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Adaptive wavelet estimation of a biased density for strongly mixing sequences

Introduction

In the standard density estimation problem, we observe n random variables X 1 , . . . , X n with common density function f . The goal is to estimate f from X 1 , . . . , X n . However, in some applications, X 1 , . . . , X n are not accessible; we only have n random variables Z 1 , . . . , Z n with the common density:

g(x) = µ -1 w(x)f (x), (1.1) 
where w denotes a known positive function and µ is the unknown normalization parameter: µ = w(y)f (y)dy. Our goal is to estimate the "biased density" f from Z 1 , . . . , Z n . Practical examples can be found in e.g. [START_REF] Buckland | Distance Sampling: Estimating Abundance of Biological Populations[END_REF], [START_REF] Cox | Some sampling problems in technology[END_REF], [START_REF] Heckman | Selection bias and self-selection[END_REF] and the survey by [START_REF] Patil | The weighted distributions: A survey of their applications[END_REF].

The standard i.i.d. case has been investigated in several papers. See e.g. [START_REF] El Barmi | Transformation-based estimation for weighted distributions[END_REF], [START_REF] Efromovich | Density estimation for biased data[END_REF], [START_REF] Brunel | Nonparametric density estimation in presence of bias and censoring[END_REF], [START_REF] Chesneau | Wavelet block thresholding for density estimation in the presence of bias[END_REF] and [START_REF] Ramirez | density estimation for stratified sizebiased sample[END_REF]. To the best of our knowledge, the dependent case has only Université de Caen, LMNO, Campus II, Science 3, 14032, Caen, France 1 been examined in [START_REF] Doosti | Wavelet linear density estimation for associated stratified size-biased sample[END_REF] for associated (positively or negatively) Z 1 , . . . , Z n . In this paper, we study another dependent (and realistic) structure which has not been addressed earlier: we suppose that Z 1 , . . . , Z n is a sample of a strictly stationary and exponentially strongly mixing process (Z i ) i∈Z (to be defined in Section 2).

Such a dependence condition arises for a wide class of GARCH-type time series models classically encountered in finance. See e.g. [START_REF] Doukhan | Mixing. Properties and Examples[END_REF] and [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF] for an overview.

We focus our attention on the wavelet methods because they provide a coherent set of procedures that are spatially adaptive and near optimal over a wide range of function spaces. See e.g. [START_REF] Antoniadis | Wavelets in statistics: a review (with discussion)[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] for a detailed coverage of wavelet theory in statistics. We develop two new wavelet estimators: a linear non-adaptive based on projections and a non-linear adaptive using the hard thresholding rule introduced by [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF]. We measure their performances by determining upper bounds of the mean integrated squared error (MISE) over Besov balls (to be defined in Section 3). We prove that our adaptive estimator attains a sharp rate of convergence, close to the one attained by the linear wavelet estimator (constructed in a non-adaptive fashion to minimize the MISE).

The rest of the paper is organized as follows. Section 2 is devoted to the assumptions on the model. In Section 3, we present wavelets and Besov balls. The considered wavelet estimators are defined in Section 4. Section 5 is devoted to the results. The proofs are postponed in Section 6.

Assumptions on the model

We assume that Z 1 , . . . , Z n coming from a strictly stationary process (Z i ) i∈Z . For any m ∈ Z, we define the m-th strongly mixing coefficient of (Z i ) i∈Z by

a m = sup (A,B)∈F Z -∞,0 ×F Z m,∞ |P(A ∩ B) -P(A)P(B)| ,
where, for any u ∈ Z, F Z -∞,u is the σ-algebra generated by the random variables . . . , Z u-1 , Z u and F Z u,∞ is the σ-algebra generated by the random variables Z u , Z u+1 , . . .. We consider the exponentially strongly mixing case i.e. there exist three known constants, γ > 0, c > 0 and θ > 0, such that, for any m ∈ Z,

a m ≤ γexp(-c|m| θ ). (2.1)
This assumption is satisfied by a large class of GARCH processes. See e.g. [START_REF] Withers | Conditions for linear processes to be strong-mixing[END_REF],

[13], [START_REF] Modha | Minimum complexity regression estimation with weakly dependent observations[END_REF] and [START_REF] Carrasco | Mixing and moment properties of various GARCH and stochastic volatility models[END_REF].

Remark that, when θ → ∞, we are in the standard i.i.d. case.

W.o.l.g., the support of the functions f and w are [0, 1].

There exist two constants, c > 0 and C > 0, such that

c ≤ inf x∈[0,1] w(x), sup x∈[0,1] w(x) ≤ C. (2.2)
There exist a (known

) constant C > 0 such that sup x∈[0,1] f (x) ≤ C. (2.3)
For any m ∈ {1, . . . , n}, let g (Z 0 ,Zm) be the density of (Z 0 , Z m ). There exists a constant C > 0 such that sup m∈{1,...,n} sup

(x,y)∈[0,1] 2 |g (Z 0 ,Zm) (x, y) -g(x)g(y)| ≤ C. (2.4)
The two first boundedness assumptions are standard in the estimation of biased densities. See e.g. [START_REF] Efromovich | Density estimation for biased data[END_REF], [START_REF] Brunel | Nonparametric density estimation in presence of bias and censoring[END_REF] and [START_REF] Chesneau | Wavelet block thresholding for density estimation in the presence of bias[END_REF].

Wavelets and Besov balls

Let N be an integer, φ and ψ be the initial wavelets of dbN (so supp(φ) =

supp(ψ) = [1 -N, N ]). Set φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
With an appropriate treatments at the boundaries, there exists an integer τ satisfying 2 τ ≥ 2N such that the collection B = {φ τ,k (.), k ∈ {0, . . . , 2 τ -1}; ψ j,k (.); j ∈ N -{0, . . . , τ -1}, k ∈ {0, . . . , 2 j -1}}, is an orthonormal basis of L 2 ([0, 1]) (the space of square-integrable functions on [0, 1]). See [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF].

For any integer ≥ τ , any h ∈ L 2 ([0, 1]) can be expanded on B as

h(x) = 2 -1 k=0 α ,k φ ,k (x) + ∞ j= 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where α j,k and β j,k are the wavelet coefficients of h defined by

α j,k = 1 0 h(x)φ j,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx. (3.1)
Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to B s p,r (M ) if and only if there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients (3.1) satisfy

2 τ (1/2-1/p) 2 τ -1 k=0 |α τ,k | p 1/p +    ∞ j=τ   2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    r    1/r ≤ M * .
In this expression, s is a smoothness parameter and p and r are norm parameters.

For a particular choice of s, p and r, B s p,r (M ) contains some classical sets of functions as the Hölder and Sobolev balls. See [START_REF] Meyer | Wavelets and Operators[END_REF].

Estimators

Firstly, we consider the following estimator for µ:

µ = 1 n n i=1 1 w(Z i ) -1 . (4.1)
It is obtained by the method of moments (see Proposition 6.1 below).

Then, for any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, we estimate the unknown wavelet coefficient

• α j,k = 1 0 f (x)φ j,k (x)dx by α j,k = µ n n i=1 φ j,k (Z i ) w(Z i ) , (4.2) 
• β j,k = 1 0 f (x)ψ j,k (x)dx by

β j,k = µ n n i=1 ψ j,k (Z i ) w(Z i ) . (4.3) 
Remark that they are those considered in the i.i.d. case (see e.g. [START_REF] Chesneau | Wavelet block thresholding for density estimation in the presence of bias[END_REF] and [START_REF] Ramirez | density estimation for stratified sizebiased sample[END_REF]).

Their statistical properties, with our dependent structure, are investigated in Propositions 6.1, 6.2 and 6.3 below.

Assuming that f ∈ B s p,r (M ) with p ≥ 2, we define the linear estimator f L by

f L (x) = 2 j 0 -1 k=0 α j 0 ,k φ j 0 ,k (x), x ∈ [0, 1], (4.4) 
where α j,k is defined by (4.2) and j 0 is the integer satisfying

1 2 n 1/(2s+1) < 2 j 0 ≤ n 1/(2s+1) .
For a survey on wavelet linear estimators for various density models, we refer to [START_REF] Chaubey | On Linear Wavelet Density Estimation: Some Recent Developments[END_REF]. For the consideration of strongly mixing sequences, see e.g. [START_REF] Leblanc | Wavelet linear density estimator for a discrete time stochastic process: L p -losses[END_REF] and [START_REF] Masry | Probability density estimation from dependent observations using wavelet orthonormal bases[END_REF].

We define the hard thresholding estimator f H by

f H (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + j 1 j=τ 2 j -1 k=0 β j,k 1I {| β j,k |≥κλn} ψ j,k (x), (4.5) 
x ∈ [0, 1], where α τ,k is defined by (4.2), β j,k by (4.3), for any random event A, 1I A is the indicator function on A, j 1 is the integer satisfying

1 2 n (ln n) 1+1/θ < 2 j 1 ≤ n (ln n) 1+1/θ ,
θ is the one in (2.1), κ is a large enough constant (the one in Proposition 6.3 below) and λ n is the threshold:

λ n = (ln n) 1+1/θ n . (4.6)
The feature of the hard thresholding estimator is to only estimate the "large" unknown wavelet coefficients of f which contain his main characteristics.

For the construction of hard thresholding wavelet estimators in the standard density model, see e.g. [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] and [START_REF] Delyon | On minimax wavelet estimators[END_REF].

Results

Theorem 5.1 (Upper bound for f L ) Consider (1.1) under the assumptions of Section 2. Suppose that f ∈ B s p,r (M ) with s > 0, p ≥ 2 and r ≥ 1. Let f L be (4.4). Then there exists a constant C > 0 such that

E 1 0 f L (x) -f (x) 2 dx ≤ Cn -2s/(2s+1) .
The proof of Theorem 5.1 uses a suitable decomposition of the MISE and a moment inequality on (4.2) (see Proposition 6.2 below).

Remark that n -2s/(2s+1) is the optimal rate of convergence (in the minimax sense) for the standard density model in the independent case (see e.g. [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF] and [START_REF] Delyon | On minimax wavelet estimators[END_REF]).

Theorem 5.2 (Upper bound for

f H ) Consider (1.1) under the assumptions of Section 2. Let f H be (4.5). Suppose that f ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}. Then there exists a constant C > 0 such that E 1 0 f H (x) -f (x) 2 dx ≤ C (ln n) 1+1/θ n 2s/(2s+1)
.

The proof of Theorem 5.2 uses a suitable decomposition of the MISE, some moment inequalities on (4.2) and (4.3) (see Proposition 6.2 below), and a concentration inequality on (4.3) (see Proposition 6.3 below).

Theorem 5.2 shows that, besides being adaptive, f H attains a rate of convergence close to the one of f L . The only difference is the logarithmic term

(ln n) (1+1/θ)(2s/(2s+1)) .
Note that, if we restrict our study to the independent case i.e. θ → ∞, the rate of convergence attained by f H becomes the standard one: (log n/n) 2s/(2s+1) .

See e.g. [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF], [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] and [START_REF] Delyon | On minimax wavelet estimators[END_REF].

Proofs

In this section, we consider (1.1) under the assumptions of Section 2. Moreover, C denotes any constant that does not depend on j, k and n. Its value may change from one term to another and may depends on φ or ψ.

Auxiliary results

Lemma 6.1 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let α j,k be (4.2)

and α j,k = 1 0 f (x)φ j,k (x)dx.
Then, under the assumptions of Section 2, there exists a constant C > 0 such that

| α j,k -α j,k | ≤ C µ n n i=1 φ j,k (Z i ) w(Z i ) -α j,k + 1 µ - 1 µ .
This inequality holds for ψ instead of φ (and, a fortiori, β j,k defined by (4.3)

instead of α j,k and β j,k = 1 0 f (x)ψ j,k (x)dx instead of α j,k ).
Proof of Lemma 6.1. We have

α j,k -α j,k = µ µ µ n n i=1 φ j,k (Z i ) w(Z i ) -α j,k + α j,k µ 1 µ - 1 µ . Due to (2.2), we have | µ| ≤ C and | µ/µ| ≤ C. Therefore | α j,k -α j,k | ≤ C µ n n i=1 φ j,k (Z i ) w(Z i ) -α j,k + |α j,k | 1 µ - 1 µ .
Using (2.3) and the Cauchy-Schwarz inequality, we obtain

|α j,k | ≤ 1 0 f (x)|φ j,k (x)|dx ≤ C 1 0 |φ j,k (x)|dx ≤ C 1 0 (φ j,k (x)) 2 dx 1/2 = C. (6.1) Hence | α j,k -α j,k | ≤ C µ n n i=1 φ j,k (Z i ) w(Z i ) -α j,k + 1 µ - 1 µ .
Lemma 6.1 is proved. Proposition 6.1 For any integer j ≥ τ such that 2 j ≤ n and any k ∈ {0, . . . , 2 j -1}, let α j,k = 1 0 f (x)φ j,k (x)dx and µ be (4.1). Then 1. we have

E µ n n i=1 φ j,k (Z i ) w(Z i ) = α j,k , E 1 µ = 1 µ , 2. there exists a constant C > 0 such that V µ n n i=1 φ j,k (Z i ) w(Z i ) ≤ C 1 n , 3. there exists a constant C > 0 such that V 1 µ ≤ C 1 n .
These results hold for ψ instead of φ (and, a fortiori,

β j,k = 1 0 f (x)ψ j,k (x)dx instead of α j,k ).
Proof of Proposition 6.1.

We have

E µ n n i=1 φ j,k (Z i ) w(Z i ) = µE φ j,k (Z 1 ) w(Z 1 ) = µ 1 0 φ j,k (x) w(x) g(x)dx = µ 1 0 φ j,k (x) w(x) µ -1 w(x)f (x)dx = 1 0 f (x)φ j,k (x)dx = α j,k .
Since f is a density, we obtain

E 1 µ = E 1 n n i=1 1 w(Z i ) = E 1 w(Z 1 ) = 1 0 1 w(x) g(x)dx = 1 0 1 w(x) µ -1 w(x)f (x)dx = 1 µ 1 0 f (x)dx = 1 µ .
2. We have

V µ n n i=1 φ j,k (Z i ) w(Z i ) = µ 2 n 2 n v=1 n =1 C φ j,k (Z v ) w(Z v ) , φ j,k (Z ) w(Z ) = µ 2 n V φ j,k (Z 1 ) w(Z 1 ) + 2 µ 2 n 2 n v=2 v-1 =1 C φ j,k (Z v ) w(Z v ) , φ j,k (Z ) w(Z ) ≤ µ 2 n V φ j,k (Z 1 ) w(Z 1 ) + 2 µ 2 n 2 n v=2 v-1 =1 C φ j,k (Z v ) w(Z v ) , φ j,k (Z ) w(Z ) . (6.2)
Using (2.2) and (2.3), we have sup

x∈[0,1] g(x) ≤ C. Hence V φ j,k (Z 1 ) w(Z 1 ) ≤ E φ j,k (Z 1 ) w(Z 1 ) 2 ≤ CE (φ j,k (Z 1 )) 2 = C 1 0 (φ j,k (x)) 2 g(x)dx ≤ C 1 0 (φ j,k (x)) 2 dx = C. (6.
3)

It follows from the stationarity of (Z i ) i∈Z and 2 j ≤ n that

n v=2 v-1 =1 C φ j,k (Z v ) w(Z v ) , φ j,k (Z ) w(Z ) = n m=1 (n -m)C φ j,k (Z 0 ) w(Z 0 ) , φ j,k (Z m ) w(Z m ) ≤ n n m=1 C φ j,k (Z 0 ) w(Z 0 ) , φ j,k (Z m ) w(Z m ) = T 1 + T 2 , (6.4) 
where

T 1 = n 2 j -1 m=1 C φ j,k (Z 0 ) w(Z 0 ) , φ j,k (Z m ) w(Z m )
and

T 2 = n n m=2 j C φ j,k (Z 0 ) w(Z 0 ) , φ j,k (Z m ) w(Z m ) .
Let us now bound T 1 and T 2 .

Upper bound for T 1 . Using (2.2), (2.4) and doing the change a variables y = 2 j x -k, we obtain

C φ j,k (Z 0 ) w(Z 0 ) , φ j,k (Z m ) w(Z m ) = 1 0 1 0 (g (Z 0 ,Zm) (x, y) -g(x)g(y)) φ j,k (x) w(x) φ j,k (y) w(y) dxdy ≤ 1 0 1 0 |g (Z 0 ,Zm) (x, y) -g(x)g(y)| φ j,k (x) w(x) φ j,k (y) w(y) dxdy ≤ C 1 0 |φ j,k (x)|dx 2 = C 2 -j/2 1 0 |φ(x)|dx 2 = C2 -j .
Therefore

T 1 ≤ Cn2 -j 2 j = Cn. (6.5)
Upper bound for T 2 . By the Davydov inequality for strongly mixing processes (see [START_REF] Davydov | The invariance principle for stationary processes[END_REF]), for any q ∈ (0, 1), it holds that

C φ j,k (Z 0 ) w(Z 0 ) , φ j,k (Z m ) w(Z m ) ≤ 10a q m E φ j,k (Z 0 ) w(Z 0 ) 2/(1-q) 1-q ≤ 10a q m sup x∈[0,1] φ j,k (x) w(x) 2q E φ j,k (Z 0 ) w(Z 0 ) 2 1-q 
.

By (2.2), we have sup

x∈[0,1] φ j,k (x) w(x) ≤ C sup x∈[0,1] |φ j,k (x)| ≤ C2 j/2
and, by (6.3),

E φ j,k (Z 0 ) w(Z 0 ) 2 ≤ C. Therefore C φ j,k (Z 0 ) w(Z 0 ) , φ j,k (Z m ) w(Z m ) ≤ C2 qj a q m .
Since n m=2 j m q a q m ≤ ∞ m=1 m q a q m = γ q ∞ m=1 m q exp(-cqm θ ) < ∞, we have

T 2 ≤ n2 qj n m=2 j a q m ≤ n n m=2 j m q a q m ≤ Cn. (6.6) 
It follows from (6.4), (6.5) (6.6) that

n v=2 v-1 =1 C φ j,k (Z v ) w(Z v ) , φ j,k (Z ) w(Z ) ≤ Cn. (6.7) 
Combining (6.2), (6.3) and (6.7), we obtain

V µ n n i=1 φ j,k (Z i ) w(Z i ) ≤ C 1 n .
3. Proceeding in a similar fashion to 2-, we obtain

V 1 µ = V 1 n n i=1 1 w(Z i ) = 1 n V 1 w(Z 1 ) + 2 1 n 2 n v=2 v-1 =1 C 1 w(Z v ) , 1 w(Z ) ≤ 1 n V 1 w(Z 1 ) + 2 1 n n m=1 C 1 w(Z 0 ) , 1 w(Z m )
.

Using (2.2) (which implies sup x∈[0,1] (1/w(x)) ≤ C) and applying the Davydov inequality, we obtain

V 1 µ ≤ C 1 n 1 + n m=1 a q m ≤ C 1 n .
The proof of Proposition 6.1 is complete. Proposition 6.2 For any integer j ≥ τ such that 2 j ≤ n and any k ∈ {0, . . . , 2 j -1}, let α j,k = 1 0 f (x)φ j,k (x)dx and α j,k be (4.2). Then 1. there exists a constant C > 0 such that

E ( α j,k -α j,k ) 2 ≤ C 1 n .
2. there exists a constant C > 0 such that

E ( α j,k -α j,k ) 4 ≤ C2 j 1 n .
These inequalities hold for β j,k defined by (4.3) instead of α j,k , and

β j,k = 1 0 f (x)ψ j,k (x)dx instead of α j,k .
Proof of Proposition 6.2.

1. Applying Lemma 6.1 and Proposition 6.1, we have

E ( α j,k -α j,k ) 2 ≤ C   E   µ n n i=1 φ j,k (Z i ) w(Z i ) -α j,k 2   + E 1 µ - 1 µ 2   = C V µ n n i=1 φ j,k (Z i ) w(Z i ) + V 1 µ ≤ C 1 n . (6.8)
2. We have

| α j,k -α j,k | ≤ | α j,k | + |α j,k |. By (2.2), we have | µ| ≤ C and sup x∈[0,1] (1/w(x)) ≤ C. So µ n n i=1 φ j,k (Z i ) w(Z i ) ≤ C 1 n n i=1 φ j,k (Z i ) w(Z i ) ≤ C sup x∈[0,1] φ j,k (x) w(x) ≤ C sup x∈[0,1] |φ j,k (x)| ≤ C2 j/2 .
By (6.1), we have

|α j,k | ≤ C. Therefore | α j,k -α j,k | ≤ C(2 j/2 + 1) ≤ C2 j/2 . (6.9)
It follows from (6.9) and (6.8) that

E ( α j,k -α j,k ) 4 ≤ C2 j E ( α j,k -α j,k ) 2 ≤ C2 j 1 n .
The proof of Proposition 6.2 is complete.

Proposition 6.3 For any j ∈ {τ, . . . , j 1 } and any k ∈ {0, . . . ,

2 j -1}, let β j,k = 1 0 f (x)ψ j,k (x)dx, β j,k be (4.
3) and λ n be (4.6). Then there exist two constants, κ > 0 and C > 0, such that

P | β j,k -β j,k | ≥ κλ n /2 ≤ C 1 n 4 .
Proof of Proposition 6.3. It follows from Lemma 6.1 that

P | β j,k -β j,k | ≥ κλ n /2 ≤ P 1 + P 2 , (6.10) 
where

P 1 = P µ n n i=1 ψ j,k (Z i ) w(Z i ) -β j,k ≥ κCλ n
and

P 2 = P 1 µ - 1 µ ≥ κCλ n .
In order to bound P 1 and P 2 , let us present a Bernstein inequality for exponentially strongly mixing process. We refer to [START_REF] Rio | The functional law of the iterated logarithm for stationary strongly mixing sequences[END_REF] and [START_REF] Liebscher | Strong convergence of sums of a-mixing random variables with applications to density estimation[END_REF].

Lemma 6.2 ( [START_REF] Rio | The functional law of the iterated logarithm for stationary strongly mixing sequences[END_REF] and [START_REF] Liebscher | Strong convergence of sums of a-mixing random variables with applications to density estimation[END_REF]) Let γ > 0, c > 0, θ > 1 and (Z i ) i∈Z be a stationary process such that, for any m ∈ Z, the associated m-th strongly mixing coefficient

(2.1) satisfies a m ≤ γexp(-c|m| θ ).
Let n ∈ N * , h : R → R be a measurable function and, for any i ∈ Z, U i = h(Z i ). We assume that E(U 1 ) = 0 and there

exists a constant M > 0 satisfying |U 1 | ≤ M < ∞.
Then, for any m ∈ {1, . . . , n} and any λ > 4mM/n, we have

P 1 n n i=1 U i ≥ λ ≤ 4 exp - λ 2 n m(64E U 2 1 + 8λM/3) + 4γ n m exp(-cm θ ).
Upper bound for P 1 . For any i ∈ {1, . . . , n}, set

U i = µ ψ j,k (Z i ) w(Z i ) -β j,k .
Then U 1 , . . . , U n are identically distributed, depend on the stationary strongly mixing process (Z i ) i∈Z which satisfies (2.1), Proposition 6.1 gives

E (U 1 ) = 0, E U 2 1 ≤ E µ ψ j,k (Z 1 ) w(Z 1 ) 2 ≤ C
and, by (2.2) and (6.1),

|U 1 | ≤ µ sup x∈[0,1] ψ j,k (x) w(x) + |β j,k | ≤ C( sup x∈[0,1] |ψ j,k (x)| + 1) ≤ C(2 j/2 + 1) ≤ C2 j/2 .
It follows from Lemma 6.2 applied with U

1 , . . . , U n , λ = κCλ n , λ n = ((ln n) 1+1/θ /n) 1/2 , m = (u ln n) 1/θ with u > 0 (chosen later), M = C2 j/2
and 2 j ≤ 2 j 1 ≤ n/(ln n) 1+1/θ , that

P 1 = P 1 n n i=1 U i ≥ κCλ n ≤ 4 exp -C κ 2 λ 2 n n m(1 + κλ n M ) + 4γ n m exp(-cm θ ) ≤ 4 exp -C κ 2 (ln n) 1+1/θ (u ln n) 1/θ (1 + κ2 j/2 ((ln n) 1+1/θ /n) 1/2 ) + 4γ n (u ln n) 1/θ exp(-cu ln n) ≤ C n -Cκ 2 /(u 1/θ (1+κ)) + n 1-cu .
Therefore, for large enough κ and u, we have

P 1 ≤ C 1 n 4 . (6.11) 
Upper bound for P 2 . For any i ∈ {1, . . . , n}, set

U i = 1 w(Z i ) - 1 µ .
Then U 1 , . . . , U n are identically distributed, depend on the stationary strongly mixing process (Z i ) i∈Z which satisfies (2.1), Proposition 6.1 gives

E (U 1 ) = 0, E U 2 1 ≤ E 1 (w(Z 1 )) 2 ≤ C.

By (2.2), we have

|U 1 | ≤ sup x∈[0,1] 1 w(x) + 1 µ ≤ C. It follows from Lemma 6.2 applied with U 1 , . . . , U n , λ = κCλ n , λ n = ((ln n) 1+1/θ /n) 1/2 , m = (u ln n) 1/θ with u > 0 (chosen later) and M = C that P 2 = P 1 n n i=1 U i ≥ κCλ n ≤ 4 exp -C κ 2 λ 2 n n m(1 + κλ n M ) + 4γ n m exp(-cm θ ) ≤ 4 exp -C κ 2 (ln n) 1+1/θ (u ln n) 1/θ (1 + κ((ln n) 1+1/θ /n) 1/2 ) + 4γ n (u ln n) 1/θ exp(-cu ln n) ≤ C n -Cκ 2 /u 1/θ + n 1-cu .
Therefore, for large enough κ and u, we have

P 2 ≤ C 1 n 4 . (6.12) 
Putting (6.10), (6.11) and (6.12) together, this ends the proof of Proposition 6.3.

Proofs of the main results

Proof of Theorem 5.1. We expand the function f on B as

f (x) = 2 j 0 -1 k=0 α j 0 ,k φ j 0 ,k (x) + ∞ j=j 0 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where

α j 0 ,k = 1 0 f (x)φ j 0 ,k (x)dx and β j,k = 1 0 f (x)ψ j,k (x)dx. We have, for any x ∈ [0, 1], f L (x) -f (x) = 2 j 0 -1 k=0 ( α j 0 ,k -α j 0 ,k ) φ j 0 ,k (x) - ∞ j=j 0 2 j -1 k=0 β j,k ψ j,k (x).
Since B is an orthonormal basis of L 2 ([0, 1]), we have

E 1 0 f L (x) -f (x) 2 dx = 2 j 0 -1 k=0 E ( α j 0 ,k -α j 0 ,k ) 2 + ∞ j=j 0 2 j -1 k=0 β 2 j,k .
Using Proposition 6.2, we obtain

2 j 0 -1 k=0 E ( α j 0 ,k -α j 0 ,k ) 2 ≤ C2 j 0 1 n ≤ Cn -2s/(2s+1) .
Since p ≥ 2, we have 2s+1) .

B s p,r (M ) ⊆ B s 2,∞ (M ). Hence ∞ j=j 0 2 j -1 k=0 β 2 j,k ≤ C2 -2j 0 s ≤ Cn -2s/(
Therefore

E 1 0 f L (x) -f (x) 2 dx ≤ Cn -2s/(2s+1) .
The proof of Theorem 5.1 is complete.

Proof of Theorem 5.2. We expand the function f on B as

f (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + ∞ j=τ 2 j -1 k=0 β j,k ψ j,k (x), x ∈ [0, 1],
where α τ,k = 1 0 f (x)φ τ,k (x)dx and β j,k = 1 0 f (x)ψ j,k (x)dx. We have, for any x ∈ [0, 1],

f H (x) -f (x) = 2 τ -1 k=0 ( α τ,k -α τ,k )φ τ,k (x) + j 1 j=τ 2 j -1 k=0 β j,k 1I {| β j,k |≥κλn} -β j,k ψ j,k (x) - ∞ j=j 1 +1 2 j -1 k=0 β j,k ψ j,k (x).
Since B is an orthonormal basis of L 2 ([0, 1]), we have

E 1 0 f H (x) -f (x) 2 dx = R + S + T, (6.13) 
where

R = 2 τ -1 k=0 E ( α τ,k -α τ,k ) 2 , S = j 1 j=τ 2 j -1 k=0 E β j,k 1I {| β j,k |≥κλn} -β j,k 2 and T = ∞ j=j 1 +1 2 j -1 k=0 β 2 j,k .
Let us bound R, T and S, in turn.

Upper bound for R. Using Proposition 6.2 and 2s/(2s + 1) < 1, we obtain

R ≤ C2 τ 1 n ≤ C (ln n) 1+1/θ n 2s/(2s+1) . ( 6 

.14)

Upper bound for T . For r ≥ 1 and p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Since 2s/(2s + 1) < 2s, we have

T ≤ C ∞ j=j 1 +1 2 -2js ≤ C2 -2j 1 s ≤ C (ln n) 1+1/θ n 2s ≤ C (ln n) 1+1/θ n 2s/(2s+1)
.

For r ≥ 1 and p ∈ [1, 2), we have B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ (M ). Since s > 1/p, we have s + 1/2 -1/p > s/(2s + 1). So

T ≤ C ∞ j=j 1 +1 2 -2j(s+1/2-1/p) ≤ C2 -2j 1 (s+1/2-1/p) ≤ C (ln n) 1+1/θ n 2(s+1/2-1/p) ≤ C (ln n) 1+1/θ n 2s/(2s+1)
.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

T ≤ C (ln n) 1+1/θ n 2s/(2s+1) . ( 6 

.15)

Upper bound for S. Remark that we can write the term S as

S = S 1 + S 2 + S 3 + S 4 , (6.16) 
where

S 1 = j 1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1I {| β j,k |≥κλn} 1I {|βj,k|<κλn/2} , S 2 = j 1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1I {| β j,k |≥κλn} 1I {|βj,k|≥κλn/2} , S 3 = j 1 j=τ 2 j -1 k=0 E β 2 j,k 1I {| β j,k |<κλn} 1I {|βj,k|≥2κλn} and 
S 4 = j 1 j=τ 2 j -1 k=0 E β 2 j,k 1I {| β j,k |<κλn} 1I {|βj,k|<2κλn} .
Let us investigate the bounds of S 1 , S 2 , S 3 and S 4 in turn.

Upper bounds for S 1 and S 3 . We have

| β j,k | < κλ n , |β j,k | ≥ 2κλ n ⊆ | β j,k -β j,k | > κλ n /2 , | β j,k | ≥ κλ n , |β j,k | < κλ n /2 ⊆ | β j,k -β j,k | > κλ n /2 and | β j,k | < κλ n , |β j,k | ≥ 2κλ n ⊆ |β j,k | ≤ 2| β j,k -β j,k | . So max(S 1 , S 3 ) ≤ C j 1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1I {| β j,k -β j,k |>κλn/2} .
It follows from the Cauchy-Schwarz inequality, Proposition 6.2, Proposition 6.3 and 2

j ≤ 2 j 1 ≤ n that E β j,k -β j,k 2 1I {| β j,k -β j,k |>κλn/2} ≤ E β j,k -β j,k 4 
1/2 P | β j,k -β j,k | > κλ n /2 1/2 ≤ C 2 j 1 n 1/2 1 n 4 1/2 ≤ C 1 n 2 .
Since 2s/(2s + 1) < 1, we have

max(S 1 , S 3 ) ≤ C 1 n 2 j 1 j=τ 2 j ≤ C 1 n 2 2 j 1 ≤ C 1 n ≤ C (ln n) 1+1/θ n 2s/(2s+1)
. (6.17)

Upper bound for S 2 . Using again Proposition 6.2, we obtain

E β j,k -β j,k 2 ≤ C 1 n ≤ C (ln n) 1+1/θ n .
Hence

S 2 ≤ C (ln n) 1+1/θ n j 1 j=τ 2 j -1 k=0 
1I {|βj,k|>κλn/2} .

Let j 2 be the integer defined by

1 2 n (ln n) 1+1/θ 1/(2s+1) < 2 j 2 ≤ n (ln n) 1+1/θ 1/(2s+1)
.

(6.18)

We have

S 2 ≤ S 2,1 + S 2,2 ,
where

S 2,1 = C (ln n) 1+1/θ n j 2 j=τ 2 j -1 k=0 1I {|βj,k|>κλn/2} and S 2,2 = C (ln n) 1+1/θ n j 1 j=j 2 +1 2 j -1 k=0 
1I {|βj,k|>κλn/2} .

We have

S 2,1 ≤ C (ln n) 1+1/θ n j 2 j=τ 2 j ≤ C (ln n) 1+1/θ n 2 j 2 ≤ C (ln n) 1+1/θ n 2s/(2s+1) . For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), S 2,2 ≤ C (ln n) 1+1/θ nλ 2 n j 1 j=j 2 +1 2 j -1 k=0 β 2 j,k ≤ C ∞ j=j 2 +1 2 j -1 k=0 β 2 j,k ≤ C2 -2j 2 s ≤ C (ln n) 1+1/θ n 2s/(2s+1)
.

For .

The proof of Theorem 5.2 is complete.

  r ≥ 1, p ∈ [1, 2) and s > 1/p, using 1I {|βj,k|>κλn/2} ≤ C|β j,k | p /λ p n , B s p,r (M ) ⊆ B So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have Upper bound for S 4 . We have Let j 2 be the integer (6.18). Then S 4 ≤ S 4,1 + S 4,2 , For r ≥ 1, p ∈ [1, 2) and s > 1/p, using β 2 j,k 1I {|βj,k|<2κλn} ≤ Cλ 2-p n |β j,k | p , So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

	s+1/2-1/p 2,∞ B s p,r (M ) ⊆ B (M ) and (2s + 1)(2 -p)/2 + (s + 1/2 -1/p)p = 2s, we have s+1/2-1/p 2,∞ (M ) and (2s + 1)(2 -p)/2 + (s + 1/2 -1/p)p = 2s, we
	S 2,2 ≤ C have ≤ C S 4,2 ≤ Cλ 2-p (ln n) 1+1/θ nλ p n (ln n) 1+1/θ j=j 2 +1 j 1 n (2-p)/2 2 j -1 k=0 n j 1 j=j 2 +1 2 j -1 k=0 |β j,k | p = C |β j,k | p ≤ C 2 -j 2 (s+1/2-1/p)p ≤ C (ln n) 1+1/θ n (2-p)/2 (2-p)/2 j 1 (ln n) 1+1/θ n j=j 2 +1 j=j 2 +1 ∞ 2s/(2s+1) 2 -j(s+1/2-1/p)p 2 j -1 |β j,k | p k=0 (ln n) 1+1/θ n . ≤ C (2-p)/2 ∞ (ln n) 1+1/θ j=j 2 +1 n 2 -j(s+1/2-1/p)p
	≤ C	S 2 ≤ C (ln n) 1+1/θ n (2-p)/2 (ln n) 1+1/θ n 2 -j 2 (s+1/2-1/p)p ≤ C . 2s/(2s+1)	(ln n) 1+1/θ n	(6.19) 2s/(2s+1) .
								S 4 ≤ S 4 ≤ C	j 1 (ln n) 1+1/θ 2 j -1 β 2 j,k 1I {|βj,k|<2κλn} . 2s/(2s+1) n .	(6.20)
	j=τ It follows from (6.16), (6.17), (6.19) and (6.20) that k=0
									S ≤ C	(ln n) 1+1/θ n	2s/(2s+1)	.	(6.21)
	where										
				j 2	2 j -1						j 1	2 j -1
	S 4,1 =	j=τ	k=0	β 2 j,k 1I {|βj,k|<2κλn} , 2 dx ≤ C S 4,2 =	j=j 2 +1 n (ln n) 1+1/θ k=0	β 2 j,k 1I {|βj,k|<2κλn} . 2s/(2s+1)
	We have										
	S 4,1 ≤ C	j 2 j=τ	2 j λ 2 n = C	(ln n) 1+1/θ n	j 2 j=τ	2 j ≤ C	(ln n) 1+1/θ n	2 j 2 ≤ C	(ln n) 1+1/θ n	2s/(2s+1)	.
	For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), we have
		S 4,2 ≤	∞ j=j 2 +1	2 j -1 k=0	β 2 j,k ≤ C2 -2j 2 s ≤ C	(ln n) 1+1/θ n	2s/(2s+1)	.

Combining (6.13), (6.14), (6.15) and (6.21), we have, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p},

E 1 0 f H (x) -f (x)
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