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Efficient Search of Combinatorial Maps using Signatures

Stéphane Gosselin, Guillaume Damiand, Christine Solnon

Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69622, France

Abstract

In this paper, we address the problem of computing canonical representa-
tions of n-dimensional combinatorial maps and of using them for efficiently
searching for a map in a database. We define two combinatorial map sig-
natures: the first one has a quadratic space complexity and may be used to
decide of isomorphism with a new map in linear time whereas the second
one has a linear space complexity and may be used to decide of isomorphism
in quadratic time. We show that these signatures can be used to efficiently
search for a map in a database.
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1. Motivations

Combinatorial maps are nice data structures for modelling the subdivision
of a space into cells. First defined in 2D [7, 15, 9, 3], they have been extended
to nD [2, 11, 12] and model the subdivision of an object in cells, and all the
adjacency and incidence relations in any dimension. Hence, combinatorial
maps are often used to model the partition of an image in regions and to
describe the topology of this partition (e.g., [1] for 2D images and [4] for
3D images). There exist efficient image processing algorithms using this
topological information.

Our goal is to define new algorithms for classifying images modelled by
combinatorial maps. More precisely, we propose to characterize image classes
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by extracting patterns (submaps) which occur frequently in these classes.
Finding frequent patterns in large databases is a classical data mining prob-
lem, the tractability of which highly depends on the existency of efficient
algorithms for deciding if two patterns are actually different or if they are
two occurrences of a same object. Hence, if finding frequent subgraphs is
intractable in the general case, it may be solved in incremental polynomial
time when considering classes of graphs for which subgraph isomorphism may
be solved in polynomial time, such as trees or outerplanar graphs [8].

In this paper, we address the problem of computing canonical representa-
tions of combinatorial maps which may be used to efficiently search for a map
in a database. This work is related to [10], which introduces a polynomial al-
gorithm for deciding of the isomorphism of ordered graphs (i.e., graphs such
that the set of nodes adjacent to every node is ordered), based on a vertex
labelling. Recently, this work has been extended to combinatorial maps by
proposing a polynomial algorithm for map and submap isomorphism based
on a traversal of the map [6].

Contribution. In this paper, we define canonical representations of combina-
torial maps which are based on these traversal and labelling principles. More
precisely, we define two map signatures. Both signatures may be computed
in quadratic time with respect to the size of the map. The first signature
(called Set Signature) is a set of words and is modelled by a lexicographical
tree. It has a quadratic space complexity and it allows us to decide if a new
map is isomorphic to a map modelled by this signature in linear time. The
second signature (called Word Signature) is a word and has a linear space
complexity. As a counterpart, isomorphism with a new map is quadratic.

We also show that these signatures can be used to efficiently search for
a map into a database of maps. More precisely, each map of the database
is modelled by its signature and the different signatures are merged into a
tree. Space and time complexities depend on the considered signature (Set
or Word Signature): the first one is faster but needs more space.

Outline. Basic definitions on combinatorial maps are recalled in section 2.
The two map signatures are defined in section 3. We show how to use these
signatures to model a database of maps in section 4. In sections 3 and 4,
we only consider connected maps. We show how to extend this work to non
connected maps in section 5. Finally, we experimentally evaluate our work
in section 6.
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d 1 2 3 4 5 6 7 8 9
β1(d) 2 3 4 5 6 7 1 9 10
β2(d) 15 14 18 17 10 9 8 7 6

d 10 11 12 13 14 15 16 17 18
β1(d) 11 8 13 14 15 12 17 18 16
β2(d) 5 12 11 16 2 1 13 4 3

Figure 1: 2D combinatorial map example. Darts are represented by numbered black
arrows. Two darts 1-sewn are drawn consecutively, and two darts 2-sewn are concurrently
drawn and in reverse orientation, with a little grey segment between the two darts.

2. Recalls on Combinatorial Maps

Definition 1 (Combinatorial map [12]). An nD combinatorial map (or
n-map) is defined by a tuple M = (D, β1, . . . , βn) where

• D is a finite set of darts;

• β1 is a permutation on D, i.e., a one-to-one mapping from D to D ;

• ∀ 2 ≤ i ≤ n, βi is an involution on D, i.e., a one-to-one mapping from
D to D such that βi = β−1i ;

• ∀ 1 ≤ i ≤ n− 2, ∀ i+ 2 ≤ j ≤ n, βi ◦ βj is an involution on D.

A dart d is said to be i-sewn with another dart d′ if d = βi(d
′). β1 is a

permutation which models edge successions when turning around 2D cells
(i.e. faces) with respect to some given order. We note β0 for β−11 so that
β0 models edge successions when turning around 2D cells with respect to
the opposite order. Fig. 1 and 2 give examples of 2D and 3D combinatorial
maps.

In some cases, it may be useful to allow some βi to be partially defined,
thus leading to open combinatorial maps. The basic idea is to add a new
element ε to the set of darts, and to allow darts to be i-sewn with ε. By
definition, ∀0 ≤ i ≤ n, βi(ε) = ε. Fig. 3 gives an example of open map
(see [14] for precise definitions). In this paper, we always consider open
combinatorial maps.

A map is connected if there exists a path of sewn darts between every
pair of darts.
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d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
β1(d) 2 3 4 1 8 5 6 7 11 ... ... ... ... ... ... ...
β2(d) ... 10 ... ... ... 9 14 ... 6 2 ... ... ... 7 ... ...
β3(d) 5 6 7 8 1 2 3 4 10 9 ... ... ... ... ... ...

Figure 2: An example of a 3D combinatorial map. (a) A 3D object. (b) The corresponding
3D combinatorial map (external volume on the left; interior on the middle and the right).
The graphical convention is the same as in 2D. β3 is not drawn, but (partially) given in
the array.

f
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a b c d e f g
β1 b c d a f g e
β2 ε ε e ε c ε ε

Figure 3: Open combinatorial map example. Darts a, b, d, f and g are not 2-sewn.

Definition 2 (Connected map). An n-map M = (D, β1, . . . , βn) is con-
nected if ∀d ∈ D, ∀d′ ∈ D, there exists a path (d1, . . . , dk) such that d1 = d,
dk = d′ and ∀i ∈ {1, . . . , k},∃ji ∈ {0, . . . , n}, di+1 = βji(di).

Lienhardt has defined isomorphism between two combinatorial maps as
follows.

Definition 3 (Map isomorphism [13]). Two n-mapsM = (D, β1, . . . , βn)
and M ′ = (D′, β′1, . . . , β

′
n) are isomorphic if there exists a one-to-one mapping

f : D → D′, called isomorphism function, such that ∀d ∈ D, ∀i ∈ {1, . . . , n}
f(βi(d)) = β′i(f(d)).

This definition has been extended to open maps in [6] by adding that f(ε) = ε,
thus enforcing that, when a dart is i-sewn with ε, then the dart matched to
it by f is i-sewn with ε.
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3. Signatures of connected maps

In this section, we introduce two different canonical representations of
maps, called signatures. We only consider connected maps; the extension of
this work to non connected maps is discussed in Section 5.

3.1. Labelling of a connected map

Our signatures are based on map labellings, which associate a different
label with every different dart. By definition, the label associated with ε is
0.

Definition 4 (Labelling). Given an n-mapM = (D, β1, . . . , βn) a labelling
of M is a bijective function l : D ∪ {ε} → {0, . . . , |D|} such that l(ε) = 0.

Example 1. l = {ε : 0, a : 3, b : 1, c : 5 , d : 7, e : 2, f : 6, g : 4} is a
labelling of the map displayed in Fig. 3.

One may compute a labelling of a map by performing a map traversal
and labelling darts with respect to the order in which they are discovered.
Different labellings may be computed, depending on (i) the initial dart from
which the traversal is started, (ii) the strategy used to memorize the darts
that have been discovered but that have not yet been treated (e.g., FIFO or
LIFO), and (iii) the order in which the βi functions are used to discover new
darts.

We define below the labelling corresponding to a breadth first traversal
of a map where βi functions are used in increasing order.

Definition 5 (Breadth first labelling (BFL)). Given a connected n-map
M = (D, β1, . . . , βn) and a dart d ∈ D the breadth first labelling associated
with (M,d) is the labelling returned by the function BFL(M,d) described
in algorithm 1.

Example 2. The breadth first labellings associated with the map of Fig. 3
for darts a and e respectively are

BFL(M,a) = {ε : 0, a : 1, b : 3, c : 4, d : 2, e : 5, f : 7, g : 6}
BFL(M, e) = {ε : 0, a : 7, b : 5, c : 4, d : 6, e : 1, f : 3, g : 2}

Proposition 1. Algorithm 1 returns a labelling.
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Algorithm 1: BFL(M,d)

Input: a connected n-map M = (D, β1, . . . , βn), and a dart d ∈ D
Output: a labelling l : D ∪ {ε} → {0, . . . , |D|}

1 for each d′ ∈ D do l(d′)← −1;
2 l(ε)← 0
3 let Q be an empty queue
4 add d at the end of Q
5 l(d)← 1
6 nextLabel ← 2
7 while Q is not empty do
8 remove d′ from the head of Q
9 for i in 0 . . . n do

10 if l(βi(d
′)) = −1 then

11 l(βi(d
′))← nextLabel

12 nextLabel ← nextLabel + 1
13 add βi(d

′) at the end of Q

14 return l

Proof.

• l(ε) is set to 0 in line 2.

• ∀d, d′ ∈ D, d 6= d′ ⇒ l(d) 6= l(d′). Indeed, each time a label is assigned
to a dart (line 11), nextLabel is incremented (line 12).

• ∀d ∈ D, 1 ≤ l(d) ≤ |D|. Indeed, each dart enters exactly once in the
queue because (i) the map is connected and (ii) a dart enters the queue
only if it has not yet been labelled, and it is labelled just before entering
it. 2

Proposition 2. The time complexity of algorithm 1 is O(n · |D|)

Proof. The while loop (lines 7-13) is iterated |D| times as (i) exactly one
dart d is removed from the queue at each iteration; and (ii) each dart d ∈ D
enters the queue exactly once. The for loop (lines 9-13) is iterated n + 1
times. 2
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Note that the for loop (lines 9-13) iterates for every i ∈ {0, . . . , n}, in-
cluding 0. Indeed, as we consider open maps, some darts may not be 1-sewn.
In this case, some darts may not be reachable from the initial dart d without
using β0. Let us consider for example the open map displayed in Fig. 3, and
let us suppose that dart b has been removed. If BFL is started from the
initial dart a, then no dart will be discovered if we only use β1 and β2 to
discover new darts (as β1(a) = β2(a) = ε in this case). However, if we use
β0, β1, and β2, we can actually discover all darts.

Given a map M and a labelling l, one may describe M (i.e., its func-
tions β1 to βn) by a sequence of labels of l. The idea is to first list the
n labels of the n darts which are i-sewn with the dart labelled by 1 (i.e.,
l(β1(1)), . . . , l(βn(1))), and then by 2 (i.e., l(β1(2)), . . . , l(βn(2))), etc. More
formally, we define the word associated with a map and a labelling as follows.

Definition 6 (Word). Given a connected n-map M = (D, β1, . . . , βn) and
a labelling l : D ∪ {ε} → {0, . . . , |D|} the word associated with (M, l) is the
sequence

W (M, l) =< w1, . . . , wn·|D| >

such that ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , |D|}, wi·k = l(βi(dk)) where dk is the
dart labelled with k, i.e., dk = l−1(k).

Notation. The word associated with the breadth first labelling of a map M ,
starting from a dart d, is denoted WBFL(M,d), i.e.,

WBFL(M,d) = W (M,BFL(M,d))

Example 3. The words associated with the map of Fig. 3 for the two la-
bellings of example 2 respectively are

WBFL(M,a) =< 3, 0, 1, 0, 4, 0, 2, 5, 7, 4, 5, 0, 6, 0 >
WBFL(M, e) =< 3, 4, 1, 0, 2, 0, 6, 1, 4, 0, 7, 0, 5, 0 >

Algorithm for building WBFL(M, l). Given an n-map M = (D, β1, . . . , βn),
the word WBFL(M, l) is computed by calling BFL(M, l) and considering
every dart of D in increasing label order and enumerating the labels of its n
i-sewn darts. Note that we do not have to sort darts with respect to their
labels as we can save this order during the run of BFL. Hence, the time
complexity of the construction of the word WBFL(M, l) is O(n · |D|).

The key point which allows us to use words for building signatures is that
two maps are isomorphic if and only if they share a word for a breadth first
labelling, as stated in theorem 1.
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Theorem 1. Two connected n-maps M = (D, β1, . . . , βn) and M ′ = (D′, β′1, . . . , β
′
n)

are isomorphic iff there exist d ∈ D and d′ ∈ D′ such that WBFL(M,d) =
WBFL(M ′, d′)

Proof. ⇒ Let us first consider two isomorphic n-maps M = (D, β1, . . . , βn)
and M ′ = (D′, β′1, . . . , β

′
n), and let us show that there exist two darts d and

d′ such that WBFL(M,d) = WBFL(M ′, d′). If M and M ′ are isomorphic
then there exists f : D → D′ such that ∀d ∈ D, ∀i ∈ {1, . . . , n}, f(βi(d)) =
β′i(f(d)) (Def. 3). Let d1 be a dart of D, and let us note l (resp. l′) the
labellings returned by BFL(M,d1) (resp. BFL(M ′, f(d1))). Claim 1: l
and l′ are such that ∀di ∈ D, l(di) = l′(f(di)). This is true for the ini-
tial dart d1 as both d1 and f(d1) are labelled with 1 at the beginning of
each traversal. This is true for every other dart di ∈ D as the traversals
of M and M ′ performed by BFL are completely determined by the fact
that (i) they consider the same FIFO strategy to select the next labelled
dart which will be used to discover new darts and (ii) they use the βi func-
tions in the same order to discover new darts from a selected labelled dart.
Claim 2: ∀k ∈ {1, . . . , |D|}, f(l−1(k)) = l′−1(k). This is a direct consequence
of Claim 1. Conclusion: ∀i ∈ {1, . . . , n},∀k ∈ {1, . . . , |D|}, the i.kth ele-
ment of WBFL(M,d1) is equal to the i.kth element of W ′

BFL(M ′, f(d1)), i.e.,
l(βi(l

−1(k))) = l′(β′i(l
′−1(k))). Indeed,

l(βi(l
−1(k))) = l′(f(βi(l

−1(k)))) (because of Claim 1)

= l′(β′i(f(l−1(k)))) (because f is an isomorphism function)

= l′(β′i(l
′−1(k))) (because of Claim 2)

⇐ Let us now consider two n-maps M = (D, β1, . . . , βn) and M ′ =
(D′, β′1, . . . , β

′
n) and two darts d and d′ such thatWBFL(M,d) = WBFL(M ′, d′),

and let us show that M and M ′ are isomorphic. Let us note l (resp. l′) the
labellings returned by BFL(M,d) (resp. BFL(M ′, d′)), and let us define
the function f : D → D′ which matches darts with same labels, i.e., ∀dj ∈
D, f(dj) = l′−1(l(dk)). Note that this implies as well that l(dj) = l′(f(dj)).
Claim 3: ∀i ∈ {1, . . . , n},∀k ∈ {1, . . . , |D|}, l(βi(l−1(k))) = l′(β′i(l

′−1(k))).
This comes from the fact that WBFL(M,d) = WBFL(M ′, d′) so that the i.kth

element of WBFL(M,d1) is equal to the i.kth element of W ′
BFL(M ′, f(d1)).
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Conclusion: ∀i ∈ {1, . . . , n},∀dj ∈ D,

f(βi(dj)) = l′−1(l(βi(dj))) (by definition of f)

= l′−1(l′(β′i(l
′−1(l(dj))))) (because of Claim 3)

= β′i(l
′−1(l(dj))) (by simplification)

= β′i(l
′−1(l′(f(dj)))) (by definition of f)

= β′i(f(dj)) (by simplification)

Hence, f is an isomorphism function and M and M ′ are isomorphic. 2

3.2. Set Signature of a connected map

A map is characterized by the set of words associated with all possible
breadth first labellings. This set defines a signature.

Definition 7 (Set Signature). Given an n-map M = (D, β1, . . . , βn), the
Set Signature associated with M is SS(M) = {WBFL(M,d)|d ∈ D}

Fig. 4 shows the Set Signature of the map of Fig. 3. Note that a Set
Signature may contain less than |D| words as there may exist different darts
d and d′ such that WBFL(M,d) = WBFL(M,d′) (in case of automorphisms).

Theorem 2. SS(M) is a signature, i.e., two connected maps M and M ′ are
isomorphic if and only if SS(M) = SS(M ′)

Proof. ⇒ Let us consider two isomorphic maps M = (D, β1, . . . , βn) and
M ′ = (D′, β′1, . . . , β

′
n), and let us show that SS(M) = SS(M ′). This is a

direct consequence of theorem 1, which ensures that given an isomorphism
function f between M and M ′ we have, for every dart d ∈ D, WBFL(M,d) =
WBFL(M ′, f(d)). Hence, every word of SS(M), computed from any dart of
D, necessarily belongs to SS(M ′) (and conversely).
⇐ Let us consider two mapsM = (D, β1, . . . , βn) andM ′ = (D′, β′1, . . . , β

′
n)

such that SS(M) = SS(M ′), and let us show that M and M ′ are isomor-
phic. Indeed, there exist two words W ∈ SS(M) and W ′ ∈ SS(M ′) such
that W = W ′, thus M and M ′ are isomorphic due to theorem 1. 2

Note that a direct consequence of theorem 1 and theorem 2 is that for
two non isomorphic maps M and M ′, SS(M) ∩ SS(M ′) = ∅.

The Set Signature of a map M may be represented by a lexicographical
tree which groups common prefixes of words.
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{< 3, 0, 1, 0, 4, 0, 2, 5, 7, 4, 5, 0, 6, 0 >,
< 3, 0, 1, 0, 4, 5, 2, 0, 7, 3, 5, 0, 6, 0 >,
< 3, 0, 1, 4, 2, 0, 6, 2, 4, 0, 7, 0, 5, 0 >,
< 3, 4, 1, 0, 2, 0, 6, 1, 4, 0, 7, 0, 5, 0 >,
< 3, 4, 1, 0, 5, 0, 7, 1, 2, 0, 4, 0, 6, 0 >,
< 3, 0, 1, 0, 2, 4, 6, 3, 4, 0, 7, 0, 5, 0 >,
< 3, 0, 1, 5, 4, 0, 2, 0, 7, 2, 5, 0, 6, 0 >}
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Figure 4: Set Signature of the map of Fig. 3. On the left, the set of words SS(M), on the
right, the tree TSS(M) (for each node u, l(u) is displayed above u).

Definition 8 (Set Signature Tree of a map). Given an n-mapM = (D, β1, . . . , βn),
the tree associated with the Set Signature of M is the tree TSS(M) such that

• every node u except the root has a label l(u) which is an integer ranging
between 0 and |D|; we note w(u) the word obtained by concatening all
these labels along the path from the root to u;

• for every node u, all the children of u have different labels;

• there are |SS(M)| leaves and for every leaf u, we have w(u) ∈ SS(M).

For example, the Set Signature Tree of the map displayed in Fig. 3 is
displayed in Fig. 4.

Property 1. The space complexity of the Set Signature Tree TSS(M) of a
map M is O(n · |D|2).

Proof. The tree contains one leaf for each word in the signature, i.e., at
most |D| leaves, and the length of each path from the root to a leaf is n · |D|.
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Hence, the tree has O(n · |D|2) nodes. At each node u of the tree, we use
a list to memorize all its children. The sum of the sizes of all lists is equal
to the number of edges of the tree which is equal to the number of its nodes
minus one. 2

Property 2. The time complexity for building the Set Signature Tree TSS(M)
of a map M is O(n · |D|2).

Proof. The tree can be built in an incremental way: starting from the tree
which only contains the root, we iteratively add WBFL(M,d) to it, for every
dart d ∈ D. The time complexity for computing a word is O(n · |D|). The
time complexity for adding it to the current tree is also O(n · |D|). Indeed,
the length of a word is n · |D|. For each label x of the word, we mainly have
to decide if the current node of the tree has a child u such that l(u) = x. This
is done in linear time with respect to the number of children of the current
node as we use lists to memorize node children. A node has at most |D|+ 1
children. However, the sum of the number of children of all nodes between
the root and a leaf is bounded by the length of the path between the root
and a leaf plus the number of leaves, i.e., n · |D|+ |D|. 2

Property 3. Given an n-map M = (D, β1, . . . , βn) and the Set Signature
Tree TSS(M ′) of another map M ′, the complexity of deciding of the isomor-
phism between M and M ′ is O(n · |D|).

Proof. To decide of the isomorphism, we build a breadth first labelling,
starting from any dart d ∈ D, and decide if WBFL(M,d) corresponds to a
path from the root to a leaf of the tree. This is done in linear time with
respect to the length of the word (again, if a node of the tree may have up
to |D| + 1 children, the sum of the number of children of all nodes between
the root and a leaf is bounded by n · |D|+ |D|). 2

Note that we can check that the word corresponds to a path in the tree
during the construction of the word so that we can stop the construction as
soon as it does not match a branch in the tree. Note also that this algorithm
is optimal. Indeed, to decide of the isomorphism between two maps we have
to check if f(βi(d)) = β′i(f(d)) for every dart d ∈ |D| and every dimension
i ∈ {1, . . . , n}. This cannot be done in less than O(n · |D|).
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3.3. Word Signature of a connected map
The lexicographical order is a strict total order on the words of a Set

Signature, and we have shown that if two Set Signatures share one word,
then they are equal. Hence, we may define a map signature by considering
the smallest word of the Set Signature.

Definition 9 (Word Signature). Given a map M , the Word Signature of
M is, WS(M) = min(SS(M)).

Example 4. The Word Signature of the map displayed in Fig. 3 is

WS(M) =< 3, 0, 1, 0, 2, 4, 6, 3, 4, 0, 7, 0, 5, 0 >

Property 4. The space complexity of a Word Signature is O(n · |D|).
Algorithm for computing WS(M). The Word Signature of a map M is built
by calling BFL(M,d) for each dart d ∈ D, and keeping the smallest word
with respect to the lexicographical order. The time complexity for computing
the Word Signature is O(n · |D|2). Note that this process may be improved
(without changing the worst case complexity) by incrementally comparing
the word in construction with the current smallest word and stopping the
construction whenever it becomes greater.

Property 5. Given an n-map M = (D, β1, . . . , βn) and the Word Signature
WS(M ′) of another map M ′, we can decide of the isomorphism between M
and M ′ in O(n · |D|2).
Proof. To decide of the isomorphism, we have to build breadth first la-
bellings, starting from every different dart d ∈ D, until either WBFL(M,d) =
WS(M ′) (M is isomorphic to M ′) or all darts have been tried (M is not
isomorphic to M ′). In the worst case, we have to build |D| labellings so that
the overall time complexity is O(n · |D|2). 2

4. Signatures of databases of connected maps

Map signatures can be used to decide of the isomorphism of two maps.
However, in many cases, we have to compare a map M not only with one
other map but with a whole database of maps in order to search for maps
isomorphic to M . To this aim, we define the signature of a database of maps.
This signature actually merges all the signatures of the maps of the database
into a single tree. We can either consider Set or Word Signatures.

In this section, we only consider connected maps; the extension of this
work to non connected maps is discussed in Section 5.
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4.1. Set Signature of a database of maps

We can model a database B = {M1, . . . ,Mk} of k n-maps by a list of k
independent Set Signature Trees. Given a new n-map M , we can search for
an isomorphic map in B in O(k · n · |D|) by iteratively searching for M in
each of these trees. This complexity can be improved by merging the k trees
into a single tree.

If all maps in the database have the same number of darts, then all
branches (between the root and a leaf) have the same length in all trees. In
this case, all branches also have the same length in the merged tree and we
simply have to memorize, for every leaf u, the set of maps such that w(u)
belongs to the Set Signature of the map (the database may contain different
maps which are isomorphic so that a same leaf may correspond to several
maps).

However, if the number of darts is different from a map to another, then
we have to merge trees whose branches have different lengths. In this case,
it may happen that the word associated with a leaf in a tree is a prefix of
the word associated with another leaf of another tree so that, when merging
these two trees, a word may end on a node which is not a leaf. Hence, for
each node u of the tree, we memorize the set m(u) of maps such that w(u)
belongs to the Set Signature of the map.

Definition 10 (Set Signature Tree of a database of maps). Let B =
{M1, . . . ,Mk} be a database of k n-maps and t be the maximum number of
darts of the maps of B. The Set Signature Tree of B is the tree TSS(B) such
that

• every node u except the root has a label l(u) such that l(u) is an
integer ranging between 0 and t; we note w(u) the word obtained by
concatening every label l(v) of every node v along the path from the
root to u;

• for every node u, all the children of u have different labels;

• every node u except the root is associated with a set m(u) defined by

m(u) = {i ∈ {1, . . . , k} | w(u) ∈ SS(M i)}

Figure 5 displays an example of Set Signature Tree for a database com-
posed of 3 maps.
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M² :
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∅1

{M2,M3}0

∅2

{M1}0

∅2

∅0
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∅3
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{M1}0

∅3
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∅1

∅0

∅0

{M1}0

Figure 5: A database composed of 3 maps (left part) and its Set Signature Tree (right
part). For each node u, the label l(u) is displayed on the left of u whereas m(u) is displayed
in the node.

Property 6. The space complexity of the Set Signature Tree TSS(B) of a
database B is O(k · n · t2).

Proof. The tree contains at most k · t leaves (one for each different word
in a Set Signature of a map), and the length of each path from the root to a
leaf is bounded by n · t. Hence, the number of nodes of the tree is bounded
by k · n · t2. At each node u of the tree, we use a list to memorize all its
children. 2

Property 7. The time complexity for building the Set Signature Tree TSS(B)
of a database B is O(k · n · t3).

Proof. The tree can be built in an incremental way by iteratively adding
each word of each Set Signature. There are O(k · t) words to be added to the
tree and the length of a word is in O(n · t). For each label x of the word, we
mainly have to decide if the current node of the tree has a child u such that
l(u) = x. As we use lists to memorize node children, this is done in linear
time with respect to the number of children of the current node, and a node
may have at most t+ 1 children. 2
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This complexity is based on a worst case: if a node may have at most t+1
children in the Set Signature Tree, we shall experimentally show in Section
4.3 that, on randomly generated maps, a node has only very few children.

Property 8. Given an n-map M = (D, β1, . . . , βn) and the Set Signature
Tree TSS(B) of a database B, the complexity of searching for all maps of B
which are isomorphic to M is O(n · t2), where t is the maximum number of
darts of the maps of B.

Proof. To search for all maps isomorphic to M , we build a breadth first
labelling, starting from any dart d ∈ D. This is done in O(n · t). Then, we
search for a node u of the tree such that w(u) = WBFL(M,d): if this node
exists, then m(u) gives the set of maps of B which are isomorphic to M ;
otherwise, no map of B is isomorphic to M . To search for a node u such that
w(u) = WBFL(M,d), we have to search for each symbol wi of WBFL(M,d) if
the corresponding node in the tree has a child labelled by wi. As each node
has at most t + 1 children, and WBFL(M,d) has at most n · t symbols, the
whole step is done in O(n · t2). 2

4.2. Word Signature of a database of maps

We can also model a database of n-maps by a tree which contains the
Word Signatures of the maps.

Definition 11 (Word Signature Tree of a database of maps). LetB =
{M1, . . . ,Mk} be a database of k n-maps and let t be the maximum number
of darts of the maps of B. The Word Signature Tree of B is the tree TWS(B)
such that

• every node u except the root has a label l(u) such that l(u) is an
integer ranging between 0 and t; we note w(u) the word obtained by
concatening every label l(v) of every node v along the path from the
root to u;

• for every node u, all the children of u have different labels;

• every node u except the root is associated with a set m(u) defined by

m(u) = {i ∈ {1, . . . , k} | w(u) = WS(M i)}
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Figure 6: Example of a Word Signature Tree representing the maps
M1,M2,M3,M4,M5,M6, and M7.

Figure 6 shows an example of a database of maps represented by a Word
Signature Tree.

Property 9. The space complexity of the Word Signature Tree TWS(B) of
a database B is O(k · n · t).

Proof. The tree contains at most k leaves (one for each different map of
the database), and the length of each path from the root to a leaf is bounded
by n · t. Hence, the number of nodes of the tree is bounded by k · n · t. At
each node u of the tree, we use a list to memorize all its children. 2

Property 10. The time complexity for building the Word Signature Tree
TSS(B) of a database B is O(k · n · t2).

Proof. The tree can be built in an incremental way by iteratively adding
each word of each Set Signature. There are O(k) words to be added to the
tree and each word is computed in O(n·t2). The length of a word if in O(n·t).
For each label x of the word, we mainly have to decide if the current node of
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the tree has a child u such that l(u) = x. As we use lists to memorize node
children, this is done in linear time with respect to the number of children of
the current node, and a node may have at most t+ 1 children. 2

Property 11. Given an n-mapM = (D, β1, . . . , βn) and the Word Signature
Tree TWS(B) of a database B, the complexity of searching for all maps of B
which are isomorphic to M is O(n · t2).

Proof. To search for all maps isomorphic to M , we build the Word Signa-
ture WS(M). This is done in O(n · t2). Then, we search for a node u of the
tree such that w(u) = WS(M) just like in the Set Signature Tree. This is
done in O(n · t2). 2

4.3. Number of children of the nodes of Set and Word Signature Trees

The time complexity of the construction of Set and Word Signature Trees
as well as the time complexity of searching for a map in a tree depend on the
number of children of the nodes of the trees. Indeed, the different children
of a node are memorized in a list so that the search for a child with a given
label is done in linear time with respect to the number of children. A simple
upper bound on the number of children of a node in a signature tree is given
by the number of different labels (i.e., t+1 if the largest map of the database
has t darts) as all children must have a different label.

In this section, we first show that it is possible to build a database of
maps such that the number of children of nodes are of the same order as this
upper bound. Then, we experimentally show that the number of children is
much lower for randomly generated databases of maps.

Worst case study. For a database of k n-maps of t darts, the Set Signature
Tree has O(t · k) leaves and the Word Signature Tree has O(k) leaves; in
both cases, the length of branches from the root to leaves is in O(n · t).

Let us consider a node u labelled by dart l(u) and let i be the depth of
u in the tree (i.e., the length of the path between the root and u). If the
number of children of u is bounded by the number of different labels (i.e.,
t + 1), it is also bounded by the number of darts that have been discovered
when dart l(u) has been removed from the queue Q (line 8 of algorithm 1).
This number is equal to i · n. Indeed, every dart l(v) associated with a node
v between the root and u may discover n new darts. Hence, the number of
children of u is bounded by min(t, i · n).
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This bound may be slighly improved by taking into account the fact that,
for every dimension j ∈ {1, . . . , n}, βj is a permutation so that every dart
appears at most n times in a word. More precisely, if node u is at depth i,
then, for every dimension, the number of different darts that have been used
in w(u) is i/n, so that the number of children of u should be decreased by
i/n. Hence, a more precise bound on the number of children of a node at
depth i is B(i) = min(t, i · n)− i/n.

We now show that it is possible to build a database of maps such that
the number of children of a node at depth i in the signature tree reaches this
bound B(i). To do so, the number of visited darts must increase faster than
the number of used darts. Thus, as much as possible, a dart must be linked
with only one visited dart and with new darts in all the other dimensions.
Then, for a given depth, we can create as many branches as there are free
darts for a given dimension that are already discovered but not yet used.
Figure 7 shows an example of a database where the number of children of a
node is equal to 6. In this example, we can 1-sew dart 18 either to ε or to
darts 17, 19, 21, or 23 or to a new dart. Each case will create a new branch
at depth (18∗2). But we cannot 1-sew dart 18 to darts 3, 5, 9, or 11 because
it will change the labelling and create a new branch before depth (18 ∗ 2).
Then, for each branch we can generate height new branches, we can 2-sew
dart 18 to ε or darts 19, 20, 21, 22, 23, or 24 or a new dart. In this way
it is possible to create as many branches as we want which will have large
numbers of children.

Number of children in randomly generated maps. If it is possible to build a
pathological database for which the number of children reaches the upper
bound, it is worth studying the evolution of this number in practice on ran-
domly generated databases. Hence, Table 1 displays the maximum and the
average number of children of a node depending on (1) the depth i of the
node in the tree; (2) the dimension n of the maps; and (3) the number k of
different maps in the database. For all maps, the number of darts t has been
fixed to 500.

This table shows us that the number of children of a node is much smaller
than the worst case bound: in all the generated databases (which have up
to 10000 different maps of 500 darts), the maximum number of children of a
node is 4 with the Word Signature and 5 with the Set Signature. Note that
the observed degree depends on the depth of the node in the tree: when i is
greater than 100n, nodes nearly always have only one child. The observed
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n k
Word Signature Tree Set Signature Tree

i ∈ [1..10n] i ∈]10n..100n] i ∈]100n..500n] i ∈ [1..10n] i ∈]10n..100n] i ∈]100n..500n]
max avg max avg max avg max avg max avg max avg

2

10 3 1.7 1 1 1 1 4 3.3 3 1.11 1 1
100 4 2.4 2 1.04 1 1 5 3.45 3 1.22 1 1

1000 4 2.55 3 1.12 1 1 5 3.85 4 1.35 - -
10000 4 2.65 3 1.25 1 1 5 3.95 - - - -

3

10 3 1.57 1 1 1 1 3 2.9 2 1.03 1 1
100 3 2.2 2 1 1 1 4 3.03 3 1.13 1 1

1000 3 2.6 2 1.06 1 1 4 3.1 3 1.25 - -
10000 3 2.63 3 1.15 1 1 4 3.57 - - - -

4

10 3 1.53 1 1 1 1 3 2.78 3 1.13 1 1
100 3 1.95 2 1.02 1 1 3 2.78 3 1.28 1 1

1000 3 2.38 3 1.12 1 1 3 2.78 3 1.52 - -
10000 3 2.5 3 1.29 1 1 3 2.8 - - - -

8

10 3 1.28 1 1 1 1 3 2.15 2 1.22 1 1
100 3 1.55 2 1 1 1 3 2.33 3 1.6 2 1.02

1000 3 2.13 3 1.08 1 1 3 1.95 2 1.98 - -
10000 3 2.29 3 1.3 1 1 - - - - - -

Table 1: Maximum and average number of children of a node depending on the depth i in
the tree, the dimension n of the maps and the number of different maps k in the database.
Maps are randomly generated. For Set Signature Tree, - corresponds to databases that
cannot be represented in 16 GB RAM.
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Figure 7: Example of worst case for the number of nodes of a Word Signature Tree. On
the left: a 2-map M. On the right : part of the Word Signature Tree which contains the
six maps obtained from M by 1-sewing dart 18 either to ε or to darts 17, 19, 21, or 23 or
to a new dart.

degree also depends on the number of maps in the database and on the
dimension of the maps: when k increases and/or n decreases, the number of
children slightly increases. Finally, the observed degree is slightly higher in
Set Signature Trees than in Word Signature Trees. This reflects the fact that
the Set Signature Tree may contain t times more branches than the Word
Signature Tree to represent the same database.

5. Signatures of non-connected maps

Signatures introduced in the previous sections are defined for connected
maps. Indeed, if a map is not connected, then the labelling process described
in algorithm 1 cannot label all darts as some darts cannot be reached from
the initial dart.

However, a non connected n-map may be decomposed in a set of disjoint
connected maps in O(n · |D|) by performing successive map traversals until
all darts have been discovered. The signature of a non-connected map is built
from the signatures of its different connected components in a very similar
way as we build signatures for databases of maps.

More precisely, given a non connected map M such that M is composed
of k disjoint connected maps M1, . . . ,Mk. We define the database BM =
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{M1, . . . ,Mk}. The Set Signature of M is defined by the Set Signature
Tree TSS(BM) and its Word Signature is defined by the Word Signature Tree
TWS(BM).

Property 12. Given a new n-map M ′ = (D′, β′1, . . . , β
′
n) and the Set Signa-

ture Tree TSS(BM), we can decide of the isomorphism between M and M ′ in
O(n · |D′|2).

Proof. Indeed, to decide of isomorphism, we can proceed as follows:

1. We decompose M ′ into a set of disjoint connected maps. Let k′ be the
number of connected components. If k′ 6= k then the two maps are
trivially not isomorphic.
This step is done in O(n · |D′|).

2. If k′ = k, let M ′1, . . . ,M ′k be the different connected components of
M ′. For every connected component M ′i, we build a breadth first
labelling, starting from any dart d of M ′i, and decide if WBFL(M ′i, d)
corresponds to a path from the root to a node u of the tree. If this is
not the case, then the two maps are not isomorphic. Otherwise, let us
note mi = m(u).
This step is done in O(n · |D′i|) for every connected component i (see
Property 8).

3. We have to check, for every connected component M ′i, that the number
of connected components of M ′ which are isomorphic to M ′i is equal
to the number of connected components of M which are isomorphic to
M ′i, i.e., that |mi| = |{j ∈ {1, . . . , k}, |mi| = |mj|}|.
This step may be done in O(k) by using counters.

Property 13. Given a new n-map M ′ = (D′, β′1, . . . , β
′
n) and the Word Sig-

nature Tree TWS(BM), we can decide of the isomorphism between M and M ′

in O(n · |D′|2).

Proof. To decide of isomorphism with a map modelled by a Word Signa-
ture, we proceed like with a Set Signature. The only difference is in step
2: we must first compute the Word Signature of each connected component
M ′i before looking for a node u in the tree such that w(u) is equal to the
Word Signature. The computation of the Word Signature of a connected
component M ′i is done in O(n · |D′i|) so that the complexity of step 2 is not
changed.

21



Finally, we can also define Set and Word Signature Trees of databases
of non-connected maps in a rather straightforward way: we mainly have to
store, for each different non-connected map, the set of its connected compo-
nents.

6. Experimental evaluation

In this section we report some experiments which demonstrate the interest
of using signatures. All the reported experiments have been performed on a
2.26 GHz Intel Xeon E5520 with 16GB RAM.

Using map signatures to represent images. Maps may be extracted from seg-
mented images by using the linear algorithm described in [5]. We obtain the
same map whatever we submit the image to a rotation or a scale-up. Hence,
map signatures may be used to identify images even if they have been rotated
or scaled-up. Table 2 displays 5 images and the number of darts and faces of
the maps extracted from these images. It compares the CPU time needed to
compute Set and Word Signatures of these maps. It shows us that signatures
are very quickly computed, even for rather large maps that have more than
6000 darts.

Image
Darts 3410 6060 1728 4224 1590
Faces 590 1044 295 716 275
SS(M) 0.83 2.21 0.26 1.14 0.26
WS(M) 0.26 0.53 0.15 0.32 0.16

Table 2: From images to signatures: the first line displays images, the next two lines give
the number of darts and faces in the corresponding maps; the last two lines give the CPU
time in seconds for computing the Set and Word Signatures of these maps.

Scalability of signature constructions. To compare scale-up properties of Set
and Word Signatures, we have performed experiments on randomly gener-
ated maps with exponentially growing sizes (with 1000, 2000, 4000 and 8000
darts). Table 3 first compares time complexities for constructing Set and
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Word Signatures. To build the Set Signature, one has to perform a complete
breadth first traversal for each dart so that the total number of visited darts
is always equal to |D|2 and the time complexity does not depend on the ini-
tial dart chosen to start the traversal. To build a Word Signature, one also
has to perform a breadth first traversal for each dart but each traversal may
be stopped as soon as the corresponding word is greater than the smallest
word computed so far. Hence, if the worst case complexity is quadratic, Ta-
ble 3 shows that the CPU time needed to compute a Word Signature is sub
quadratic in practice. Indeed, the average number of darts visited for each
traversal varies from 19 or so for the map with 1000 darts to 27 or so for
the map with 8000 darts. Note that, if the number of visited darts actually
depends on the order in which initial darts are chosen, standard deviations
are rather low.

Set Signature Word Signature

Time |V isited darts|
|D| Time |V isited darts|

|D|
|D| avg avg avg (sdv)

1000 0.054 1000 0.047 19.48 (3.24)
2000 0.228 2000 0.084 19.27 (3.71)
4000 1.056 4000 0.262 23.78 (5.31)
8000 4.088 8000 0.352 26.91 (4.88)

Table 3: Comparison of time complexities for computing Set and Word Signatures of
a map. Each line successively gives the number of darts |D| of the map and, for each
signature, the CPU time (in seconds) and the ratio between the number of visited darts
and |D|. For the Word Signature, we give average results (and standard deviations)
obtained with different orders over the set of darts.

Scale-up properties of signatures for deciding of isomorphism. We now com-
pare Set and Word Signatures for deciding if a new map M ′ is isomorphic to
a map M described by its signature.

When using the Set Signature SS(M), the worst case complexity is
O(n · |D|). Table 4 shows that, when M ′ and M are isomorphic (when
the percentage of different darts is 0%), the algorithm visits each dart ex-
actly once. However, when M and M ′ are not isomorphic, the breadth first
traversal of M ′ may be stopped as soon as no branch of the lexicographical
tree matches the word under construction. Table 4 shows that the more
different M and M ′, the smaller the number of visited darts.
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When using the Word Signature WS(M), the worst case complexity is
O(n · |D|2) as one has to perform a breadth first traversal starting from every
dart of M ′. However, one may stop each breadth first traversal as soon as
the word under construction is different from the signature. Hence, Table 4
shows that the more different M and M ′, the smaller the number of visited
darts. In practice, each dart is visited from 2 to 4 times. Interestingly, this
ratio does not significantly vary when increasing the size of the map.

Table 4 also compares these results with the isomorphism algorithm of [6].
This algorithm decides of isomorphism of 2 maps in O(n · |D|2). It builds a
matching by performing a traversal of M and M ′ starting from a dart d of M
and every dart d′ of M ′. The Word Signature and the isomorphism algorithm
have the same time complexities and they exhibit very similar CPU times.
The main interest of the Word Signature lies in the fact that the signatures
of the maps in a database can be merged into a Word Signature Tree, thus
allowing us to very efficiently search for a map in a database (whatever the
size of the database is).

Scale-up properties for searching for a map in a database of maps. To com-
pare scale-up properties of Set and Word Signature Trees for representing a
database of maps, we have randomly generated seven databases of 2-maps.
Each database contains 100 non-isomorphic 2-maps and each 2-map respec-
tively has 100, 200, 500, 1000, 2000, 4000 and 8000 darts. Table 5 shows us
the interest of merging the signatures of the different maps into a single tree
(column Tree) compared to keeping every signature independently (column
Indpt). Merging the different signatures into a single tree allows us to save
memory, but the gain is small (less than 10%). The main interest lies in the
speed-up of the process of searching for a map into the database: CPU times
are from 50 to 100 times as small when merging all signatures into a single
tree. Indeed, searching for a map in the merged tree depends on the size of
the map but not on the number of maps in the database. As a comparison,
when storing each signature independently, the searched map must be com-
pared with every signature of the database independently so the more maps
are in the database, the longer the search lasts.

Table 5 also shows us that searching for a map in a Set Signature Tree is
much faster than searching for a map in a Word Signature Tree. However,
the space complexity of the Set Signature Tree is also an order higher: with
our computer (16GB RAM), we cannot store the Set Signature Tree of a
database of 100 maps of 2000 darts, while there is no problem with a Word
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Signature Tree. Hence, Set Signature Trees should be used only for rather
small databases, when CPU time is a critical issue. Otherwise, one has better
use Word Signature Trees. Note that the time spent to search for a map in
a Set Signature Tree is much shorter when the map is not in the database.
Indeed, we check that the word associated with the searched map corresponds
to a path in the tree during the construction of the word so that we stop the
construction as soon as it does not match a branch in the tree. When using
the Word Signature Tree, times are not significantly different whenever the
searched map belongs to the database or not. Indeed, in both cases, we have
to search for the smallest word (by calling BFL for every dart of the searched
map) before searching for this word in the tree.

Finally, table 6 allows us to study scale-up properties of the Word Sig-
nature Tree when increasing the number k of maps in the database (we do
not report results with the Set Signature Tree as memory is rather quickly
exceeded). It shows us that the size of the tree increases linearly with the
number of maps, and that the time to search for a map in the database is
rather constant and does not depend on the number of maps in the database.
Hence, Word Signature Trees allow us to find a map of 1,000 darts into a
database of 100,000 maps of 1,000 darts in 0.003 second.

7. Conclusion

In this paper, we have introduced a Set and a Word Signature of combi-
natorial maps. The space complexity of the Set Signature is quadratic and
it allows us to decide of isomorphism in linear time in the worst case. The
space complexity of the Word Signature is linear and it allows us to decide
of isomorphism in quadratic time in the worst case. Experimental results
on randomly generated maps have shown us that CPU times actually grow
sub-linearly for the Set Signature and linearly for the Word Signature.

We have also shown that these signatures can be merged into trees in order
to efficiently search for a map into a database of maps. Experimental results
on randomly generated maps have shown us that merging Set Signatures
allows us to find a map quicker, but it also requires more memory so that it
cannot be used for large databases.

Further work mainly concern the use of these signatures to search for
frequent submaps in a database of maps. Our goal is to use these frequent
submaps to characterize classes of maps modeling 2D or 3D images.
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Set Signature Word Signature Direct Isomorphism

|D| Time |V isited darts|
|D| Time |V isited darts|

|D| Time |V isited darts|
|D|

avg avg (sdv) avg avg (sdv) avg avg (sdv)

10
00

0% 0.000099 1.000 (0.000) 0.035 2.13 (0.64) 0.030 2.09 (0.72)
1% 0.000091 0.298 (0.214) 0.060 3.71 (1.48) 0.058 3.58 (1.51)

10% 0.000086 0.026 (0.021) 0.059 3.41 (1.34) 0.058 3.42 (1.53)
50% 0.000072 0.015 (0.006) 0.056 1.88 (1.19) 0.056 1.64 (1.08)
99% 0.000068 0.011 (0.004) 0.050 1.59 (0.90) 0.055 1.55 (0.93)

20
00

0% 0.000215 1.000 (0.000) 0.084 2.59 (1.47) 0.076 2.55 (1.62)
1% 0.000161 0.069 (0.081) 0.095 3.08 (1.79) 0.102 3.22 (1.64)

10% 0.000130 0.019 (0.032) 0.076 2.92 (1.76) 0.084 3.01 (1.72)
50% 0.000098 0.006 (0.005) 0.073 1.77 (1.40) 0.067 1.56 (1.43)
99% 0.000097 0.006 (0.003) 0.069 1.38 (0.83) 0.066 1.38 (0.93)

40
00

0% 0.000341 1.000 (0.000) 0.262 2.46 (1.30) 0.212 2.31 (1.41)
1% 0.000292 0.015 (0.037) 0.434 3.09 (1.89) 0.451 3.45 (1.58)

10% 0.000222 0.005 (0.005) 0.329 2.57 (1.81) 0.331 3.02 (1.43)
50% 0.000178 0.005 (0.006) 0.286 2.03 (1.41) 0.305 2.54 (1.20)
99% 0.000164 0.005 (0.003) 0.273 1.43 (0.85) 0.265 1.28 (1.09)

80
00

0% 0.000697 1.000 (0.000) 0.352 2.23 (1.04) 0.450 2.62 (0.98)
1% 0.000556 0.032 (0.178) 1.451 3.11 (1.86) 1.397 2.99 (1.62)

10% 0.000439 0.003 (0.009) 1.343 3.05 (1.81) 1.263 2.89 (1.45)
50% 0.000296 0.002 (0.003) 1.042 2.44 (1.25) 1.101 2.46 1.31
99% 0.000353 0.003 (0.003) 0.993 1.53 (1.02) 0.910 1.48 (1.14)

Table 4: Comparison of scale-up properties of Set and Word Signatures for deciding if a
new map M ′ is isomorphic to a map M given the signature of M . M and M ′ have the
same number of darts, but M ′ is obtained from M by removing and then adding a given
percentage of darts. When this percentage is 0%, M and M ′ are isomorphic. Each line
successively gives: the number of darts of M , the percentage of different darts between
M and M ′, and, for each signature, the time and the ratio between the number of visited
darts and the number of darts of M . We give average results (and standard deviations)
obtained when changing the initial dart of M ′. The last 3 columns give results when using
the isomorphism algorithm of [6].
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Number of nodes Time
Set Signature Word Signature Set Signature Word Signature

|D| Indpt Tree Indpt Tree Indpt Tree Indpt Tree
100 1,810,207 1,666,663 20,000 16,832 0.000207 0.000004 0.032033 0.000097
200 7,558,050 7,221,234 40,000 36,551 0.000244 0.000007 0.020617 0.000225
500 48,675,443 47,735,334 100,000 95,929 0.000312 0.000015 0.751917 0.000956

1,000 197,031,371 195,086,897 200,000 195,771 0.000451 0.000030 0.303131 0.003803
2,000 − − 400,000 394,745 − − 1.337401 0.014879
4,000 − − 800,000 794,896 − − 4.608052 0.053965
8,000 − − 1,600,000 1,594,375 − − 15.93316 0.216157

Table 5: Comparison between word and Set Signature Trees to search for a map in a
database. For each signature we compare performences obtained when the different map
signatures are independent (column Indpt and when the signatures have been merged
into a single tree (column Tree). Each database contains 100 different maps randomly
generated. Each line displays: the number of darts of each map of the database and, for
each signature, the memory used (number of nodes in the tree) and the time in seconds
to search for a map in the database (average on 200 searches, where 100 maps are in the
database and 100 aren’t) .

Maps Number of nodes Time
100 195,771 0.003046

1,000 1,933,461 0.003053
10,000 19,311,582 0.003053

100,000 192,171,529 0.003046

Table 6: Scale-up properties of the Word Signature Tree for searching for a map in a
database when increasing the number of maps in the database. Each line displays: the
number of maps in the database (each map has 1000 darts), the memory used (number of
nodes in the tree) and the time in seconds to search for a map in the database (average
on 200 searches).
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