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Université Lyon 1, Lyon, F-69003, France ;

CNRS, UMR5534, Centre de génétique moléculaire et cellulaire,
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Abstract

This work is devoted to mathematical modelling of erythropoiesis. We propose
a new multi-scale model, in which we bring together erythroid progenitor dy-
namics and intracellular regulatory network that determines erythroid cell fate.
All erythroid progenitors are divided into several sub-populations according to
their maturity. Two intracellular proteins, Erk and Fas, are supposed to be
determinant for regulation of self-renewal, differentiation and apoptosis. We
consider two growth factors, erythropoietin and glucocorticoids, and describe
their dynamics. Several feedback controls are introduced in the model. We
carry out computer simulations of anaemia and compare the obtained results
with available experimental data on induced anaemia in mice. The main ob-
jective of this work is to evaluate the roles of the feedback controls in order to
provide more insights into the regulation of erythropoiesis. Feedback by Epo
on apoptosis is shown to be determinant in the early stages of the response to
anaemia, whereas regulation through intracellular regulatory network, based on
Erk and Fas, appears to operate on a long-term scale.
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1. Introduction

All blood cells can be divided into three categories, red blood cells, white
blood cells and platelets. Red blood cells (RBCs) are produced during a complex
process called erythropoiesis, which is a part of haematopoiesis (production of
blood). It involves haematopoietic stem cells, at the root of blood cell produc-
tion, able to create all haematopoietic lineages [41], first lymphoid and myeloid
lineages, then, within the myeloid branch, different lineages and in particu-
lar erythroid lineage, the origin of red blood cells. Haematopoietic stem cells
differentiate into immature erythroid cells, called erythroid progenitors, which
are undifferentiated cells committed to erythroid lineage. Then, through mat-
uration and differentiation stages, erythroid progenitors become reticulocytes,
which are almost mature red blood cells. These latter end their maturation to
become red blood cells and enter blood stream, where they transport oxygen to
tissues.

Erythropoiesis consists in a series of cell divisions through which erythroid
cells acquire differentiation markers. This process allows the production of suffi-
cient amount of erythrocytes to transport oxygen to organs. Erythropoiesis can
sometimes exhibit disorders, such as excessive proliferation of immature cells,
as observed in acute leukaemias [21, 28]. Such disorders can be caused by alter-
ation of intracellular regulatory networks, which control cell fate (e.g. Madan et
al. [26]), that is self-renewal (the ability to produce daughter cells of the same
maturity), differentiation (the ability to produce more mature daughter cells) or
apoptosis (programmed cell death). By maturity here we understand an accu-
mulation of differentiation markers (like haemoglobin, for example). Hence, the
regulation of erythropoiesis depends on a precise control of cell fate by means
of intracellular proteins and growth factors.

One of the most studied growth factors, playing an important role in ery-
thropoiesis regulation, is erythropoietin (Epo), a glucoprotein released by the
kidney in response to hypoxia, that is a lack of oxygen in tissues. Glucocorticoids
(GCs) are lipophilic hormones involved in the regulation of various physiological
responses, and in particular in stress erythropoiesis. They are known to favour
cell proliferation [22]. Growth factors operate by activating membrane receptors
on cell surface to trigger intracellular protein activation.

Recently, Rubiolo et al. [34] proposed a description of the regulatory net-
work that controls erythroid progenitor fate: some proteins are involved in a
self-renewal loop, others in a differentiation/apoptosis loop, see Figure 1. The
first loop self-activates and inhibits the second one, whereas the second loop
can inhibit the first one and, depending on Epo levels, induce either erythroid
progenitor differentiation or apoptosis. Self-renewal loop relies on proteins of
the MAPK family, the other loop is mainly controlled by Fas, a protein of the
tumour-necrosis factor family.

Pioneering models of erythropoiesis regulation were proposed by Wichmann
and Loeffler [42], who modelled the dynamics of haematopoietic stem cells, ery-
throid progenitors and erythroid precursors (reticulocytes). They considered
feedback controls from reticulocytes on progenitors and from progenitors on
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stem cells, they confronted their models with experimental data on stress ery-
thropoiesis (bleeding, irradiation) and fitted model parameters. Later Wulff et
al. [44] and Wichmann et al. [43] improved Wichmann and Loeffler’s models.
Bélair et al. [7] proposed a model of erythropoiesis, partially based on previ-
ous works by Mackey [23, 24] and Mackey and Rudnicki [25] on haematopoietic
stem cell dynamics. In Bélair et al. [7] the authors proposed an age-structured
model describing erythroid cell dynamics, including an explicit control of differ-
entiation by erythropoietin. This model was then improved by Mahaffy et al.
[27]. Other works inspired by Bélair et al. [7] proposed mathematical models
of erythropoiesis [1, 2, 5]. The erythropoietin-mediated inhibition of apopto-
sis has been considered in Adimy and Crauste [3]. The authors focused on
the appearance of periodic haematological diseases, such as periodic chronic
myeloid leukaemia [16]. Recently we proposed an age-structured model of ery-
thropoiesis taking into account feedback controls on progenitor self-renewal and
apoptosis [11]. We confronted the model with experimental data on anaemia
induced by phenylhydrazine injections and concluded the relevance of erythroid
progenitor self-renewal for the response to stress.

Modelling of regulatory networks, involved in cell decision, has been the sub-
ject of recent analysis of lineage specification. Erythrocytes and platelets have
one myeloid progenitor in common, known as megakaryocytic-erythroid progeni-
tor (MEP). As a result of competition between two proteins, PU.1 and GATA-1,
the MEP differentiates either into an erythroid progenitor or into a megakary-
ocytic progenitor. This choice has been studied by Roeder and Glauche [33]
and Huang et al. [19]. In both studies, models proposed by the authors demon-
strated a bistable behaviour. This idea has been further developed in Chickar-
mane et al. [10].

The main objective of this work is to develop a model of erythropoiesis which
would allow evaluating the roles of different feedback controls in regulation of
erythropoiesis in stress situations. We bring together interactions at the cell
population level, growth factor actions and regulation of cell fate by intracellu-
lar proteins. From Rubiolo et al. [34] we identify key proteins involved in the
regulation of self-renewal, differentiation and apoptosis, and describe interac-
tions between them. The resulting system is coupled with a model of erythroid
cell dynamics. This latter, inspired by Demin et al. [14], describes cell dynamics
using self-renewal, differentiation and apoptosis rates of erythroid progenitors.
The rates are determined by intracellular proteins, whereas growth factors and
reticulocyte count control evolution of the intracellular proteins. Erythrocyte
count, in turn, is responsible for growth factor production. The resulting model
is confronted with experimental data on a severe anaemia, which allows deter-
mining the roles of the different feedback controls and their relative influences
on regulation of stress erythropoiesis. We introduce the following feedback con-
trols: in stress situations Epo inhibits apoptosis independently of intracellular
regulatory network based on Erk and Fas [18, 36], Epo and GCs promote Erk
activation [34, 37], reticulocytes upregulate Fas [13].

The work is organised as follows. In Section 2, we describe intracellular
regulatory mechanisms, using available biological information. The resulting
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model is a nonlinear system of ordinary differential equations. This system de-
scribes the dynamics of two key proteins for cell fate regulation, Erk and Fas.
We investigate the bistable behaviour of this system in order to explain the
choice between cell self-renewal and differentiation or apoptosis. In Section 3
we present erythroid progenitor dynamics and dynamics of growth factors. We
consider several sub-populations of erythroid cells according to their maturity.
Two main growth factors involved in erythropoiesis regulation are considered:
Epo and GCs. We obtain the complete model in Section 4. This multi-scale
model is composed with 3(n+1) equations, where n is the number of erythroid
progenitor sub-populations. Existence of steady states and their stability are
briefly discussed in Section 4.2. In Section 6 we present simulations of anaemia
and investigate the roles of different feedback functions for the regulation of ery-
thropoiesis. The simulations are confronted with experimental data on anaemia,
induced by injection of phenylhydrazine [9]. Roles of feedback controls by Epo
on apoptosis rate, independently of the considered intracellular network, and
by the intracellular regulatory network on cell fate are evaluated. Results show
that both controls are important for the response, yet they do not operate at
the same time and appear to have specific roles. We conclude with a discussion
and present possible research directions indicated by this model.

2. Intracellular regulatory network

In a recent paper Rubiolo et al. [34] investigated the differentiation process of
erythroid progenitors. In particular, they identified key proteins involved in self-
renewal and differentiation/apoptosis, see Figure 1. Differentiation and apopto-

Figure 1: Summary of intracellular protein interactions that determine erythroid progenitor
fate, partially adapted from Rubiolo et al. [34].

sis appear to be controlled by the same proteins. In fact, different proteins are
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involved both in cell differentiation and cell apoptosis, however, depending on
external conditions, cells undergo either differentiation or apoptosis. For exam-
ple, Epo has been shown to inhibit erythroid progenitor apoptosis [20]. Hence,
when Epo levels are low, erythroid progenitors preferentially die by apoptosis,
whereas with high Epo levels they differentiate.

Rubiolo et al. [34] showed that self-renewal was controlled by the self-activated
cascade Raf-1 - Mek - Erk, whereas differentiation was controlled by the cascade
Fas - Ask-1 - Jnk/p38, Fas triggering also cell apoptosis. This latter protein
cascade is inhibited by the former, and vice versa. Hence, erythroid progenitor
self-renewal and differentiation/apoptosis processes are controlled by two in-
hibitor loops, one being self-activating. Two proteins are of particular interest:
Erk and Fas. The former is the cornerstone of the inhibition of differentiation
and apoptosis. Erk (Extracellular signal-Regulated Kinase) is a member of the
MAPK family, also known as the classical MAP kinase, it regulates cell pro-
liferation and differentiation. Fas belongs to the tumour necrosis factor family
(TNF), it induces cell apoptosis. We focus our attention on the interaction
between these two proteins, that are key regulators of erythroid progenitor fate.

As mentioned in Figure 1, external signals activate intracellular proteins.
Epo is known to have the dual action of being both a mitogen and a survival
factor [36]. The molecular mechanisms involved have been clarified (for a re-
view, see Sawyer and Jacobs-Helber [35]): Epo prevents apoptosis of erythroid
progenitors through Stat5/GATA-1/Bcl-xL pathway [18], that is largely inde-
pendent of the Erk pathway [8, 30, 38]. Self-renewal promoting activity of Epo,
on the contrary, seems to rely mainly on the activation of the Erk kinase [34, 37].
We therefore decided to integrate separately these two aspects of Epo action in
the model: prevention of apoptosis is modelled as a direct mechanism, i.e. the
molecular players are not explicitly taken into account. This feedback is as-
sumed to be independent of the intracellular regulatory network based on Erk
and Fas interactions. This is introduced in Section 4.1, Equation (12). On
the contrary, self-renewal is modelled as an Erk-dependent mechanism, which
is introduced below in this section. GCs are involved in regulation of stress
erythropoiesis [6, 17]. They activate self-renewing loop by increasing the level
of Raf-1 expression.

One source term of activation appears in Figure 1 concerning the differ-
entiation/apoptosis part. Fas-ligand, denoted by FasL, a membrane protein,
activates the transmembrane protein Fas. De Maria et al. [13] suggested the
existence of a negative regulatory feedback between mature and immature ery-
throid progenitors, in which mature cells exert a cytotoxic effect on immature
cells. Mature erythroid progenitors, called reticulocytes, express FasL, which
stimulates activation of Fas in immature erythroid progenitors. Sensitivity to
FasL decreases with cell maturation. Other external factors, such as c-Kit, the
protein associated with the stem cell factor (SCF) [29], proteins from the JAK
family [39], etc., regulate the levels of activated intracellular proteins. Yet, we
cannot take all these proteins into account, and we focus, in the following, on
Epo, GCs, and FasL.

Focusing on Erk and Fas and interactions between them, we will state a
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system of ODEs, which represents the intracellular regulatory network shown
in Figure 1. Denote by E and F the expressions of Erk and Fas respectively.
The following system describes how they evolve in time,

⎧⎪⎨
⎪⎩

dE

dt
= (α+ βEk)(E0 − E)− aE − bEF,

dF

dt
= γ(F0 − F )− cEF − dF.

(1)

Let us explain how this system is obtained. Consider first activation of Erk
and Fas. As discussed above, Erk activation is due to Epo. From the scheme
we can see that GCs also activate Erk through kinase cascade Raf-1 - Mek -
Erk. This activation is described by term α = α(Epo,GC). Moreover, Erk self-
activates, which is described by term βEk with some positive constant k > 0.
When more Erk is activated, less Erk receptors remain free and, thus, activation
rate saturates. This gives the following overall term for Erk activation, (α +
βEk)(E0 − E) with threshold value of Erk expression E0, which cannot be
overpassed. In similar way we describe FasL related activation of Fas by term
γ(FasL)(F0−F ). Fas inhibits Erk through Fas - Ask1 - JNK/p38 kinase cascade.
The rate of the inhibition is thus proportional to Erk and Fas. We describe this
inhibition by term−bEF in equation for Erk (by term −cEF in equation for Fas
since the inhibition process consumes Fas). Finally, we add an elimination term
for both Erk and Fas, and obtain System (1), that describes the intracellular
regulatory network shown in Figure 1. It should be noted that this system is
well-posed in the sense that Erk and Fas expressions cannot become negative
and are bounded.

To find steady states of System (1), we must solve

dE

dt
= 0 and

dF

dt
= 0,

that is

F =
(α+ βEk)(E0 − E)

bE
−
a

b
and F =

γF0

cE + d+ γ
. (2)

Depending on the parameter values, (2) can have one to three solutions. Indeed,
denote by ξ and χ the following functions,

ξ(E) =
(α+ βEk)(E0 − E)

bE
−
a

b
and χ(E) =

γF0

cE + d+ γ
. (3)

Then one easily obtains that χ is a bounded positive decreasing function, map-
ping the interval [0, E0] into [γF0/(cE0 + d + γ), γF0/(d + γ)]. The function ξ
satisfies

lim
E→0

ξ(E) = +∞ and ξ(E0) = −
a

b
< 0.

Consequently, System (1) has at least one steady state.
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The analysis of the variations of function ξ, easy though tedious, shows that
for some values of the parameters ξ is decreasing, hence System (1) has only
one steady state. For other parameter values however, ξ is not monotonous and
up to three steady states may exist. In particular, to obtain existence of three
steady states it is necessary that k > 1.

The case of three steady states is shown in Figure 2. The points A and C are
stable nodes, the point B is a saddle. The point A corresponds to high levels of
activated Fas and low levels of activated Erk, whereas the point C corresponds
to low levels of activated Fas and high levels of activated Erk. Hence, the point
A is associated with erythroid progenitor differentiation or apoptosis, the point
C with erythroid progenitor self-renewal.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E

F

F=χ(E)

F=ξ(E)

A

C

B

Figure 2: Curves defined by (3). Three intersection points determine steady states of Sys-
tem (1). Two of them, A and C, are stable. Parameters used are given in Section 5.2 when
dealing with numerical simulations of the complete multi-scale model.

If α and γ are not constant but dynamically depend on growth factors, then,
during a response to a stress, values of α and γ can be such that temporarily
the number of steady states of System (1) goes from three to only one, and all
cells, then, undergo either self-renewal or differentiation/apoptosis.

In the next section we discuss erythroid progenitor dynamics. The resulting
model is coupled to System (1) in Section 4.

3. Erythroid Progenitor Dynamics

Since erythroid cell sensitivity to external signals strongly depends on the
maturity, we consider several erythroid progenitor differentiation stages, called
sub-populations, characterised by their maturity. We suppose there are n ery-
throid progenitor sub-populations, with n > 1 fixed. Let us denote by Pi,
i = 1, . . . , n, the number of progenitors in the i-th sub-population per μl of
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blood, and by si, di and ai their rates of self-renewal, differentiation and apop-
tosis, respectively. For the sake of simplicity we consider only symmetric cell
division. Considering asymmetric cell division would modify expressions for self-
renewal and differentiation rates but the model would remain similar. Then,
progenitor self-renewal produces two daughter cells with the same maturity as
the mother cell, thus, the two cells belong to the same sub-population. Differen-
tiation produces two cells, which are more mature, and then belong to the next
sub-population, see Figure 3. Dynamics of erythroid progenitors are described

Figure 3: Differentiation scheme of erythroid progenitors. Pi, i = 1, . . . , n, denotes the number
of progenitors in the i-th sub-population per μl of blood, and by si, di and ai their rates of
self-renewal, differentiation and apoptosis, respectively.

by the following system of differential equations [14],

dP1

dt
= HSC + s1P1 − d1P1 − a1P1, (4)

where HSC accounts for the cell influx from the stem cell compartment, and
for i = 2, . . . , n,

dPi

dt
= 2di−1Pi−1 + siPi − diPi − aiPi. (5)

Moreover, we denote by M the number of erythrocytes per μl of blood, which
satisfies

dM

dt
= dnPn − δM, (6)

where δ is the natural mortality rate of erythrocytes.
The term red blood cell (RBC) refers to an erythroid cell which circulates

in the blood flow and carries oxygen to tissues. It can be an erythrocyte or a
reticulocyte. During normal erythropoiesis very few reticulocytes circulate in
the blood. For this reason and since we do not consider spatial aspects of ery-
thropoiesis that could allow distinguishing between circulating reticulocytes and
reticulocytes in the bone marrow, we assume that RBC count equals erythro-
cyte count. RBC count is determinant for the release of various growth factors
in the blood stream. For instance, due to a lack of oxygen, kidneys release
Epo. RBCs also induce the release of glucocorticoids in stress situations [6].
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Denote by Epo and GC the blood levels of erythropoietin and glucocorticoids
respectively. They are supposed to satisfy ordinary differential equations [7, 27],

dEpo

dt
= fEpo(M)− kEpoEpo, (7)

dGC

dt
= fGC(M)− kGC GC, (8)

where kEpo and kGC are degradation constants, and fEpo and fGC are produc-
tion terms. They depend on the number of erythrocytes, and are supposed to be
positive, bounded, decreasing functions, since the more erythrocytes the lower
erythropoietin and glucocorticoid levels.

In the next section we couple intracellular protein dynamics with cell popu-
lation dynamics, and obtain a multi-scale model of erythropoiesis.

4. Model of Erythropoiesis

4.1. Coupling the two scales

To simplify the modelling, we neglect variations in cell cycle durations, so
cell cycle lengths are supposed to be constant, equal to Tc. Each cell cycle ends
up with either self-renewal, differentiation or apoptosis. Then, on every time
unit

si + di + ai =
1

Tc
.

Since erythroid progenitors perform one cell cycle in about 24 hours [11], and
the time unit considered in this paper is also 24 hours, we suppose Tc = 1 and
the above equality becomes

si + di + ai = 1. (9)

Let us specify how these rates are defined. This is used later in this section
and in Section 5.3. Denote by ps the probability of self-renewal provided that
the cell does not undergo apoptosis. Then the probability of differentiation pd,
provided that the cell does not undergo apoptosis, is pd = 1−ps. Since cell cycle
time is fixed and equals one time unit, we can then write s and d (subscripts
are deliberately omitted) as

s = (1− a)ps, d = (1 − a)(1− ps). (10)

The term 1 − a accounts for the rate of survival to apoptosis. Consequently, s
denotes the overall self-renewal rate, which is in fact expressed by the probability
of self-renewal of non-apoptotic cells ps multiplied by the rate of survival 1− a.
The same holds for the differentiation rate.

As described in Section 2, self-renewal, differentiation and apoptosis rates
depend on one hand on the intracellular protein regulatory network inherent to
each erythroid progenitor, and on another hand apoptosis is inhibited by Epo.
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Proteins Erk and Fas have been previously identified as the main regulators
of erythroid progenitor fate, see Section 2. Erk induces self-renewal, and inhibits
differentiation and apoptosis, whereas Fas inhibits self-renewal and induces dif-
ferentiation or apoptosis, depending on Epo blood concentration. Concentra-
tions of Erk and Fas, denoted by E and F , satisfy System (1), where constants
α and γ account for external sources of Erk and Fas activators, respectively. As
mentioned in Section 2, the source of Erk activator consists mainly in erythro-
poietin and glucocorticoids. Hence, we assume α is an increasing function of
Epo and GC,

α = α(Epo,GC).

Parameter γ stands for activation of Fas by FasL, which is expressed on surface
of reticulocytes. Hence, we assume γ depends on Pn, which correspond to
reticulocytes, and the sensitivity of γ to Pn decreases with maturity level i, so
that

γ = γi(Pn),

and γi is a positive, bounded and increasing function.
Finally, before stating the system verified by concentrations E and F , let

us present the last assumption. As explained in the previous section, quantities
of Erk and Fas are supposed to have maximum values, denoted by E0 and F0

respectively. Usually, exact quantities of Erk and Fas in erythroid cells cannot
be measured, rather relative levels of activated Erk and Fas are provided. Hence,
in order to render this model more comprehensible, we normalise activated Erk
and Fas quantities, denoting by E and F the ratios E/E0 and F/F0. This
guarantees the variables E and F to be between 0 and 1. Thus, Ei and Fi, the
levels of activated Erk and Fas in the i-th progenitor sub-populations, satisfy
the following system, obtained from (1),

⎧⎪⎨
⎪⎩

dEi

dt
=

(
α(Epo,GC) + βEk

i

)
(1 − Ei)− aEi − bEiFi,

dFi

dt
= γi(Pn)(1 − Fi)− cEiFi − dFi,

(11)

where β, a, b, c and d respectively stand for βEk
0 , aE0, bE0F0, cE0F0 and

dF0. Note that all cells of a sub-population are assumed to express the same
levels of activated Erk and Fas. This is a strong hypothesis, because in reality,
different progenitors with the same maturity express different levels of Erk and
Fas indicating stochasticity in protein expression. This stochasticity certainly
plays an important role in erythropoiesis, yet in this model we do not take it
into account.

One may observe the complexity of erythropoiesis through the model we pro-
pose. Erythroid progenitors and erythrocytes contribute to the control of growth
factor concentrations in blood, which in turn regulate intracellular mechanisms
of cell fate (self-renewal, differentiation, apoptosis). We complete the model of
erythropoiesis by specifying how intracellular regulatory mechanisms influence
erythroid progenitor fate.
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As described in Section 2, self-renewal, differentiation and apoptosis rates
depend on levels of activated Erk and Fas, denoted by Ei and Fi, the subscript
i referring to a given sub-population. Moreover, apoptosis rate is also inhibited
by Epo independently of the intracellular network based on Erk and Fas. Hence,
functions si, di and ai are defined as

si = s(Ei, Fi), di = d(Ei, Fi), ai = a(Ei, Fi) faEpo(Epo), (12)

where functions s, d and a define self-renewal, differentiation, and apoptosis
rates, respectively, for given Erk and Fas levels. The function faEpo describes
a direct mechanism of apoptosis inhibition by Epo, which is independent of the
intracellular regulatory network. It is assumed to be bounded, positive and
decreasing.

Dynamics of erythroid progenitors, described by Equations (4)–(5), are then
coupled to protein levels (11) through erythrocyte dynamics in (6), growth factor
concentration evolution in (7)–(8), and self-renewal, differentiation and apopto-
sis rates definitions in (9) and (12). This set of equations forms the multi-scale
model of erythropoiesis we study below.

4.2. Existence of Steady States

We investigate the existence of steady states for the system formed with (4)–
(9), (11) and (12). It should be noted that existence of such solutions is not
straightforward. Indeed, denote by P ∗i the steady state values of (4)–(5), M∗

the steady state value of (6), Epo∗ and GC∗ the steady state values of (7)–(8),
and E∗i and F ∗i the steady state values of (11). We also introduce the notations

s∗i = s(E∗i , F
∗

i ), d∗i = d(E∗i , F
∗

i ), a∗i = a(E∗i , F
∗

i )faEpo(Epo
∗).

Then, P ∗i , i = 1, . . . , n, exist if and only if
{

(d∗1 + a∗1 − s
∗

1)P
∗

1 = HSC,
(d∗i + a∗i − s

∗

i )P
∗

i = 2d∗i−1P
∗

i−1, i = 2, . . . , n.

Hence, using (9), P ∗i exists for i = 1, . . . , n provided that

s∗i <
1

2
,

and P ∗i is given by

P ∗1 =
HSC

1− 2s∗1
, P ∗i =

2d∗i−1

1− 2s∗i
P ∗i−1, i = 2, . . . , n.

Then, M∗, Epo∗ and GC∗ are uniquely defined by

M∗ =
d∗n
δ
P ∗n , Epo∗ =

fEpo(M
∗)

kEpo
, GC∗ =

fGC(M∗)

kGC
.

Yet, implicitly, all the above steady state values, and in particular P ∗n , Epo∗

and GC∗, are functions of E∗i and F ∗i , for i = 1, . . . , n, through the steady state
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values of the different rates s∗i , d
∗

i and a∗i . Since E∗i and F ∗i are solutions of
system

{ (
α(Epo∗, GC∗) + β(E∗i )k

)
(1− E∗i )− aE∗i − bE∗i F

∗

i = 0,
γi(P

∗

n)(1 − F ∗i )− cE∗i F
∗

i − dF
∗

i = 0,

which has been shown to have 1 to 3 solutions when α and γ are constant
(see Section 2), it follows that determining steady states for the full model is
equivalent to solving a system in the form

{
E∗i = ϕi(E

∗

1 , . . . , E
∗

n, F
∗

1 , . . . , F
∗

n),
F ∗i = ψi(E

∗

1 , . . . , E
∗

n, F
∗

1 , . . . , F
∗

n),

for all i = 1, . . . , n. Functions ϕi and ψi are some unknown functions. In a
general case such a system cannot be solved.

For the sake of simplicity, suppose α is given by

α(Epo,GC) = α0 + f(Epo) + g(GC),

where α0 > 0 accounts for Erk activation when erythropoietin and glucocor-
ticoids are low. Since erythropoietin and glucocorticoids are not the only ac-
tivators of Erk, this assumption is biologically relevant. Functions f and g
are bounded nonnegative increasing functions, for instance, Hill functions, with
f(0) = g(0) = 0. Similarly, suppose γi is given by

γi(Pn) = γ0 + μiγ̄(Pn),

where γ0 is a constant source of Fas activation independent of mature progenitor
cell production of Fas ligand, and μi is a parameter accounting for sensitivity of
Fas activation to cell maturity. The function γ̄ is assumed to be nonnegative,
bounded and increasing, with γ̄(0) = 0 and γ(Pn) � 1.

With these assumptions, we can apply the Implicit Function Theorem to
find steady states of the full model. Suppose that in the steady state, values
of Epo∗ and GC∗ are such that f(Epo∗) + g(GC∗) is very small, close to zero.
Moreover, μi are supposed to be small parameters.

We first note that the following system,

{ (
α0 + β(E∗i )k

)
(1− E∗i )− aE∗i − bE

∗

i F
∗

i = 0,
γ0(1− F

∗

i )− cE∗i F
∗

i − dF
∗

i = 0,
(13)

has one to three solutions, depending on the values of α0 and γ0. This has
been obtained in Section 2, for α = α0 and γ = γ0, see System (2). Denote by
(E∗,0, F ∗,0) one of these potential solutions. Then for every pair (E∗,0, F ∗,0),
there exists a unique value of s∗i , d

∗

i and a∗i , and consequently of P ∗i , i = 1, . . . , n,
M∗, Epo∗ and GC∗.

As μi increases away from zero, the Implicit Function Theorem gives the
existence of steady states for the full model. These steady states are small per-
turbations of the above mentioned steady states, based on (E∗,0, F ∗,0). Hence,
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stability does not change, and steady states of the full system are stable (respec-
tively, unstable) if steady states of (4)–(9), (12) and (13) are stable (respectively,
unstable). And (13) has up to 2 stable steady states for all i = 1, . . . , n.

We can then state that full system formed with (4)–(9), (11) and (12) has
up to 2n stable steady states. This number may appear large, yet it does not
take into account biological constraints. An interested reader can find a detailed
analysis of a similar system in [14].

During the process of maturation, erythroid progenitors lose their ability
to self-renew [12], thus immature cells are more inclined to self-renewal and
mature ones are more inclined to differentiation. Hence, among all possible
stable steady states only those, characterised by a certain integer j, 1 � j � n,
such that cells in the first j sub-populations (corresponding to variables P1 to
Pj) preferentially self-renew (let us call them self-renewing sub-populations),
and cells in the last n − j sub-populations (corresponding to variables Pj+1 to
Pn) preferentially differentiate (let us call them differentiating sub-populations),
are biologically reasonable. It reduces the number of biologically meaningful
stable steady states to n. Moreover, it seems natural to expect that in normal
erythropoiesis the number of mature cells is larger than the number of immature
cells, so we impose the conditions P ∗i < P ∗i+1, which are equivalent to

2d∗i
1− 2s∗i+1

> 1, i = 1, . . . , n− 1.

Thus the multi-scale model formed with (4)–(9), (11) and (12) has, generally
speaking, several (from 1 up to n) stable steady states, which satisfy the bio-
logical constraints discussed above.

The next two sections are devoted to parameter values estimations and to
numerical simulations of the system obtained above. We focus our attention, in
particular, on anaemia situations.

5. Parameter Values

A typical situation of stress erythropoiesis is anaemia: a lack of red blood
cells, or haemoglobin. It can be either induced, for instance by killing erythro-
cytes, which can be obtained for instance with phenylhydrazine, or by bleeding,
or disease-related. A lot of haematological diseases are characterised by or as-
sociated with severe anaemia, such as aplastic anaemia or some leukaemias.

The nature of the induced anaemia can be very different, according to the
method used to urge it. Finch et al. [15] noticed that the way haematocrit
evolves following the anaemia induction, and in particular the speed of the
return to the equilibrium, strongly depends on its strength. In other words,
the more red blood cells are removed from the body, the stronger response
to anaemia is. Results of experiments on mice with phenylhydrazine-induced
anaemia obtained in Cherukuri et al. [9] are presented in Figure 4. One can
observe that, following the anaemia, the erythrocyte count quickly increases
and, although still not at its equilibrium, decreases once again on day 11 before
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finally reaching normal values from day 18 up to the end of experiments. This
surprising decrease (days 11 to 18) will be investigated in Section 6: we will
look for feedback controls responsible for it.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

11
RBC count (x 106 cells/μl)

Time (days)

Figure 4: Phenylhydrazine-induced anaemia in mice, adapted from Cherukuri et al. [9]. Two
injections (60mg/kg) are administered intraperitoneally at days 0 and 1. Mean values among
six mice are presented with error bars. Initial value of red blood cell count (before starting
the experiment) is about 107 cells.μl−1.

We consider the model of erythropoiesis that consists of Equations (4)-(6)
describing immature and mature blood cell dynamics, Equations (7)-(8) de-
scribing growth factors dynamics, and Equation (11) accounting for intracellular
regulatory mechanisms.

We determine functions and parameter values of the model. Some param-
eters are rather easily accessible, whereas other parameters and most feedback
functions are usually unavailable. We distinguish between these two kinds of
values.

5.1. Estimations based on existing data

Among easily accessible parameter values, the mortality rate of erythrocytes
(δ in equation (9)) is the first for which a value can be assigned. Since erythro-
cyte average lifespan in mice equals 40 days, we chose δ = 1/40 d−1.

Let now focus on growth factor dynamics system (7)-(8). In mice the half-
life of erythropoietin is about 180 minutes [31]. The half-life of glucocorticoids
ranges in a wide interval, yet 90 minutes can be considered as reasonable for
short-term glucocorticoids [22] (that is glucocorticoids acting for a short time),
like cortisol, which are likely to be involved in stress erythropoiesis [6]. Using the
definition of half-life, we compute degradation constants: consider a substance
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that degrades with constant rate ν, then its dynamics can be described by the
equation,

dx

dt
= −νx,

whose solution is x(t) = x0e
−νt. The half-life is the time T1/2 such that

x(T1/2) =
x0

2
,

which gives ν = ln(2)/T1/2. Using the above estimations for the half-life of
erythropoietin and glucocorticoids, we obtain the following values for the degra-
dation constants,

kEpo = 5.55 d−1, kGC = 11.1 d−1.

The functions fEpo and fGC in (7) and (8), accounting for growth factor
production terms, are supposed to be Hill functions [7, 27],

fEpo(M) = f0
Epo

θqE

Epo

θqE

Epo +M qE
, fGC(M) = f0

GC

θqG

GC

θqG

GC +M qG
.

During anaemia Epo blood concentrations increase by 2-3 orders [32]. To our
knowledge, variations of glucocorticoids are less important, but exact values are
not available. We then chose parameters of functions fEpo(M) and fGC(M) that
allowed us to obtain such variations of Epo and GCs in anaemia simulations we
carried out. All these parameters are listed in Table 1.

Table 1: Values of the parameters used to numerically compute erythrocyte count and growth
factor levels. N.U means “no unit is relevant”.

Parameter Value Unit
δ mortality rate of erythrocytes 0.025 d−1

kEpo degradation rate of Epo 5.55 d−1

kGC degradation rate of GC 11.1 d−1

f0
Epo maximum value of fEpo 7130 mU.μl−1

θEpo threshold value of fEpo 4.63× 106 cells.μl−1

qE sensitivity of fEpo 7 N.U.
f0

GC maximum value of fGC 2930 mU.μl−1

θGC threshold value of fGC 7.69× 106 cells.μl−1

qG sensitivity of fGC 6 N.U.

As obtained in Section 4.2, the model we consider has from 1 up to n stable
steady states. Not all steady states are biologically meaningful and one of
these numerous steady states can be selected by taking into consideration a
realistic proportion between the daily influx of haematopoietic stem cells (input
of the model) and erythrocyte count in mice (output of the model). From
Crauste et al. [11], the ratio M∗/HSC between normal erythrocyte count and
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HSC daily influx can be estimated in the order of 105. The number of self-
renewing sub-populations (see discussion at the end of Section 4.2) allows to
select the appropriate steady state. We carried out several simulations with
different numbers of self-renewal-inclined sub-populations and we obtained a
correct ratio M∗/HSC for n = 8 and the case of 4 immature preferentially self-
renewing sub-populations, and consequently 4 mature differentiation-inclined
sub-populations.

5.2. Intracellular regulatory network

Let first focus on the part of the intracellular regulatory system (11) inde-
pendent of feedback functions. Variables E and F are dimensionless and the
parameter values we use are deduced from numerical simulations since no data
are available in the literature. They are

k = 2, β = 40 d−1, a = 2 d−1,

b = 40 d−1, c = 10 d−1, d = 2.5 d−1.
(14)

With these values, the intracellular regulatory network may have three steady
states for given α and γ (Figure 2), two steady states being stable.

As mentioned in previous sections, System (11), describing intracellular reg-
ulatory network, in which α stands for Erk activation by Epo and GCs, and
γ stands for Fas activation by FasL, can have either one or two stable steady
states. Thus, primordially bistable system can temporarily lose its bistabil-
ity when values of parameters α and γ change, like in stress situations. For
the parameters of the intracellular regulatory network mentioned in (14), we
found numerically the set of (α, γ) values, for which System (11) has a bistable
behaviour (domain D1 in Figure 5).

After determining system parameters (see below), we numerically tested
two cases: first when intracellular regulatory network always keeps a bistable
behaviour during anaemia, independently of the values of α and γ, and second
when for some extreme values of α and γ the bistability is temporarily lost
and the intracellular regulatory network has only one stable steady state. The
first case corresponds to variations of α and γ in the rectangular domain D2 in
Figure 5 that is entirely inside the bistability area. The second case corresponds,
for instance (this is what was tested), to variations of α and γ in the domain D3

that partially exitsD1. If a system trajectory goes through these out-of-D1 parts
of D3, then the bistability of System (11) is lost for the corresponding values of
(α, γ). We investigated the consequences of these two distinct situations on the
response to anaemia.

In the second case the response of the system was stronger but qualitatively
the same as the one obtained in the first case. We tried to increase out-of-D1

parts of domain D3 through which the trajectory goes and we obtained that
beyond certain thresholds (i.e. if the trajectory stays long enough outside the
domain D1), the solution could not come back to its initial state, the solution
changed an attractor and went definitely to another steady state, or in other
words, the system switched to single stable steady state regimen. The system
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Figure 5: Intracellular system (11) has a bistable behaviour for (α, γ) inside D1. Two exam-
ples of (α, γ) variations are tested numerically, domains D2 and D3, when bistability can be
temporarily lost.

would then lose its biological meaning (the balance between self-renewal and
differentiation would be broken) and consequently we decided to focus only on
the first case (α and γ range in D2) and we present numerical simulations only
for this case.

Let now concentrate ourselves on the choice of functions α and γ.
For the sake of simplicity, we supposed that FasL exerts the same feedback

control on Fas activation for all progenitor sub-populations, which implies that
γi(Pn) in (11) is independent of i: γi(Pn) = γ(Pn) for all i = 1, . . . , n.

The system trajectory represented on (α, γ)-plane stays inside domain D2

during erythrocyte recovery. The domain D2 is characterised by α ∈ [0.1, 0.6],
γ ∈ [0.5, 1.2], see Figure 5. Recall that α = α(Epo,GC) and γ = γ(Pn). We
suppose α(Epo,GC) = α0 +f(Epo)+g(GC), where α0 is constant and f(Epo),
g(GC) are Hill functions,

f(Epo) = fmax
Epoqf

θ
qf

f + Epoqf
, g(GC) = gmax

GCqg

θ
qg
g +GCqg

. (15)

Function γ(Pn) is supposed to be a Hill function, given by

γ(Pn) = γmin + (γmax − γmin)
P

qγ
n

θ
qγ
γ + P

qγ
n
. (16)

No information could allow us to determine the shape of such functions. The
choice of Hill functions lies on the interest of these functions in describing kinase
cascades and, more generally, biological phenomena with saturation effects. Pa-
rameter values of functions α(Epo,GC) and γ(Pn) are given in Table 2. They
were deduced from numerical simulations.
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Table 2: Parameters of the intracellular regulatory network, functions α(Epo, GC) = α0 +
f(Epo) + g(GC) and γ(Pn), defined in (15) and (16). N.U means “no unit is relevant”.

Parameter Value Unit
k sensitivity of Erk self-activation 2 N.U.
β rate of Erk self-activation 40 d−1

a Erk degradation rate 2 d−1

b suppression of Erk expression rate 40 d−1

c suppression of Fas expression rate 10 d−1

d Fas degradation rate 2.5 d−1

α0 constant Erk activation rate 0.1 d−1

fmax maximum value of f(Epo) 0.25 d−1

qf sensitivity of f(Epo) 6 N.U.
θf threshold value of f(Epo) 100 mU.μl−1

gmax maximum value of g(GC) 0.25 d−1

qg sensitivity of g(GC) 2 N.U.
θg threshold value of g(GC) 49.4 mU.μl−1

γmin minimum value of γ(Pn) 0.5 d−1

γmax maximum value of γ(Pn) 1.2 d−1

qγ sensitivity of γ(Pn) 3 N.U.
θγ threshold value of γ(Pn) 1.14× 106 cells.μl−1

5.3. Self-renewal, differentiation and apoptosis rates

From Equations (9), (10) and (12), self-renewal, differentiation and apoptosis
rates are given, for i = 1, . . . , n, by⎧⎨

⎩
si = (1− ai) ps(Ei, Fi),
di = 1− si − ai,
ai = a(Ei, Fi) faEpo(Epo).

(17)

The dependence upon Erk and Fas is defined through function ps(E,F ), which
describes how the probability of self-renewal depends upon Erk and Fas, and
function a(E,F ), which describes how apoptosis rate depends on Erk and Fas.
The direct action of Epo on apoptosis rate is determined by faEpo(Epo). Hence,
the three functions ps, a and faEpo entirely determine the three rates.

The function faEpo is supposed to be decreasing and bounded. In order
to describe the effect of large Epo variations (quick changes from 5 to 1000
mU.μl−1), we chose a Hill function of the logarithm of Epo, given by,

faEpo(Epo) = 0.2 +
0.73× 1.19.2

1.19.2 + (log10(Epo))
9.2
, (18)

the parameters being dimensionless, except the threshold value 1.1, which is
expressed in mU.μl−1. Parameters have been chosen so that faEpo(Epo) in the
steady state Epo∗ equals 0.9 and numerical simulations fit correctly experimen-
tal data from Figure 4.
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For the sake of simplicity, we supposed functions ps(E,F ) and a(E,F ) to be
functions of one variable, ps(E,F ) = ps(E − F ) and a(E,F ) = a(F − E). The
function ps is supposed to take larger values when Erk levels are high, whereas
the value of a is more important when Fas levels are high. Consequently, both
functions are supposed to be increasing. Moreover, they are positive and we
assumed the following form,

z(x) = zmin +
(zmax − zmin)(x + 1)nz

θnz
z + (x+ 1)nz

, x ∈ [−1, 1].

Before giving values of the parameters zmin, zmax, nz and θz associated with
functions ps and a, let us illustrate how the roles of Erk and Fas are investigated
through these functions.

Let us recall that we assumed functions γi do not depend on the index
i. Hence, from (11) it follows that all sub-populations have the same steady
state values (E∗, F ∗), which do not depend on i. Moreover, by assuming that
α and γ evolve in the restricted domain D2, we ensure the existence of two
stable steady states for System (11), one in which Erk levels are higher than
Fas levels, and the other one with higher Fas levels. These two steady states
(E∗, F ∗) provide two distinct values of the variable F ∗ − E∗, one positive and
one negative. The positive value is associated with cell differentiation, whereas
the negative one corresponds to cell self-renewal. Hence, the positive value
of F ∗ − E∗ characterises differentiation-inclined erythroid progenitors, that is
mature cells, and the negative one self-renewal-inclined erythroid progenitors,
that is immature cells.

During anaemia, concentrations of Erk and Fas vary, therefore values of F−E
vary as well. Carrying out simulations however, we observed that variations of
F − E were limited to neighborhoods of the two stationary points F ∗ − E∗,
and did not range in the whole interval [−1, 1]. This means that variations of
functions ps(E − F ) and a(F −E) are only relevant on these neighborhoods of
F ∗ − E∗. Consequently, in order to determine the roles of Erk and Fas on the
response to anaemia, we considered three cases describing three different ways
of acting on self-renewal, differentiation and apoptosis rates, based on variations
of ps and a in the neighborhoods of the steady state values.

In the first case ps(E−F ) and a(F −E) vary slightly on both neighborhoods
of the steady states. In the second case ps(E−F ) (respectively a(F −E)) varies
a lot near the steady state corresponding to Erk prevalence, i.e. F ∗ − E∗ < 0
(respectively, Fas prevalence, i.e. F ∗ − E∗ > 0), and is almost constant near
the other steady state. Biologically it can be interpreted as follows: in critical
situations Erk and Fas importantly modify the progenitor self-renewal rate of
immature but not of mature cells, and apoptosis rate is strongly modified in
mature cells but not in immature ones. The third case is opposite to the second
one. It should be noted that the assumption on the three rates that confines
them in the interval [0, 1], limits maximum values of functions ps and a, so the
fourth possible case, when the functions vary a lot on both neighborhoods is
ineligible. Simulations indicated that the response obtained in the first case
is weak, that is the system takes more time to come back to the equilibrium.
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Second case seemed to us biologically more realistic than the third one, hence we
chose to use only the second case for the numerical simulations. Nevertheless,
it can be noted that the simulation of the third case showed a weaker response,
i.e. slower erythrocyte count dynamics, though the rates displayed different
dynamics.

In order to obtain a good fit of experimental data, functions ps(E − F ) and
a(F − E) used for the simulations are

ps(x) = 0.1 +
1.2× x40

1.740 + x40
, a(x) = 0.12 +

1.02× x40

1.540 + x40
.

Units of 0.12 and 1.02 for function a are d−1, other parameters are dimensionless
values.

5.4. Steady state values

Since we are going to confront the simulation results with experimental data
presented in Figure 4, we tried to get equilibrium value of erythrocyte count
M∗ = 107 cells.μl−1. This implied HSC = 80 cells.μl−1.d−1. As initial condi-
tion for the number of erythrocytes we took 30% of its equilibrium value, which
corresponds to the anaemia presented in Figure 4 (see value of RBC count on
day 3). Equilibrium values are taken as initial conditions for all other system
variables. Steady state values of the main system components, obtained through
the simulation, are presented in Table 3.

Table 3: Steady state values of the main variables of the system.

Steady states Value Units
Erythrocyte count M∗ 107 cells.μl−1

Reticulocyte count P ∗8 4.75× 105 cells.μl−1

Erythropoietin level Epo∗ 5.7 mU.μl−1

Glucocorticoids level GC∗ 44.6 mU.μl−1

Fas − Erk level for immature cells F ∗ − E∗ −0.66 N.U.
Fas − Erk level for mature cells F ∗ − E∗ 0.48 N.U.
Activation rate of Erk α(Epo∗, GC∗) α∗ 0.21 d−1

Activation rate of Fas γ(P ∗n) γ∗ 0.55 d−1

Self-renewal rate of immature cells s∗ 0.44 d−1

Self-renewal rate of mature cells s∗ 0.06 d−1

Differentiation rate of immature cells d∗ 0.45 d−1

Differentiation rate of mature cells d∗ 0.53 d−1

Apoptosis rate of immature cells a∗ 0.11 d−1

Apoptosis rate of mature cells a∗ 0.41 d−1

As shown in Table 3, in normal erythropoiesis reticulocyte count is 20-fold
smaller than erythrocyte count. Progenitor sub-populations P1, . . . , P7 are much
smaller than P8 (not shown here). The model predicts that 44% of immature
progenitors self-renew per day (only 6% of mature progenitors per day), which
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allows the conclusion that mature progenitors mainly lost their ability to self-
renew. Apoptosis rate is high in mature cells (41% d−1), whereas it is only 11%
d−1 in immature cells. About 53% of mature and 45% of immature progenitors
differentiate per day, providing that the differentiation remains important in
all erythroid cells. Thus, in normal erythropoiesis, immature progenitor sub-
populations are characterised by weak apoptosis and comparable self-renewal
and differentiation rates. Mature progenitors, however, preferentially differen-
tiate with high apoptosis.

The next section is devoted to numerical simulations of phenylhydrazine-
induced anaemia.

6. Simulation of Phenylhydrazine-Induced Anaemia and Comparison

with Experimental Data

Using parameter values obtained in the previous section, we numerically
computed solutions of system formed with Equations (4) to (8) and Equa-
tion (11), for an anaemia-induced situation: it is assumed that at the beginning
of the numerical computations (day 0) the erythrocyte count is lower than its
equilibrium value (30% of its equilibrium) due to previous phenylhydrazine in-
jections. Simulations were carried out using Matlab and results are presented
in Figures 6 to 10.

First, dynamics of main variables of the system and of some relevant rates
are illustrated: erythrocyte and reticulocyte counts in Figure 6, erythropoietin
and glucocorticoid levels in Figure 7, Erk and Fas levels in Figure 8, self-renewal,
differentiation and apoptosis rates in Figure 9. Explanations on the dynamics
of the system are proposed. Then results are confronted to experimental data
from Figure 4 in Figure 10.

All simulations start at day zero. For the sake of clarity, equilibrium values
are shown on days -1 to 0.

6.1. Erythrocyte and reticulocyte counts

Erythrocyte count (solid line) and reticulocyte count (dash line) dynamics
are presented in Figure 6.

Following the anaemia, erythrocyte count quickly increases and reaches a
maximum value (lower than the equilibrium value) after 7 days, then stays there
up to day 10. Afterwards, erythrocyte count slowly decreases (days 10 to 17).
Quick increase is observed between days 17 to 21, followed by a gradual return
to the equilibrium. Although erythrocyte count globally increases between day
0 and day 30, it should be noted that 30 days after anaemia the erythrocyte
count is still below its equilibrium value.

At day 0, the reticulocyte count increases to reach a maximum value that
equals approximately four-fold of its equilibrium value on day 4, then comes
back to its steady state and keeps on decreasing. On day 17, when erythrocyte
count is decreasing, the number of reticulocyte increases once again, though less
importantly this time.
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Figure 6: Anaemia simulation. Erythrocyte and reticulocyte count dynamics. Solid curve
represents erythrocyte count, dash curve represents reticulocytes. Equilibrium value of ery-
throcyte count used in the simulation is M∗ = 107cells.μl−1.

The first increase of reticulocyte count (up to day 4) is due to a strong
increase of mature progenitor differentiation, see Figure 9.B. Explanations on
the behavior of erythrocyte and reticulocyte counts on day 17 are however less
straightforward and will be given later in Section 6.5, when confronting the
results with experimental data.

6.2. Growth factors dynamics

In Figure 7, erythropoietin and glucocorticoid dynamics are shown. Growth
factor levels are strongly perturbed (large increase) during the first five days
following the anaemia, this perturbation being characterised by a sharp increase
of both concentrations on day 1, when the organism lacks erythrocytes. Then
values of Epo and GCs levels smoothly return to their equilibria, with small
perturbations, in particular they both increase once again on day 17, due to the
fall in erythrocyte count (Figure 6).

As it will be noted in the following sections, two different actions of Epo and
GCs appear in the response to anaemia. First, in the early stages of the response
to anaemia (between days 0 and 5) mainly Epo inhibits apoptosis (Figure 9),
leading to high proliferation of immature progenitors. Second, from day 6 up to
the end of the response, Epo and GCs levels are closer to their equilibrium values
and they regulate erythropoiesis mainly through Erk-Fas regulation (Figure 8).

6.3. Erk and Fas levels

Dynamics of variable F − E and feedback controls expressed by α and γ
are presented in Figure 8. Values of F − E in all mature (respectively, in all
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Figure 7: Anaemia simulation. Dynamics of growth factors, shown on logarithmic scale.

immature) sub-populations are similar because the feedback by FasL has been
supposed to be the same on all cells (see Section 5.2).
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Figure 8: Anaemia simulation. Panel A: Dynamics of F − E for self-renewing (green solid
curve) and differentiating (red dash curve) sub-populations. Panel B: Dynamics of α(Epo, GC)
(blue solid curve) and γ(Pn) (red dash curve).

On the first day following anaemia the quantity F − E decreases. This is
more clearly observed for mature cells (red dash curve), yet it also occurs for
immature cells (green solid curve). This is due to high values of α (Panel B),
the feedback function controling Erk production. Then, F − E increases and
reaches its extreme values after 5-6 days following anaemia induction. As one
can observe on Panel A, between days 9 and 19 the difference F −E has values
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below its equilibria, which is due to the regulation through α and γ.
Production of Erk, the feedback control expressed by α, is at its maximum

during the first four days, while γ (production of Fas) is increasing. Then, α
sharply decreases almost down to its equilibrium, while γ decreases smoothly
and reaches its minimum value, where it stays from day 10 up to day 18. On
day 18, a new increase of γ is observed, due to the increase of the reticulocyte
count (Figure 6). Two different behaviors are observed in α and γ dynamics:
fast changes (α on days 1 and 4) and modest variations (γ between days 1 and 8,
and days 18 and 25). Fast changes of α are directly due to sharp Epo and GCs
dynamics (see Figure 7), while modest γ dynamics is due to modest evolution
of reticulocyte count (see Figure 6).

6.4. Self-renewal, differentiation and apoptosis rates

Self-renewal, differentiation and apoptosis rates are presented in Figure 9.
The three rates exhibit important fluctuations. Their dynamics for immature
and mature cell populations are different.

Self-renewal rate varies a lot for all cells. At first sight, it seems not to
be the case for mature cells, yet self-renewal equilibrium value is small and the
variations represent a two-fold increase of the equilibrium value. Such important
variations are also observed for the two other rates. Moreover, two different
types of changes in values of the rates appear in Figure 9. First, sharp variations
appear between days 0 and 1: they are strong, for instance, for mature sub-
populations (red dash curves in Figure 9). Then, after day 1, variations are
more gradual, sometimes with large amplitudes.

Taking into account the nature of the feedback controls, we conclude that
sudden sharp variations in the three rates right after the induction of anaemia
are due to direct inhibition of apoptosis by Epo, independently of the intracel-
lular network based on Erk and Fas, and gradual variations that occur later
(after day 2) are due to Erk and Fas regulation. During the first six days these
gradual variations are observed for the self-renewal rate (Panel A) and the dif-
ferentiation rate (Panel B) of immature cells. During days 6-32, the three rates
keep on varying gradually, which is due to Erk and Fas variations. These fluc-
tuations are important, suggesting a strong dependence of the rates on Erk and
Fas (which at the same time vary modestly), and last longtime (40-45 days, not
shown here). These conclusions must however be completed by the fact that
the influence of Epo on apoptosis rate is observed as long as its levels are not
back to equilibrium value, especially for immature self-renewing sub-populations
(Figure 9.C).

It should be noted as well that differentiation in our model is a choice by
default, i.e. a cell that is protected against apoptosis and which does not self-
renew differentiates.

6.5. Confrontation to experimental data

Simulation results and experimental data are presented in Figure 10. The
blue dash curve represents the simulation discussed above (Figure 6), the black
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Figure 9: Anaemia simulation. Self-renewal, differentiation and apoptosis rates of immature
self-renewing (green solid curve) and mature differentiating (red dash curve) sub-populations.
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solid line represents the outcome of experiments by Cherukuri et al. [9] (Fig-
ure 4).
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Figure 10: Anaemia simulations. Erythrocyte count dynamics obtained by Cherukuri et al. [9]
in experiments on induced anaemia in mice (black circled solid line), obtained in simulations
carried out with δ = 1/40 d−1 (blue dash curve) and with δ = 1/30 d−1 (red dash-dot curve).

Let focus on the simulated blue dash curve. First, from day 0 to day 7, the
computed erythrocyte count increases as fast as observed in the experiments,
with only one day delay. From day 10, simulated erythrocyte count decreases in
spite of its low value (lower than equilibrium). Similar phenomenon is observed
in the experiments (black solid line) from day 8 to 15. The cause of such
a decrease in cell numbers although the erythrocyte count is still lower than
normal is investigated in the following.

In Figure 6, reticulocyte count starts decreasing at day 4. Figure 9 shows
that during first four days apoptosis rate is below its equilibrium for mature cells,
whereas both self-renewal and differentiation rates are above their equilibrium
values. This results in an increase of the number of mature progenitors (not
shown here). However, for immature cells the picture is a bit different, self-
renewal rate increases a little bit on the first day and then decreases a lot due to
high F−E values (Figure 8.A), differentiation rate is higher than at equilibrium,
apoptosis rate is lower than at equilibrium. This results in a decrease of the
number of immature progenitors (not shown here). Hence, on day 4 the system
starts lacking immature cells to maintain the increase of mature progenitors that
triggers a decrease of the latter and, thus, of reticulocytes. Apoptosis of mature
progenitors is high during days 6-8 (Figure 9.C), whereas differentiation rate is
low (Panel B) and self-renewal is about its steady state (Panel A). This makes
reticulocyte count decrease even faster (Figure 6), go below its equilibrium on
day 8, where it stays up to day 19. This, in turn, decreases the supply of
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mature erythrocytes that results in the reduction of erythrocyte count observed
between day 10 and day 18. Thus, our model suggests that this decrease of
erythrocyte count is a consequence of low self-renewal rate of immature cells
during first seven days and of the high apoptosis of mature cells during days
6-8. This, in turn, is due to a high value of F −E (Figure 8.A) and not to Epo
control of apoptosis, which is below its equilibrium during these days and should,
in contrary, decrease apoptosis rate (Figure 11). Consequently, this decrease
(days 10-18) of the erythrocyte count can be explained by Erk-Fas regulation.
It can be compared to the quick increase of erythrocyte count following the
anaemia, which is clearly due to an inhibition of progenitor apoptosis by Epo,
independently of Erk-Fas regulation.
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0.3

0.4
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1
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Figure 11: Anaemia simulation. Function faEpo(Epo).

The above analysis enlightens two different and clear mechanisms of erythro-
poiesis regulation: first, inhibition of apoptosis by Epo in the early stages of
the response to anaemia, and second, a more moderate regulation on the long-
term of erythroid progenitor self-renewal, differentiation and apoptosis based on
intracellular regulation (Erk and Fas).

Although close to experimental data, the simulated erythrocyte count (blue
dash curve) does not appear to be the best fit to the data. Focusing on the
nature of the anaemia, that is the consequences of phenylhydrazine use, we can
obtain better results.

Phenylhydrazine is known to damage cell membrane, which results in re-
duced lifetime of erythrocytes following the injections. We tested this assump-
tion with our model, assuming a mortality rate of erythrocytes δ = 1/30 d−1,
which means the average lifetime of an erythrocyte is reduced to 30 days under
the action of phenylhydrazine. Red dash-dot curve in Figure 10 represents ery-
throcyte count in this case. It provides a better fit of the data, with a stronger
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slope on the first days (days 1 to 5), a smaller undershoot afterward and a faster
return to the equilibrium. It should be noted that the current modification of
the value of δ does not alter the above analysis and conclusions, it only allows a
better fit of the data. For both simulations presented in Figure 10, one feature
of experimental curve is however not well approached: the undershoot in both
simulations (observed around day 18) is slower, occurs later and is also smaller
than the one obtained in the experiments (observed around day 14).

We confronted our model with other experimental data on phenylhydrazine-
induced anaemia, presented in Crauste et al. [11]. In these experiments, haema-
tocrit values were measured during 45 days after anaemia induction. The model
used in this work does not a priori provide haematocrit, but only erythrocyte
count. Haematocrit H(t) is defined by

H(t) =
vM(t)

vM(t) + Plasma volume
,

where vM(t) represents the volume of erythrocytes in the blood. In Crauste
et al. [11] we assumed that the plasma volume was not modified during the
experiments and considering normal haematocrit H∗ (assumed to equal 50%)
and erythrocyte count M∗ we obtained

H∗ =
vM∗

vM∗ + Plasma volume
,

which provides

Plasma volume =
1−H∗

H∗
vM∗.

Consequently, haematocrit can be deduced from the erythrocyte count,

H(t) =
M(t)

M(t) + (1 −H∗)M∗/H∗
.

This is displayed in Figure 12.
To obtain an overshoot on day 5 as presented in Figure 12, it was necessary

to modify functions faEpo(Epo), ps(E − F ) and a(F − E). In particular, the
minimum value of faEpo has been dropped from 0.2 down to 0.1, see (18),
functions ps(E−F ) and a(F −E) have been modified to have smaller variations
on the relevant intervals of F−E. One can observe that experimental results are
properly reproduced by the model, although the decrease following the peak in
haematocrit values is slower in the model. Erythrocyte lifespan must be reduced
from 40 days to 15 days to obtain these results, similarly to what has been done
in Crauste et al. [11].

Hence, this model is able to reproduce features of a simpler model, and also
leads to more insights into regulatory mechanisms of erythropoiesis.

7. Discussion

We built up a new multi-scale mathematical model of erythropoiesis taking
into account several biological aspects known up to now. In particular, we
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Figure 12: Anaemia simulation. Haematocrit dynamics. Blue solid line represents simulation
results, red dash line represents results of experiments on induced anaemia in mice obtained
in Crauste et al. [11]. Normal haematocrit is assumed to equal 50%, lifetime of erythrocytes
is 15 days.

considered an intracellular network regulating cell fate, based on two proteins:
Erk and Fas. These proteins, together with growth factors (erythropoietin and
glucocorticoids), act on cell proliferation, and in turn the number of erythroid
progenitor and of erythrocytes controls the production of growth factors and
the activation of intracellular proteins. Erythropoietin was also supposed to
directly inhibit progenitor apoptosis, and to contribute to intracellular proteins
activation.

The resulting mathematical model was briefly analysed and numerically
simulated. We focused on simulations of phenylhydrazine-induced anaemia
for which parameter values were estimated. Outputs of the model were con-
fronted with experimental data. Although most parameter values were de-
termined through numerical simulations (due to a lack of information in the
literature), we then identified two different roles of the feedback controls in re-
sponse to anaemia: feedback by Epo on apoptosis (inhibition), independently
of the intracellular network based on Erk and Fas, was found to be determinant
in the early stage of the response, to quickly increase the number of erythro-
cytes, whereas feedback control through the intracellular regulatory network,
introduced in Section 2, was more important later in the response, when the
erythrocyte count almost reached its equilibrium value, to regulate on a long-
term the response to the stress. This explained, in particular, a surprising fall
in erythrocyte count although normal erythrocyte count was still not reached
in Cherukuri et al data [9] (Figure 4). It must be noted, however, that Epo has
a permanent influence on progenitor apoptosis.

Apart from the study of feedback functions roles and relevance, the model
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brought some additional features. One deals with the apoptosis rate. The
simulation provided that the apoptosis rate in mature sub-populations at the
equilibrium (normal erythropoiesis) equals a∗ = 0.41 d−1. Thus, the model
suggests that in normal erythropoiesis between 40% and 50% of mature ery-
throid progenitors undergo apoptosis daily. Such a prediction of the model
could be experimentally tested. The model also shows that in stress situations,
like anaemia, the organism reacts by temporarily suppressing apoptosis that
allows fast recovery of erythrocytes (Figure 9).

Regarding the model of erythropoiesis, some assumptions deserve to be com-
mented.

All the simulations were performed under the assumption that cell cycle
durations were constant, equal to one day. Although there is no evidence that
cell cycles vary during response to a stress, nor that such variations could be
important, this assumption appears restrictive. In particular, it is responsible
in part for the delay observed in the first days of the response for the increase
of the erythrocyte count. Hence, considering that cell cycles can be shortened
during stress erythropoiesis could enhance the results of the proposed model,
by allowing a better fit to the data, and consequently more relevance of the
predicted parameters. Nevertheless, the variations of cell cycle durations could
not be, to our knowledge, fitted on experimental data and would be decided in
a more ad hoc way.

An other point that could potentially lead to a better model concerns the
variability in Erk and Fas concentrations within a sub-population of progenitors
with the same maturity. In this work we assumed that all erythroid progenitors
with the same maturity had similar concentrations of Erk and Fas. Thus, our
model does not take into account stochasticity in these expressions, which can
play an important role in the regulation of erythropoiesis. One appropriate
approach taking into account stochasticity is the individual-based modelling.
This considers each cell as an independent element of the whole system and,
thus, every cell can have its own properties and protein concentrations.

Let us finally comment on erythropoietin regulation. It is known that Epo
levels rise due to the lack of haemoglobin. In this work we did not consider
haemoglobin and we assumed that erythrocyte count alters Epo levels (thus
implicitly supposing that erythrocyte count and haemoglobin are linearly de-
pendent). Nevertheless, as shown in Cherukuri et al. [9], there is no linear
dependence between haemoglobin and erythrocyte (or red blood cell) count
during anaemia. This point can be relevant for the modelling of the response to
anaemia. Another point is that no information is currently available about how
sensitivity to Epo evolves with maturation. These aspects of Epo regulation
should be investigated to improve erythropoiesis modelling.
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