

Covalent bonds in α -SnF2 monitored by J-couplings in solid-state NMR spectra

Thomas Braeuniger, Stefan Ghedia, Martin Jansen

▶ To cite this version:

Thomas Braeuniger, Stefan Ghedia, Martin Jansen. Covalent bonds in α -SnF2 monitored by J-couplings in solid-state NMR spectra. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, 2010, 636 (13-14), pp.2399. 10.1002/zaac.201000176. hal-00567268

HAL Id: hal-00567268 https://hal.science/hal-00567268

Submitted on 20 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Zeitschrift für Anorganische und Allgemeine Chemie

Covalent bonds in a-SnF₂ monitored by *J*-couplings in solidstate NMR spectra

Journal:	Zeitschrift für Anorganische und Allgemeine Chemie
Manuscript ID:	zaac.201000176.R1
Wiley - Manuscript type:	Article
Date Submitted by the Author:	25-Jun-2010
Complete List of Authors:	Braeuniger, Thomas; MPI fuer Festkoerperforschung, Stuttgart, Abteilung Jansen, Chemie III Ghedia, Stefan; MPI fuer Festkoerperforschung, Abt. Jansen, Chemie III Jansen, Martin; MPI fuer Festkoerperforschung, Chemie III
Keywords:	19F-NMR, 119Sn-NMR, J-couplings, heteronuclear spin decoupling, alpha-SnF2

Covalent bonds in α -SnF₂ monitored by *J*-couplings in solid-state NMR spectra

Thomas Bräuniger^{*}, S. Ghedia, M. Jansen

June 25, 2010

Max-Planck-Institute of Solid-State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany

* Corresponding author. Fax: +49 711 689 1502. *E-mail address:*T.Braeuniger@fkf.mpg.de (T. Bräuniger).

Abstract

The stable ambient-temperature phase of tin(II) fluoride, α -SnF₂, has been studied by ¹⁹F and ¹¹⁹Sn magic-angle spinning (MAS) NMR spectroscopy. A large chemical shift anisotropy (CSA) is observed in the spectra of both nuclides, which is indicative of the presence of stereochemically active lone electron pair on Sn. Symmetric satellite lines with low intensity have been detected in the ¹¹⁹Sn MAS spectra acquired under ¹⁹F decoupling, and are assigned to indirect *J*-couplings between the magnetically active Sn isotopes. The detection of *J*-couplings is evidence for the existence of genuine covalent bonds in α -SnF₂, a fact which has been deduced before from X-ray crystallography, which revealed the presence of Sn–F distances smaller than the sum of the respective ionic radii.

Keywords

 $^{19}\text{F-NMR};$ $^{119}\text{Sn-NMR};$ J-couplings; heteronuclear spin decoupling; $\alpha\text{-SnF}_2$

1 Introduction

Tin(II) fluoride, SnF₂, is known to crystallise as monoclinic phase (α -SnF₂) at ambient conditions [1, 2]. At elevated temperatures an orthorhombic phase (β -SnF₂) and a tetragonal phase (γ -SnF₂) also occur [3], which convert back to α -SnF₂ at standard conditions. The structure of α -SnF₂ is pictured in Fig. 1. It is constructed from an asymmetric unit that contains two tin and four fluorines [1]. Both these elements may be observed by nuclear magnetic resonance (NMR) spectroscopy (see Table 1), with ¹¹⁹Sn being the preferred tin isotope as comparatively, it possesses the highest sensitivity. Solid-state NMR has indeed been applied to characterise structure and dynamics of α -SnF₂ [3–5]. However, mostly due to apparent inavailability of modern magic-angle spinning (MAS) equipment, the NMR data published so far neither achieve satisfactory site resolution for ¹⁹F [3,4] nor for ¹¹⁹Sn [5].

Here we demonstrate that a reliable NMR characterization of tin(II) fluoride is feasible by using fast MAS and efficient ¹⁹F spin decoupling. The MAS spectra recorded under these conditions possess sufficient resolution to reveal the effects of indirect *J*-coupling. Unlike dipolar couplings, which act through space, *J*-couplings are mediated by covalent bonds, and are difficult to observe in solid-state NMR, because they are usually much smaller than dipolar couplings [6–8]. For ¹¹⁹Sn however, *J*-couplings tend to be comparatively large (in the range of kHz), and have been reported before in the literature for a variety of compounds [9–21]. The existence of *J*-couplings in α -SnF₂ shown here is further evidence for the existence of covalent Sn–F bonds in tin(II) fluoride.

2 Experimental

 α -SnF₂ (99%) was purchased from Sigma Aldrich and used without further treatment. Phase purity was checked by powder XRD. Furthermore, the sample was inspected for elements other than Sn and F by EDX (energydispersive X-ray spectroscopy), but no evidence for such elements was found. Magic-angle spinning (MAS) ¹⁹F and ¹¹⁹Sn NMR spectra were recorded on a BRUKER DPX 400 spectrometer with a 9.4 T magnet, using a BRUKER MAS double-resonance probe with 2.5 mm rotors. The ¹⁹F spectrum at Fig. 1

Table 1

> 60 kHz MAS was acquired on a BRUKER AVANCE III spectrometer equipped with a 14.1 T magnet, and a BRUKER MAS double-resonance probe with 1.3 mm rotors. Neither probe showed any substantial ¹⁹F background signal. Recycle delays and number of transients are listed in the respective figure captions. For ¹⁹F spin decoupling, the recently suggested SW_f-TPPM sequence [22] was used. The sequence consisted of 11 pulse pairs with a phase angle of ±12.5°, employing a linear sweep profile [23] with a sweep window from 0.69 – 1.46. These parameters were optimised on a fluorinated model compound. More details on the application of SW_f-TPPM for ¹⁹F decoupling will be published elsewhere [24]. The ¹⁹F spectra were referenced against CFCl₃ by using solid CaF₂ as a secondary standard, with the ¹⁹F resonance of CaF₂ assigned to -107.7 ppm [6]. Similarly, the ¹¹⁹Sn NMR spectra were referenced by measuring SnO₂ as a secondary standard, setting this ¹¹⁹Sn resonance at -604.3 ppm [25].

Results and Discussion

In comparison to NMR spectra recorded from solutions, static solid-state NMR spectra exhibit very broad, featureless resonances. For nuclei with spin I = 1/2, this is usually due to two predominant effects: (a) direct dipolar coupling (both homo- and heteronuclear), and (b) chemical shift anisotropy (CSA). Since both these effects have the same spatial dependence, they may be reduced or removed by application of magic-angle spinning (MAS) [6,7]. The extent to which the broadening caused by dipolar couplings and CSA is removed from the spectrum depends on the relative magnitude of these interactions compared to the MAS frequency.

The magnitude of the dipolar interaction is determined by the angle θ_{jk} between the vector connecting the two spins j and k, and the direction of the external magnetic field, the gyromagnetic ratios γ_i of the involved nuclei, and the distance r_{jk} between the two spins [7]. The largest secular dipolar coupling, which is observed for $\theta_{jk} = 0$ (i.e. with the internuclear vector parallel to B_0) is usually called the *dipolar coupling constant*, b_{jk} . In units of Hertz, b_{jk} is given by Eq. 1.

$$b_{jk} = -\frac{\mu_0}{8\pi^2} \frac{\gamma_j \gamma_k \hbar}{r_{jk}^3} \tag{1}$$

The shortest distances for heteronuclear and homonuclear pairs of nuclei reported for the X-ray structure [1] are 2.03 Å, namely between Sn(2) and F(1), and 2.69 Å, between F(2) and F(4). With Eq. 1 and the γ_i values listed in Table 1, we calculate maximum dipolar coupling constants of ≈ 5.0 kHz for heteronuclear 119 Sn $^{-19}$ F couplings, and ≈ 5.5 kHz for homonuclear 19 F-¹⁹F couplings. It has been estimated that MAS frequencies in excess of five times the relevant dipolar interactions are necessary to completely remove the dipolar broadening [6, 26]. The second relevant interaction, the chemical shift anisotropy (CSA), is also comparatively large for both ¹⁹F and ¹¹⁹Sn. In the case of fluorine, CSA's of several hundred ppm's have been reported [27], whereas for ¹¹⁹Sn, CSA's up to a thousand ppm have been found [11]. For a magnet with a field of 9.4 T, this translates into interactions between 40 kHz (¹⁹F), and 150 kHz (¹¹⁹Sn). Therefore, it is clear that very fast MAS is needed to reduce both dipolar and CSA interactions sufficiently to be able to resolve spectral lines belonging to different crystallographic sites in α -SnF₂.

As a third contribution to line broadening, J-couplings have to be taken into account for ¹¹⁹Sn, since it has been documented previously [9–21] that they may also be of the order of kHz. In fact, the J-couplings for ¹¹⁹Sn can be so large that it has been possible to determine the anisotropy of this interaction in some organo-tin compounds [14] by using off-magic angle spinning. Under exact magic-angle spinning conditions, only the isotropic part of the indirect J-coupling remains, but because of its comparatively large magnitude, we expect J-couplings – if they are present – to affect the NMR spectra of α -SnF₂ even at high MAS speeds.

3.1 ¹¹⁹Sn MAS-NMR

In Fig. 2, the ¹¹⁹Sn NMR spectra of α -SnF₂ at 25 kHz MAS are shown, acquired with and without application of spin-decoupling on ¹⁹F, under otherwise identical conditions. It is obvious from Fig. 2b that residual dipolar couplings (in combination with indirect *J*-couplings, see below) strongly broaden the spectral lines, so application of efficient ¹⁹F spin-decoupling is essential. The sideband pattern observed in the ¹¹⁹Sn NMR spectrum acquired with decoupling (Fig. 2a) spans almost 1000 ppm, which is caused by a large anisotropy of the chemical shift. Two isotropic bands (which do not

Fig. 2

Fig. 3

alter position when the MAS speed is changed) are located at -949.4 and -1024.7 ppm in the ¹¹⁹Sn spectrum, which correspond to the two independent Sn positions in the crystal structure [1]. A better quality spectrum of ¹¹⁹Sn with ¹⁹F spin-decoupling is shown in Fig. 3a. In this spectrum it can be seen that the main lines of the sideband pattern are flanked by doublets of satellite lines, with the spacing of these doublets being unaffected by the spinning speed. These satellites should therefore be attributed to indirect J-coupling between the magnetically active tin isotopes in α -SnF₂. Because of the very low natural abundance of ¹¹⁵Sn, the presence of the satellite lines is due mainly to coupling between the observed ¹¹⁹Sn and neighbouring 117,119 Sn isotopes. Since the natural abundance of both 117 Sn and 119 Sn is below 9% (cf. Table 1), most of the observed 119 Sn nuclei are unaffected, and only a small percentage contributes to the J-coupling satellites. To determine the magnitude of the J-couplings, the high-intensity first-order spinning sidebands were deconvoluted using the DMFIT program [28], as shown in Fig. 3b. First, to ensure that the satellite doublet remains symmetric around the central line, the spinning sideband tool of DMFIT was used to determine the positions of the satellites. These positions were then fixed, and the intensity of the satellites was subsequently fitted with Lorentzian lines, resulting in the deconvolution depicted in Fig. 3b. (The native Jcoupling tool in DMFIT could not be used because it expects both satellites to have identical intensity, which our ¹¹⁹Sn spectra do not always exhibit because of the relatively poor signal-to-noise ratio.) The ¹¹⁹Sn NMR spectrum of α -SnF₂ can be fitted with a minimum of 3 doublets, resulting in J-couplings of approximately 5.4, 3.3 and 1.4 kHz. We have also recorded a Hahn-echo spectrum (not shown), where the observed satellite lines can be caused by coupling of ¹¹⁹Sn to ¹¹⁷Sn only. Deconvolution of this echo spectrum resulted in values very similar to those shown in Fig. 3b. However, according to the connectivities that can be derived from the crystal structure of α -SnF₂ [1,2], more than just the 3 satellites used for fitting here are expected to show up in the spectrum. This will be discussed in more detail below.

In terms of chemical bond character, it is instructive to compare the findings presented here with a previous NMR study of SnO and SnO₂ [11]. Similar to α -SnF₂, the ¹¹⁹Sn spectrum of SnO displays a CSA-broadened

spinning side band pattern spanning about 1000 ppm. This large anisotropy in the shielding can be attributed to the presence of a stereochemically active Sn lone electron pair in both compounds. Of course, such a lone pair is absent in SnO₂, which is reflected in a comparatively small CSA of about 140 ppm [11]. Also, the tin spectra of SnO₂ do not exhibit any *J*-coupling effects, since bonding is largely of ionic nature (rutile type). By contrast, the significant degree of covalent character in SnO (PbO type) and α -SnF₂, permits indirect spin coupling that is observed in the MAS spectrum of each compound, with a *J* value of about 8 kHz in SnO [11]. Thus, the presence of *J*-couplings in α -SnF₂ is additional evidence for the existence of genuine covalent bonds, which has been deduced before from X-ray crystallography by comparing the observed Sn–F distances to the sum of the respective ionic radii [1].

3.2 ¹¹⁹Sn *J*-couplings and crystal structure

Since J-couplings are mediated by covalent bonds, the satellite pattern observed in the ¹¹⁹Sn spectrum of α -SnF₂ (Fig. 3) should reflect the connectivities of the crystal structure, where the tin atoms are connected via fluorine bridges. In general, a ¹¹⁹Sn NMR spectrum acquired with a single pulse should show J-couplings for both ¹¹⁷Sn-F-¹¹⁹Sn and ¹¹⁹Sn-F-¹¹⁹Sn pairs, whenever crystallographically distinct tin species are connected via Sn(1)-F-Sn(2) bridges. For bridges among identical tin species, i.e. Sn(1)-F-Sn(1) and Sn(2)-F-Sn(2), only ¹¹⁷Sn-F-¹¹⁹Sn couplings are relevant because of the magnetic equivalence of crystallographically identical pairs. It also follows that bridges among identical species add to the J-coupling satellites with only about half the intensity, because the ¹¹⁹Sn isotope does not contribute.

However, the actual number of tin-fluorine-tin bridges existing in the structure depends on which tin-fluorine distances are thought to represent covalent bonds. When considering only distances up to the sum of the ionic radii (2.27 Å according to Ref. [1]), the resulting structure consists of an arrangement of Sn_4F_8 rings [1,2]. In this model, the two crystallographically distinct tin species, designated Sn(1) and Sn(2), are connected via F(2) and F(4) forming puckered rings. These rings possess comparatively short bonds, from 2.068 to 2.273 Å. Clearly, the *J*-coupling observed in the ¹¹⁹Sn

Table 2

spectrum is not consistent with having bonds only within these rings. If longer distances are also considered, additional bonds connect the Sn_4F_8 among themselves via fluorine bridges involving bond distances > 2.4 Å. This level of connectivity is used in the structural representation shown in Fig. 1. The co-ordination of this arrangement, as also described in Ref. [2], is such that the Sn(1) species are tetrahedrally surrounded by three fluorines and a lone pair, whereas Sn(2) is surrounded by five fluorine and a lone pair in octahedral fashion. Again, this structural model does not fit our ¹¹⁹Sn NMR data, as it would result in different coupling patterns for the ¹¹⁹Sn resonances belonging to Sn(1) and Sn(2), whereas we see a very similar satellite pattern for both. We may however find the desired equivalent coordination for both tin species if we include one further distance (2.675 Å) as a bond into the model. As may be seen from Table 2, Sn(1) is now connected to four Sn(2) and two Sn(1) via various fluorine bridges. For Sn(2), the situation is identical in that it is connected to four Sn(1) and two Sn(2). With this model, we may explain the satellite pattern seen in the 119 Sn spetrum in the following way. The J-coupling via the shortest fluorine bridges (top two rows for each tin species in Table 2) is strongest, causing the satellites with about 5.4 kHz spacing. The remaining four fluorine bridges, involving at least one significantly longer tin-fluorine bond, all give rise to J-couplings of the order of 1.4 kHz, causing the inner satellites. As these are only visible as shoulders to the main line, fitting the exact positions is prone to some error. Since each tin species may experience the smaller J-coupling via four fluorine bridges, there is a reasonable probability that two magnetically active isotopes may be simultaneously present. This would result in a triplet structure caused by the J-coupling, and could explain the satellites with a spacing of about 3.3 kHz, if we accept that there is an error of about 0.2 kHz in the determination of the inner satellites. The 3.3 kHz satellites would thus represent the outer triplet lines (with corresponding low intensities), whereas the centre line of the triplet is hidden within the majority resonance of uncoupled nuclei.

With this model, we are able to qualitatively describe the appearance of the ¹¹⁹Sn spectrum, however, the actual *J*-coupling pattern may be even more intricate. In particular, a roof effect could be expected for the ¹¹⁹Sn– F^{-119} Sn couplings, as the chemical shift difference between the two tin res-

onances is only about 11 kHz at 9.4 T. Within the quality of the available spectra, we do not observe such an effect, and other, unobserved subtleties may be similarly present. Obviously, the resolution of the ¹¹⁹Sn spectrum would greatly benefit from faster MAS, but the 1.3 mm probe used for the acquisition of the fast ¹⁹F spectra at 60 kHz MAS does not reach the necessary high resonance frequency for ¹¹⁹Sn.

It should also be mentioned that the strongest *J*-coupling should exist for the ${}^{19}\text{F}{-}^{119}\text{Sn}$ pair, which is connected by a direct bond. Because ${}^{19}\text{F}$ decoupling is applied, these couplings will be suppressed in the ${}^{119}\text{Sn}$ spectrum shown in Fig. 3. However, some evidence of tin-fluorine coupling can be deduced from the ${}^{19}\text{F}$ MAS spectrum, as discussed below.

3.3 ¹⁹F MAS-NMR

The ¹⁹F NMR spectra of α -SnF₂ at 25 kHz and 60 kHz MAS are shown in Fig. 4. The spectrum at 25 kHz MAS (Fig. 4b) exhibits an extensive sideband pattern, caused by a combination of residual dipolar couplings and chemical shift anisotropy. At 60 kHz MAS (Fig. 4a), however, we can expect the dipolar couplings to be completely averaged, so that the small spinning sidebands still visible are caused by CSA only. Even at this high spinning frequency, the two main ¹⁹F bands remain fairly broad, with a full-width-at-half-height (FWHH) of approximately 4 kHz. This broadening must be attributed to a range of indirect J-couplings present in the bond network of α -SnF₂. Similar to the ¹¹⁹Sn spectra discussed above, some satellite lines can also be discerned in the ¹⁹F spectra (indicated by arrows in Fig. 4a). These satellites appear at a distance of approximately 8 and 4.5 kHz from the main band, are independent of the spinning speed, and do not belong to 'probe background' (the latter was checked by measuring other fluorinated compounds). The satellite line at 8 kHz (corresponding to a J-coupling of 16 kHz) could tentatively be attributed to 19 F directly bonded to ¹¹⁹Sn, because of the strong coupling and the low intensity of the satellite line. However, since the pairing lines of the satellite doublets are hidden under the second main band, the analysis can not be conducted in the same quantitative manner as for the ¹¹⁹Sn spectra.

The considerable line broadening present in the ¹⁹F NMR spectra of α -SnF₂, even at 60 kHz MAS, results in the observation of only two isotropic

Fig. 4

bands, which are centered around -42 and -50.5 ppm. Thus, the four fluorine sites reported in the crystal structure [1] cannot be fully resolved. In addition to the main bands, a low-intensity line is observed in the ¹⁹F spectrum at around 113 ppm (marked by an asterisk in Fig. 4a), which remains narrow and stays at the same position also for lower spinning speeds. We attribute this line to some unknown minor impurity, which, judging from the small line width, appears to be very mobile. A chemically plausible candidate, which is also expected to show high mobility, would be hydrogen fluoride. Since the ¹⁹F chemical shift of HF is known to depend very strongly on the environment [29], this is however difficult to verify.

4 Conclusions

Magic-angle spinning (MAS) NMR spectra of ¹⁹F and ¹¹⁹Sn have been recorded and analysed for the stable room-temperature phase of tin(II) fluoride, α -SnF₂. The spinning sideband pattern observed for both nuclides indicate the existence of a large chemical shift anisotropy (CSA), which is consistent with the presence of a stereochemically active Sn lone electron pair. In the ¹¹⁹Sn spectra, two isotropic bands are observed, belonging to the two independent Sn sites in the crystal structure [1]. Also, symmetric satellite lines with low intensity have been detected in the ¹¹⁹Sn spectra, which are attributed to indirect J-couplings between the magnetically active tin isotopes. By spectral deconvolution of the satellite doublets, the J-couplings could be quantified to be 5.4, 3.3 and 1.4 kHz. By considering tin-fluorine distances of up to 2.675 Å to be covalent bonds, a structural model of α -SnF₂ could be found that qualitatively explains the observed Jcoupling pattern. Indications for the presence of J-couplings have also been found in the ¹⁹F spectrum of α -SnF₂. Quite uncommonly, J-coupling thus appears to be the main source of the considerable ¹⁹F line broadening still present in the 60 kHz MAS spectrum. This residual line broadening does not permit sufficient resolution to observe all four fluorine sites reported in the crystal structure [1]. The detection of *J*-couplings is in itself evidence for the existence of genuine covalent bonds in α -SnF₂, a fact which has been deduced before from X-ray crystallography by identifying Sn–F distances smaller than the sum of the respective ionic radii [1].

5 Acknowledgments

We would like to thank C. Vinod Chandran and Ivan Halasz (MPI Stuttgart) for skillful help in preparing the figures for this article. Sharon Ashbrook, John Griffin and Phil Wormald (St. Andrews, UK) are acknowledged for their instrumental assistance to acquire the ¹⁹F-MAS spectrum at 60 kHz.

References

- R.C. McDonald, H. Ho-Kuen Hau, K. Eriks, *Inorg. Chem.* 1976, 15, 762.
- [2] G. Denes, J. Pannetier, J. Lucas, J. Y. Le Marouille, J. Solid State Chem. 1979, 30, 335.
- [3] J. Pannetier, G. Denes, M. Durand, J.L. Buevoz, J. Physique 1980, 41, 1019.
- [4] A. T. Kreinbrink, C.D. Sazavsky, J. W. Pyrz, D.G.A. Nelson, R.S. Honkonen, J. Magn. Reson. 1990, 88, 267.
- [5] G. Neue, S. Bai, R.E. Taylor, P.A. Beckmann, A.J. Vega, C. Dybowski, *Phys. Rev. B* **2009**, *79*, 214302.
- [6] R.K. Harris, P. Jackson, Chem. Rev. 1991, 91, 1427.
- M.H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley & Sons, Chichester 2008.
- [8] D. Massiot, F. Fayon, M. Deschamps, S. Cadars, P. Florian, V. Montouillot, N. Pellerin, J. Hiet, A. Rakhmatullin, C. Bessada, C. R. Chimie 2010, 13, 117.
- [9] R.K. Harris, A. Sebald, Magn. Reson. Chem. 1987, 25, 1058.
- [10] A. Lyčka, J. Holeček, B. Schneider, J. Straka, J. Organomet. Chem. 1990, 389, 29.
- [11] C. Cossement, J. Darville, J.-M. Gilles, J. B. Nagy, C. Fernandez, J.-P. Amoureux, Magn. Reson. Chem. 1992, 30, 263.

- [12] C. Mundus, G. Taillades, A. Pradel, M. Ribes, Solid State Nucl. Magn. Reson. 1996, 7, 141.
- [13] J.C. Cherryman, R.K. Harris, J. Magn. Reson. 1997, 128, 21.
- [14] C. Marichal, A. Sebald, Chem. Phys. Lett. 1998, 286, 298.

- [15] H. Lock, J. Xiong, Y.-C. Wen, B.A. Parkinson, G.E. Maciel, Solid State Nucl. Magn. Reson. 2001, 20, 118.
- [16] M. Bechmann, X. Helluy, C. Marichal, A. Sebald, Solid State Nucl. Magn. Reson. 2002, 21, 71.
- [17] C. Camacho-Camacho, R. Contreras, H. Nöth, M. Bechmann, A. Sebald, W. Milius, B. Wrackmeyer, *Magn. Reson. Chem.* 2002, 40, 31.
- [18] S.P. Gabuda, V.Y. Kavun, S.G. Kozlova, V.V. Tverskikh, Russ. J. Coord. Chem. 2003, 29, 1.
- [19] P. Amornsakchai, D.C. Apperley, R.K. Harris, P. Hodgkinson, P.C. Waterfield, Solid State Nucl. Magn. Reson. 2004, 26, 160.
- [20] J. Beckmann, D. Dakternieks, A. Duthie, Organometallics 2005, 24, 773.
- [21] A. Bagno, G. Casella, G. Saielli, J. Chem. Theory Comput. 2006, 2, 37.
- [22] R. S. Thakur, N. D. Kurur, P. K. Madhu, Chem. Phys. Lett. 2006, 426, 459.
- [23] C. V. Chandran, P. K. Madhu, N. D. Kurur, T. Bräuniger, Magn. Reson. Chem. 2008, 46, 943.
- [24] C. V. Chandran, P. K. Madhu, P. Wormald, T. Bräuniger, submitted
- [25] S. Chaudhuri, F. Wang, C.P. Grey, J. Am. Chem. Soc. 2002, 124, 11746.
- [26] E. Brunner, D. Fenzke, D. Freude, H. Pfeifer, Chem. Phys. Lett. 1990, 169, 591.

ZAAC

- [27] M. Mehring, High Resolution NMR Spectroscopy in Solids, Springer, Berlin/Heidelberg/New York, 1983, Chapter 7.4.
- [28] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 2002, 40, 70.
- [29] J.-C. Culmann, M. Fauconet, R. Jost, J. Sommer, New. J. Chem. 1999, 23, 863.
- [30] R.K. Harris, E.D. Becker, S.M. Cabral de Menezes, R. Goodfellow, P. Granger, *Concepts Magn. Reson.* 2002, 14, 326.

$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	1 2	
394041424344454647489051525455565759	2 3 4	
394041424344454647489051525455565759	5 6 7	
394041424344454647489051525455565759	7 8 9	
394041424344454647489051525455565759	10 11)
394041424344454647489051525455565759	12 13	2
394041424344454647489051525455565759	14 15 16	+ ; ;
394041424344454647489051525455565759	17 18	, , }
394041424344454647489051525455565759	19))
394041424344454647489051525455565759	21 22 23	2
394041424344454647489051525455565759	24 25	
394041424344454647489051525455565759	26 27) ,
394041424344454647489051525455565759	29 30	,))
394041424344454647489051525455565759	31 32	2
394041424344454647489051525455565759	33 34 35	5
394041424344454647489051525455565759	36 37) 7
$\begin{array}{c} 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ \end{array}$	39)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	41 42	2
46 47 48 49 50 51 52 53 54 55 56 57 58 59	44	ŀ
49 50 51 52 53 54 55 56 57 58 59	46 47) /
51 52 53 54 55 56 57 58 59	49)
54 55 56 57 58 59	51 52	
56 57 58 59	54	ŀ
58 59	56 57	5
	58 59	}

Table 1. Nuclear properties of the NMR-observable nuclei in SnF_2 (from
Ref. [30]).

Isotope	Spin I	Natural	Magnetogyric	Relative	Frequency
		abundance	ratio, $\gamma~^a$	$\operatorname{receptivity}^b$	$ratio^{c}$
$^{19}\mathrm{F}$	$\frac{1}{2}$	100%	25.181	0.834	94.094 MHz
115 Sn	$\frac{1}{2}$	0.34%	-8.801	1.21×10^{-4}	32.718 MHz
$^{117}\mathrm{Sn}$	$\frac{1}{2}$	7.68%	-9.588	3.54×10^{-3}	$35.632 \mathrm{~MHz}$
$^{119}\mathrm{Sn}$	$\frac{1}{2}$	8.59%	-10.032	4.53×10^{-3}	$37.290 \mathrm{~MHz}$

 a in $10^7~{\rm rad~s^{-1}~T^{-1}}$

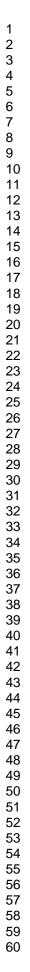
 b Receptivity relative to $^{1}\mathrm{H}.$

 c With $^1{\rm H}$ at 100 MHz.

1 2 3 4 5 6 7 8 9 10	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	
26 27 28 29 30 31	
32 33 34 35 36 37 38 39 40 41 42	
43 44 45 46 47 48 49 50 51 52 53	
53 54 55 56 57 58 59 60	

Table 2. Distances within tin–fluorine–tin bridges in α -SnF ₂ , calculated
from the co-ordinates published in Ref. [1].

Sn(1) -	$2.098~{\rm \AA}$	- F(2) -	2.204 Å	$-\operatorname{Sn}(2)$
	$2.148~{\rm \AA}$	- F(4) -	$2.273~{\rm \AA}$	$-\operatorname{Sn}(2)$
	$2.068~{\rm \AA}$	- F(3) -	$2.474~{\rm \AA}$	$-\operatorname{Sn}(2)$
			$2.675~{\rm \AA}$	$-\operatorname{Sn}(1)$
	$2.675~{\rm \AA}$	- F(3) -	$2.474~{\rm \AA}$	$-\operatorname{Sn}(2)$
			$2.068~{\rm \AA}$	$-\operatorname{Sn}(1)$
Sn(2) -	2.204 Å	- F(2) -	$2.098~{\rm \AA}$	$-\operatorname{Sn}(1)$
	$2.273~{\rm \AA}$	- F(4) -	$2.148~{\rm \AA}$	$-\operatorname{Sn}(1)$
	$2.474~{\rm \AA}$	- F(3) -	$2.068 { m ~\AA}$	$-\operatorname{Sn}(1)$
			$2.675~{\rm \AA}$	$-\operatorname{Sn}(1)$
	$2.027~{\rm \AA}$	- F(1) -	$2.401~{\rm \AA}$	$-\operatorname{Sn}(2)$
	$2.401~{\rm \AA}$	- F(1) -	$2.027~{\rm \AA}$	$-\operatorname{Sn}(2)$


Figure Captions

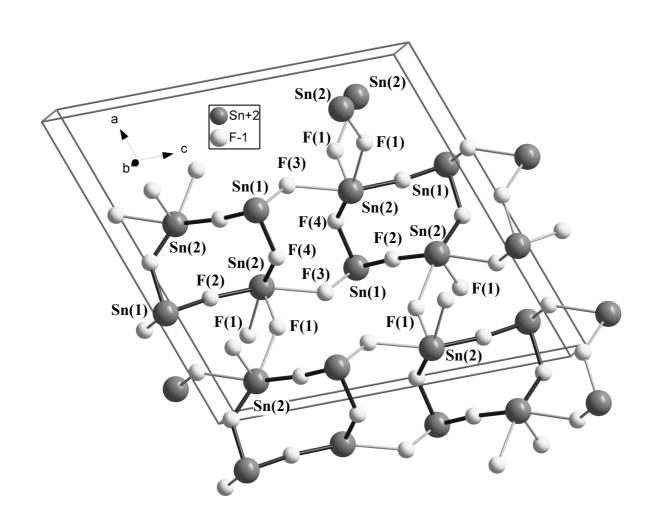

Figure 1: The structure of the monoclinic phase of tin(II) fluoride, α -SnF₂, based on the co-ordinates published in Ref. [1]. Puckered rings with comparatively short bonds are formed by tin (Sn(1) and Sn(2), dark spheres) and fluorine (F(2) and F(4), light spheres), which are emphasized in the drawing. These rings are connected via the F(1) species along the *a*-axis direction, and via F(3) along the *c*-axis direction [1,2], involving longer bond distances (> 2.4 Å).

Figure 2: ¹¹⁹Sn MAS NMR spectra at 25 kHz spinning speed (2k accumulations, 25 s recycle delay): (a) with, and (b) without ¹⁹F spin decoupling. The isotropic bands (marked by arrows) are located at -949.4 and -1024.7 ppm, respectively.

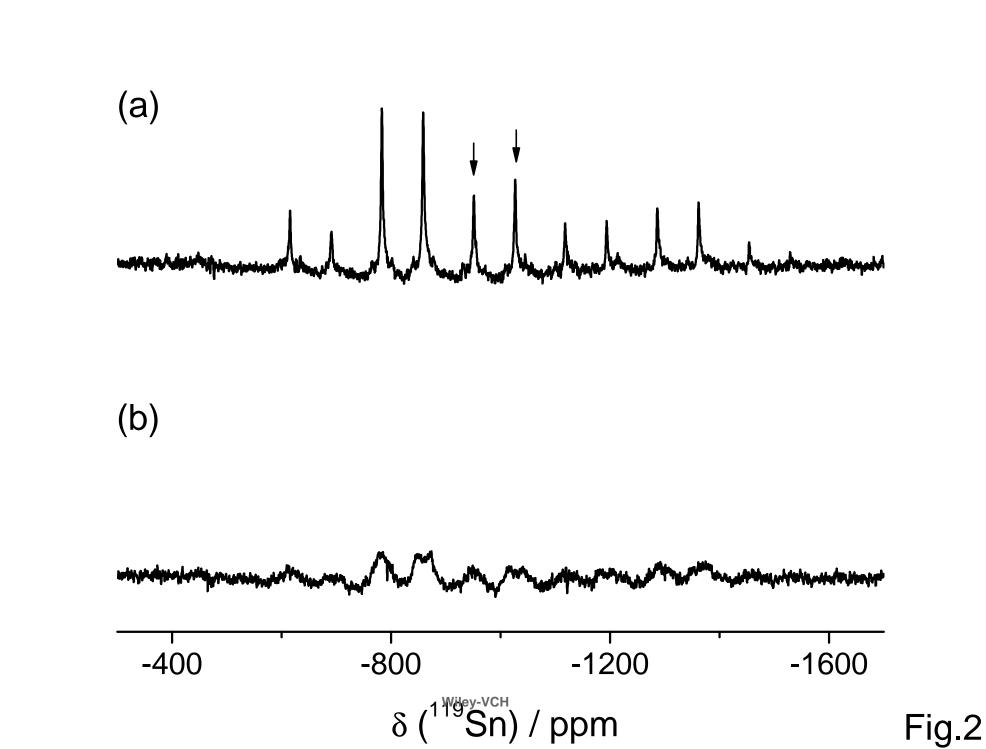
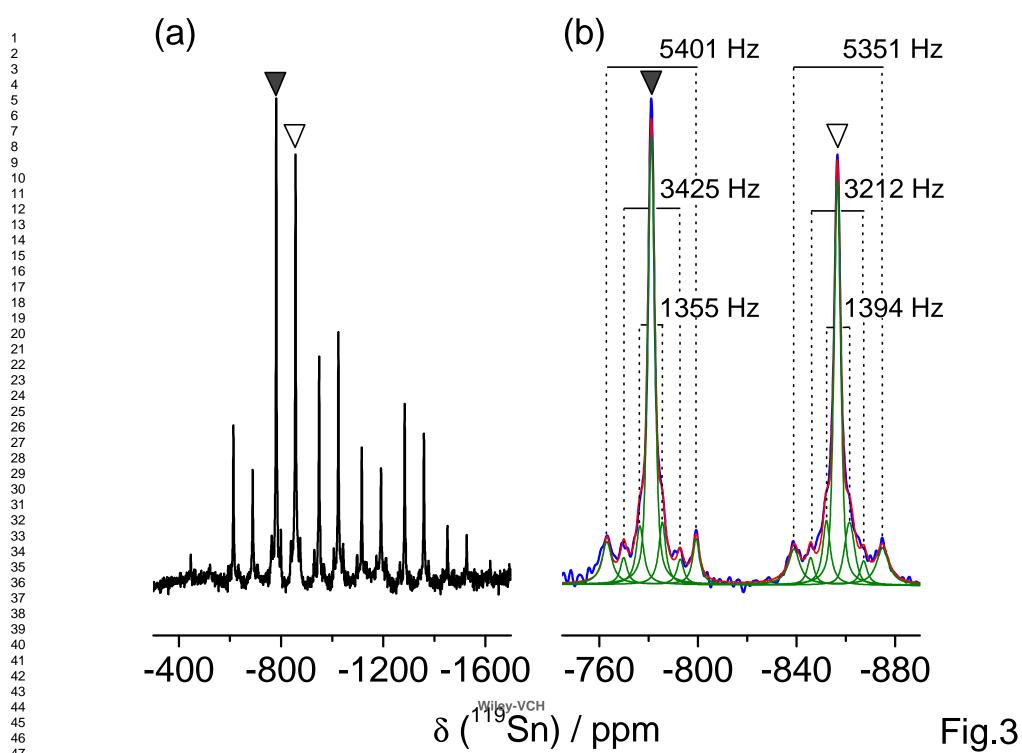
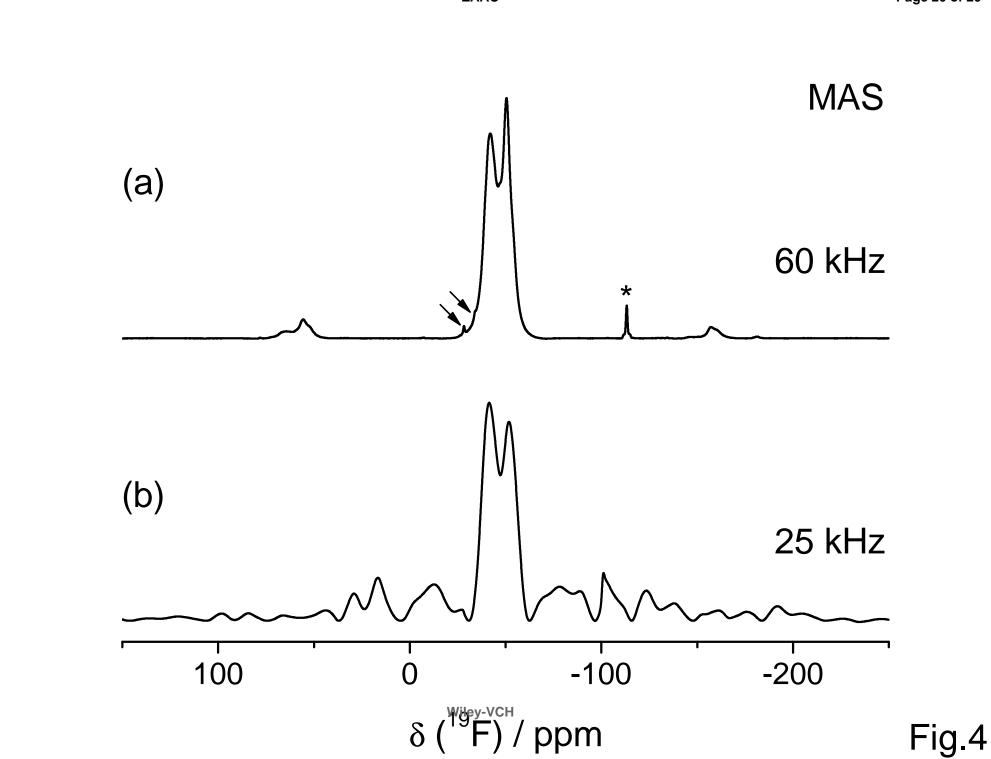

Figure 3: ¹¹⁹Sn MAS NMR spectrum at 25 kHz spinning speed (5k accumulations, 60 s recycle delay): (a) full MAS spectrum, (b) deconvolution of satellites caused by *J*-coupling, using the high-intensity first-order spinning sidebands, which are marked by arrows in (a). The spectrum can be fitted with a minimum of 3 doublets, with *J*-couplings of approximately 5.4, 3.3 and 1.4 kHz. From structural data [1, 2], however, an entire range of *J*-couplings is expected, which are not resolved here.

Figure 4: ¹⁹F MAS NMR spectra: (a) 60 kHz spinning speed (32 accumulations, 5 s recycle delay); (b) 25 kHz spinning speed (128 accumulations, 10 s recycle delay). The isotropic bands are centered around -42 and -50.5 ppm, respectively. The arrows in (a) indicate satellite lines attributed to *J*-couplings, whereas the asterisk marks a line due to an impurity (see text for details).





Page 19 of 20

ZAAC

