(M) = SS(M')

PROOF. = Let us consider two isomorphic maps M = (D, Sy, ..., [3,) and
M = (D', pi,...,05,), and let us show that SS(M) = SS(M’). This is a
direct consequence of theorem 1, which ensures that given an isomorphism
function f between M and M’ we have, for every dart d € D, Wgp(M,d) =
Werr(M', f(d)). Hence, every word of SS(M), computed from any dart of
D, necessarily belongs to SS(M’) (and conversely).

9

< Let us consider two maps M = (D, fy,...,53,) and M' = (D', B1,..., L)
such that SS(M) = SS(M’), and let us show that M and M’ are isomor-
phic. Indeed, there exist two words W € SS(M) and W’ € SS(M’) such
that W = W’ thus M and M’ are isomorphic due to theorem 1. a

Note that a direct consequence of theorem 1 and theorem 2 is that for
two non isomorphic maps M and M’, SS(M)NSS(M') = (.

The Set Signature of a map M may be represented by a lexicographical
tree which groups common prefixes of words.

Definition 8 (Set Signature Tree of a map). Given ann-map M = (D, (y,...

the tree associated with the Set Signature of M is the tree Tss(M) such that

e every node u except the root has a label [(u) which is an integer ranging
between 0 and |D|; we note w(u) the word obtained by concatening all
these labels along the path from the root to u;

e for every node u, all the children of u have different labels;

e there are |SS(M)| leaves and for every leaf u, we have w(u) € SS(M).

For example, the Set Signature Tree of the map displayed in Fig. 3 is
displayed in Fig. 4.

Property 1. The space complexity of the Set Signature Tree Tss(M) of a
map M is O(n - |D|?).

PROOF. The tree contains one leaf for each word in the signature, i.e., at
most | D| leaves, and the length of each path from the root to a leaf is n - |D|.
Hence, the tree has O(n - |D]?) nodes. At each node u of the tree, we use
a list to memorize all its children. The sum of the sizes of all lists is equal
to the number of edges of the tree which is equal to the number of its nodes
minus one. O

Property 2. The time complexity for building the Set Signature Tree Tgg(M)
of a map M is O(n - |D|?).

PRrROOF. The tree can be built in an incremental way: starting from the tree
which only contains the root, we iteratively add Wggp (M, d) to it, for every
dart d € D. The time complexity for computing a word is O(n - |D|). The

10

7/8n)7

{<3,0,1,0,4,0,2,5,7,4,5,0,6,0 >, 2
<3,0,1,0,4,5,2,0,7,3,5,0,6,0 >,
<3,0,1,4,2,0,6,2,4,0,7,0,5,0 >,
<3,4,1,0,2,0,6,1,4,0,7,0,5,0 >,
<3,4,1,0,5,0,7,1,2,0,4,0,6,0 >,
<3,0,1,0,2,4,6,3,4,0,7,0,5,0 >,
<3,0,1,5,4,0,2,0,7,2,5,0,6,0 >}

o Gl O N O A~ W o oA
O o O wok g G N

O o O vl w I O N
=SNG, B BEN B = BN R NI e T)
O OO Ul N O N O
O Gl O N O bk = o O
o o O bk O N = -3 O

Figure 4: Set Signature of the map of Fig. 3. On the left, the set of words SS(M), on the
right, the tree Tsg(M) (for each node u, I(u) is displayed above u).

time complexity for adding it to the current tree is also O(n - |D|). Indeed,
the length of a word is n - |D|. For each label x of the word, we mainly have
to decide if the current node of the tree has a child u such that {(u) = z. This
is done in linear time with respect to the number of children of the current
node as we use lists to memorize node children. A node has at most |D| + 1
children. However, the sum of the number of children of all nodes between
the root and a leaf is bounded by the length of the path between the root
and a leaf plus the number of leaves, i.e., n-|D| + |D|. O

Property 3. Given an n-map M = (D, f,...,[3,) and the Set Signature
Tree Tss(M') of another map M’, the complexity of deciding of the isomor-
phism between M and M’ is O(n - |D|).

ProoOF. To decide of the isomorphism, we build a breadth first labelling,
starting from any dart d € D, and decide if Wgpr,(M,d) corresponds to a
path from the root to a leaf of the tree. This is done in linear time with
respect to the length of the word (again, if a node of the tree may have up

11

to |D| 4 1 children, the sum of the number of children of all nodes between
the root and a leaf is bounded by n - |D| + |D|). O

Note that we can check that the word corresponds to a path in the tree
during the construction of the word so that we can stop the construction as
soon as it does not match a branch in the tree. Note also that this algorithm
is optimal. Indeed, to decide of the isomorphism between two maps we have
to check if f(B;(d)) = Bi(f(d)) for every dart d € |D| and every dimension
i€ {1l,...,n}. This cannot be done in less than O(n - |D]).

3.3. Word Signature of a connected map

The lexicographical order is a strict total order on the words of a Set
Signature, and we have shown that if two Set Signatures share one word,
then they are equal. Hence, we may define a map signature by considering
the smallest word of the Set Signature.

Definition 9 (Word Signature). Given a map M, the Word Signature of
M is, WS(M) = min(SS(M)).

Example 4. The Word Signature of the map displayed in Fig. 3 is
WS(M)=<3,0,1,0,2,4,6,3,4,0,7,0,5,0 >
Property 4. The space complexity of a Word Signature is O(n - |D]).

Algorithm for computing WS(M). The Word Signature of a map M is built
by calling BFL(M,d) for each dart d € D, and keeping the smallest word
with respect to the lexicographical order. The time complexity for computing
the Word Signature is O(n - |D|?). Note that this process may be improved
(without changing the worst case complexity) by incrementally comparing
the word in construction with the current smallest word and stopping the
construction whenever it becomes greater.

Property 5. Given an n-map M = (D, f1,..., 5,) and the Word Signature
WS(M') of another map M’, we can decide of the isomorphism between M
and M’ in O(n -|D|?).

Proor. To decide of the isomorphism, we have to build breadth first la-
bellings, starting from every different dart d € D, until either Wgpp (M, d) =
WS(M') (M is isomorphic to M') or all darts have been tried (M is not
isomorphic to M’). In the worst case, we have to build |D| labellings so that
the overall time complexity is O(n - |D|?). O

12

4. Signatures of databases of connected maps

Map signatures can be used to decide of the isomorphism of two maps.
However, in many cases, we have to compare a map M not only with one
other map but with a whole database of maps in order to search for maps
isomorphic to M. To this aim, we define the signature of a database of maps.
This signature actually merges all the signatures of the maps of the database
into a single tree. We can either consider Set or Word Signatures.

In this section, we only consider connected maps; the extension of this
work to non connected maps is discussed in Section 5.

4.1. Set Signature of a database of maps

We can model a database B = {M",... M"} of k n-maps by a list of k
independent Set Signature Trees. Given a new n-map M, we can search for
an isomorphic map in B in O(k - n - |D|) by iteratively searching for M in
each of these trees. This complexity can be improved by merging the k trees
into a single tree.

If all maps in the database have the same number of darts, then all
branches (between the root and a leaf) have the same length in all trees. In
this case, all branches also have the same length in the merged tree and we
simply have to memorize, for every leaf u, the set of maps such that w(u)
belongs to the Set Signature of the map (the database may contain different
maps which are isomorphic so that a same leaf may correspond to several
maps).

However, if the number of darts is different from a map to another, then
we have to merge trees whose branches have different lengths. In this case,
it may happen that the word associated with a leaf in a tree is a prefix of
the word associated with another leaf of another tree so that, when merging
these two trees, a word may end on a node which is not a leaf. Hence, for
each node u of the tree, we memorize the set m(u) of maps such that w(u)
belongs to the Set Signature of the map.

Definition 10 (Set Signature Tree of a database of maps). Let B =
{M*' ... MF*} be a database of k n-maps and * be the maximum number of
darts of the maps of B. The Set Signature Tree of B is the tree Tsg(B) such
that

e every node u except the root has a label I(u) such that I(u) is an
integer ranging between 0 and ¢; we note w(u) the word obtained by

13

